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Abstract. The purpose of ARINC 661 specification [1] is to define interfaces to 

a Cockpit Display System (CDS) used in any types of aircraft installations. 

ARINC 661 provides precise information for communication protocol between 

application (called User Applications) and user interface components (called 

widgets) as well as precise information about the widgets themselves. However, 

in ARINC 661, no information is given about the behaviour of these widgets 

and about the behaviour of an application made up of a set of such widgets. 

This paper presents the results of the application of a formal description 

technique to the various elements of ARINC 661 specification within an 

industrial project. This formal description technique called Interactive 

Cooperative Objects defines in a precise and non-ambiguous way all the 

elements of ARINC 661 specification. The application of the formal description 

techniques is shown on an interactive application called MPIA (Multi Purpose 

Interactive Application). Within this application, we present how ICO are used 

for describing interactive widgets, User Applications and User Interface servers 

(in charge of interaction techniques). The emphasis is put on the model-based 

management of the feel of the applications allowing rapid prototyping of the 

external presentation and the interaction techniques. Lastly, we present the 

CASE (Computer Aided Software Engineering) tool supporting the formal 

description technique and its new extensions in order to deal with large scale 

applications as the ones targeted at by ARINC 661 specification.  

1 Introduction 

Interactive applications embedded in cockpits are the current trend of evolution 

promoted by several aircraft manufacturer both in the field of civil and military 

systems [7, 10]. Embedding interactive application in civil and military cockpit is 

expected to provide significant benefits to the pilots by providing them with easier to 

use and more efficient applications increasing the communication bandwidth between 

pilots and systems. However, this technological enhancement comes along with 



several problems that have to be taken into account with appropriate precautions. 

ARINC specification 661 (see next section), aims at providing a common ground for 

building interactive applications in the field of aeronautical industry. However, this 

standard only deals with part of the issues raised. The aim of this paper is to propose a 

formal description technique to be used as a complement to ARINC 661 for the 

specification, design, implementation and validation of interactive application.  

The paper is structured as follows. Next section introduces ARINC 661 

specification to define software interfaces for a Cockpit Display System. It presents 

informally the content of the specification but also its associated architecture that has 

to be followed in order to build ARINC-661-compliant interactive applications. 

Section 3 presents the ICO formalism, a formal description technique for the design of 

safety critical interactive applications. This description technique has already been 

applied in various domains including Air Traffic Control applications, multimodal 

military cockpits or multimodal satellite ground segments. Its applicability to cockpit 

display system and its compatibility with ARINC specification 661 is discussed and 

extensions that had to be added are also presented in section 4. Section 5 presents the 

use of the formal description technique on an interactive application called MPIA 

(Multi Purpose Interactive Application) currently available in some cockpits of 

regional aircrafts. Last section of the paper deals with conclusions and perspectives to 

this work.  

2 ARINC 661 specification  

This section presents, in an informal way, the basic principles of ARINC 661 

specification. The purpose of this section is to provide a description of the underlying 

mechanisms of ARINC 661 specification and more precisely how its content 

influences the behaviour and the software architecture of interactive applications 

embedded in interactive cockpits. 

2.1 Purpose and Scope 

The purpose of ARINC 661 specification (ARINC 661, 2002) is to define interfaces 

to a Cockpit Display System (CDS) used in interactive cockpits that are now under 

deployment by several aircraft manufacturers including Airbus, Boeing and Dassault. 

The CDS provides graphical and interactive services to user applications (UA) within 

the flight deck environment. Basically, the interactive applications will be executed 

on Display Units (DU) and interaction with the pilots will take place through the use 

of Keyboard and graphical input devices like the Keyboard Cursor Control Unit 

(KCCU).  

ARINC 661 dissociates, on one side, input and output devices (provided by 

avionics equipment manufacturers) and on the other side the user applications 

(designed by aircraft manufacturers). Consistency between these two parts is 

maintained through a communication protocol: 



• Transmission of data to the CDS, which can be displayed to the flight deck 

crew. 

• Reception of input (as events) from interactive items managed by the CDS. 

In the field of interactive systems engineering, interactive software architectures 

such as Seeheim [14] or Arch [9] promote a separation of the interactive system in at 

least three components: presentation part (in charge of presenting information to and 

receiving input from the users), dialogue part (in charge of the behaviour of the 

system i.e. describing the available interface elements according to the current state of 

the application) and functional core (in charge of the non interactive functions of the 

system).  The CDS part may be seen as the presentation part of the whole system, 

provided to crew members, and the set of UAs may be seen as the merge of both the 

dialogue and the functional core of this system.  

2.2 User Interface Components in ARINC 661 

The communication between the CDS and UAs is based on the identification of user 

interface components hereafter called widgets. ARINC 661 defines a set of 42 

widgets that belong to 6 categories. Widgets may be any combination of “container”, 

“graphical representation” of one or more data, “text string” representations, 

“interactive”, dedicated to “map management” or may “dynamically move”. 

In ARINC 661,  each widget is defined by: 

• • a set of states classified in four levels (visibility, inner state, ability, visual 

representation), 

• • a description in six parts (definition section, parameters table, creation 

structure table, event structure table, run-time modifiable parameter table, 

specific sections). 

The main drawback of this description is the lack of description of the behaviour 

itself. Even if states are partially described, dynamic aspects such as state changes are 

informally described. As stated in ARINC 661 (section 1.0 introduction), the main 

paradigm is here based on this comment: 

“A UA should not have any direct access to the visual representations. 

Therefore, visual presentations do not have to be defined within the 

ARINC 661 interface protocol. Only the ARINC 661 parameter effects on 

graphical representation should be described in the ARINC 661 interface. 

The style guide defined by the OEM should describe the “look and feel” 

and thus, provide necessary information to UAs for their HMI interface 

design.” 

An additional textual description called SRS (for Software Requirement 

Specification), informally defines the look and feel of a CDS (Cockpit Display 

System). This SRS is designed by each manufacturer of airline electronic equipment 

(we worked with a draft document provided by Thales Avionics). This kind of 

document describes both the appearance and the detailed expected behaviour of each 

graphical or interactive component. 



2.3 Overview of our contribution to ARINC 661 

One of the goals of the work presented in this paper is to define an architecture that 

clearly identifies each part of this architecture and their communication, as shown on 

Fig 1. The aim of this architecture is also to clearly identify which components will be 

taken into account in the modelling process and which ones are taken into account in 

a different way by exploiting SVG facilities. The architecture has two main 

advantages: 

1. Every component that has an inner behaviour (server, widgets, UA, and the 

connection between UA and widgets, e.g. the rendering and activation functions) 

is fully modelled using the ICO formal description technique. 

2. The rendering part is delegated to a dedicated language and tool (such as SVG). 
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Fig 1. Detailed architecture to support ARINC 661 specification 

The following section recalls the basics of ICO notation and presents a new 

extension that has been required in order to be able to address all the modelling 

challenges put forward by interactive cockpit applications compliant with ARINC 661 

specification, and then present the connection to SVG. Lastly, a real case study 

illustrates this architecture and how modelling all the elements of ARINC 661 

specification are addressed using ICOs formal description technique. 

3 ICO modelling of ARINC 661 components 

We use the ICO formalism to describe formally the behaviour of the ARIC 

components. This section first briefly recalls the main features of the ICO formalism. 

We encourage the interested reader to look at [13, 11] for a complete presentation of 

the formal description technique and the environment supporting it. The second part is 

dedicated to the extensions that had to be defined in order to address the specificities 

of interactive applications compliant with ARINC 661 specifications.  



3.1 Overview of the ICO formalism 

The Interactive Cooperative Objects (ICOs) formalism is a formal description 

technique dedicated to the specification of interactive systems [4, 11]. It uses concepts 

borrowed from the object-oriented approach to describe the structural or static aspects 

of systems, and uses high-level Petri nets [8] to describe their dynamic or behavioural 

aspects. ICOs are dedicated to the modelling and the implementation of event-driven 

interfaces, using several communicating objects to model the system, where both 

behaviour of objects and communication protocol between objects are described by 

Petri nets. The formalism made up of both the description technique for the 

communicating objects and the communication protocol is called the Cooperative 

Objects formalism (CO). 

ICOs are used to provide a formal description of the dynamic behaviour of an 

interactive application. An ICO specification fully describes the potential interactions 

that users may have with the application. The specification encompasses both the 

"input" aspects of the interaction (i.e., how user actions impact on the inner state of 

the application, and which actions are enabled at any given time) and its "output" 

aspects (i.e., when and how the application displays information relevant to the user). 

Time-out transitions are special transitions that do not belong to the categories above.  

An ICO specification is fully executable, which gives the possibility to prototype 

and test an application before it is fully implemented [12]. The specification can also 

be validated using analysis and proof tools developed within the Petri nets community 

and extended in order to take into account the specificities of the Petri net dialect used 

in the ICO formal description technique. 

3.2 ICO improvements 

Two main issues have been raised while working with ARINC 661 specification that 

have not been encountered in previous work we have done in the field of interactive 

systems’ specification and modeling.  

• The first one is related to the management of rendering information in a 

more independent and structured way in order to be able to dissociate as 

much as possible the graphical appearance of interactive components from 

their behavior. This is one of the basics of interactive cockpit applications 

compliant with ARINC 661 specification as (as stated above) these two 

sides of the interactive cockpit applications are described in two different 

documents (communication protocol and abstract behavior in ARINC 661 

specification while presentation and detailed behavior are described in the 

SRS (System Requirement Specifications)). 

• The second one is related to the fact that ARINC 661 specification does 

not exploit current windows manager available in the operating system (as 

this is the case for Microsoft Windows applications for instance). On the 

opposite, the manufacturer in charge of developing the entire ARINC 661 

architecture is also in charge of developing all the components in charge 

of the management of input devices, device drivers and to manage the 



graphical structure of the interactive widgets. In order to handle those 

aspects we have defined a denotational semantics (in terms of High-level 

Petri nets) of both the rendering and the activation functions. Beforehand, 

these functions were only partly defined (relying on the underlying 

mechanisms provided by the window manager) and implemented using a 

particular java API thus making much more limited the verification 

aspects of theses aspects of the specification. Indeed, the work presented 

here addresses at the same level of formality, applications, widgets and 

user interface server (also called window manager). Besides, the 

connections and communications between these three parts are also 

formally described. 

Next section presents in details the various mechanisms that have been defined in 

order to handle the low level management of input devices and focuses on one 

specific aspect called picking which correspond to the window manager activating of 

finding the interactive component that was the target of the user when an event has 

been produced. The case study in section 4 shows on a concrete example how those 

elements are combined for describing User Applications, Widgets and User Interface 

servers.  

4 MPIA case study 

MPIA is a User Application (UA) that aims at handling several flight parameters. It is 

made up of 3 pages (called WXR, GCAS and AIRCOND) between which a crew 

member is allowed to navigate using 3 buttons (as shown by Fig 2). WXR page is in 

charge managing weather radar information; GCAS is in charge of the Ground Anti 

Collision System parameters while AIRCOND deals with settings of the air 

conditioning. 

            

Fig 2. Snapshots of the 3 pages of the UA MPIA 

In this section, we present the modelling of a simple widget and its link to SVG 

rendering, then we briefly present the classical modelling of a user application to 

show the extension made to ICOs, and finally we present parts of the server. The 

purpose is not here to present the whole specification which is made up of about 40 

models, but only to present brief extracts to show all bricks of the modelling. 



4.1 Modelling ARINC 661 interactive widgets 

The whole modelling process of ARINC 661 interactive components using ICO is 

fully described in [12]. The additional feature consists in using the rendering process 

described above, based on replacing the classical code-based rendering methods with 

rendering methods that modify the SVG Document Object Model. Rendering is the 

process of transforming a logical description (conceptual model) of an interactive 

component to a graphical representation (perceptual model). In previous similar 

works, we specified rendering with Java code, using the Java2D API., However, 

describing graphics with an imperative language is not an easy task, especially when 

one tries to match a particular look. Furthermore, the java code for graphics is 

embedded into the model, which makes it hard to change for another look. This is 

even more difficult when several components share a common part of the graphical 

representation, for instance when components must have a similar style and when this 

style has to be changed.  

To overcome these two problems, we changed for an architecture that uses 

declarative descriptions of the graphical part and that supports transformations from 

conceptual models to graphical representations. These two elements exploit XML-

based languages from the W3C: the SVG language for graphical representation, and 

the XSLT language for transformation. SVG is an xml-based vector graphics format: 

it describes graphical primitives in terms of analytical shapes and transformations.  

XSLT is an xml-based format that describes how to transform an xml description (the 

source) to another xml description (the target). An XSLT description is called a 

“stylesheet”. Due to space constraints this work is not presented in the next section as 

we focus on the behavioural aspects of models.  

4.2 Modelling User Applications 

Modelling a user application using ICO is quite simple as ICO has already been used 

to model such kind of interactive applications. Indeed, UAs in the area of interactive 

cockpits correspond to classical WIMP interfaces,  

As the detailed specification is not necessary to expose the modification of ICO, 

we only present an excerpt of the models that have been produced to build the MPIA 

application. This excerpt is the first page (WXR) of the application (left part of Fig 2). 

4.2.1 Behaviour 

Fig 3 shows the entire behaviour of page WXR which is made up of two non 

connected parts:  

•  The upper part aims at handling events from the 5 CheckButtons and the 

modification implied of the MODE_SELECTION that might be one of five 

possibilities (OFF, STDBY, TST, WXON, WXA). Value changes of token 

stored in place Mode-Selection are described in the transitions while 



variables on the incoming and outgoing arcs play the role of formal 

parameters of the transitions.  

•  The lower part concerns the handling of events from the 2 PicturePushButton 

and the EditBoxNumeric. Interacting with these buttons will change the state 

of the application.  

 

Fig 3. Behaviour of the page WXR 

4.2.2 Activation function 

Fig 4 shows an excerpt of the activation function for page WXR. 

 Widget Event UserService ActivationRendering 

wxrOFFAdapter off_CheckButton A661_INNER_STATE_SELECT off setWXRModeSelectEnabled 

wxrSTDBYAdapter stdby_CheckButton A661_INNER_STATE_SELECT stdby setWXRModeSelectEnabled 

wxrTSTAdapter tst_CheckButton A661_INNER_STATE_SELECT tst setWXRModeSelectEnabled 

wxrWXONAdapter wxon_CheckButton A661_INNER_STATE_SELECT wxon setWXRModeSelectEnabled 

wxrWXAAdapter wxa_CheckButton A661_INNER_STATE_SELECT wxa setWXRModeSelectEnabled 

autoAdapter auto_PicturePushButton A661_EVT_SELECTION switchAUTO setWXRTiltSelectionEnabled 

stabAdapter stab_PicturePushButton A661_EVT_SELECTION switchSTABILIZATION setWXRTiltSelectionEnabled 

tiltAngleAdapter tiltAngle_EditBox A661_STRING_CHANGE changeAngle setWXRTiltSelectionEnabled 

Fig 4. Activation Function of the page WXR 



From this textual description, we can derive the ICO model shown on Fig 5. The 

left part of this figure presents the full activation function, which is made up of as 

many sub Petri nets as there are lines in the textual activation function. The upper 

right hand side of the figure emphasises on of these sub Petri nets. It describes how 

the availability of the associated widget is modified according to some changes in the 

WXR behaviour. The lower right hand part of the Figure shows the general pattern 

associated to one line of the activation function: It describes the handling of the event 

raised par the corresponding widget, and how it is linked to an event handler in the 

WXR behaviour.  

 

 

 

Fig 5. Activation Function of the page WXR expressed in Petri nets 

The use of Petri nets to model the activation function is made possible thanks to the 

event communication available in the ICO formalism. As this kind of communication 

is out of the scope of this paper, we do not present the models responsible in the 

registration of events-handlers needed to allow the communication between 

behaviour, activation function and widgets. More information about this mechanism 

can be found in [2]. 



4.2.3 Rendering Function 

The modelling of the rendering function (shown on Fig 6) into Petri nets (shown on 

Fig 7) works the same way as for the activation function, i.e. for each line in the 

rendering function, there is a pattern to express that in Petri nets. This is why we do 

not detail more the translation.  

 ObCSNode name ObCS event Rendering method 

modeSelectionAdapter MODE_SELECTION token_enter <int m> showModeSelection(m) 

tiltAngleAdapter TILT_ANGLE token_enter <float a> showTiltAngle(a) 

initAutoAdapter AUTO marking_reset showAuto(true) 

autoAdapter AUTO token_enter showAuto(true) 

notAutoAdapter AUTO token_remove showAuto(false) 

initStabAdapter STABILIZATION_ON marking_reset showStab(true) 

stabAdapter STABILIZATION_ON token_enter showStab(true) 

notStabAdapter STABILIZATION_ON token_remove showStab(false) 

Fig 6. Rendering Function of the page WXR 

 

 

 

Fig 7. Rendering Function of the page WXR expressed in Petri nets 



4.3 Modelling User Interface Server 

The user interface server manages the set of widgets and the hierarchy of widgets 

used in the User Applications. More precisely, the user interface server is responsible 

in handling: 

• The creation of widgets 

• The graphical cursors of both the pilot and his co-pilot 

• The edition mode 

• The mouse and keyboard events and dispatching it to the corresponding widgets 

• The highlight and the focus mechanisms 

• … 

As it handles many functionalities, the complete model of the sub-server (dedicated 

in handling widgets involved in the MPIA User Application) is complex and difficult 

to manipulate without an appropriate tool. As the detailed model is out of the scope of 

this paper, Fig 8 only present an overview of the complete model. 

 

Fig 8. Overview of the complete model of the user interface server. 

The rectangle at the bottom of Fig 8 represents the part of the model of the server 

in charge of the interaction technique and input devices management. The rest of the 

model corresponds to the management of the widgets.  



4.4 Modelling the complete MPIA User Application 

We do not present here the full model of the user application MPIA neither the one of 

the user interface server, but the formal description technique ICO has been used to 

model in a complete and non ambiguous way all the pages and the navigation between 

pages for such user application, and still produces low-sized and readable models. 

Modelling Activation functions and Rendering functions using Petri nets, legitimates 

the use of the table notation as a readable way to express the connection between the 

dialog and the presentation parts. 

Another issue is that the models of the user application MPIA can both be 

connected to the modelled CDS or to an implemented CDS, using a special API, as it 

respects the ARINC 661 specification. As testing an implemented user application is 

still a problem that has to be solved, especially when the UA is connected to a real 

CDS, a model based approach may support testing at different levels: 

1. Test a modelled user application on the modelled CDS. 

2. Test the modelled user application on the CDS implemented by the 

manufacturer. 

3. Code and test the user application on the implemented CDS. 

The first step promotes a very iterative prototyping process where both the User 

Application and the CDS may be modified, as the second step allows user testing on 

the real interactive system (CDS), with classical prototyping facilities provided by the 

models expressed in ICO of the User Application. 

The MPIA application has been fully modelled and can be executed on the CDS 

modelled using the ICO formalism. However, it has also been connected on a CDS 

developed on an experimental test bench as shown in Fig. 9. 

 

Fig. 9. The MPIA application modelled using ICO connected to experimental CDS at THALES 



5 Conclusions and Perspectives 

This paper has presented the use of a formal description technique for describing 

interactive components in ARINC specification 661. Beyond that, we have shown that 

this formal description technique is also adequate for interactive applications 

embedding such interactive components. One of the advantages of using the ICO 

formal description technique is that it provides additional benefits with respect to 

other notations such as statecharts as proposed in [15]. Thanks to its Petri nets basis 

the ICO notations makes it possible to model behaviours featuring an infinite number 

of states (as states are modelled by a distribution of tokens in the places of the Petri 

nets). Another advantage of ICOs is that they allow designers to use verification 

techniques at design time as this has been presented in [3]. These verification 

techniques are of great help for certification purposes.  

We are currently developing techniques for providing support to certification 

processes by allowing verification of compatibility between the behavioural 

description of the interactive application and task model describing nominal or 

unexpected pilots behaviour. Support is also provided through the verification of 

interactive system safety and liveness properties such as the fact that whatever state 

the system is in there is always at least one interactive element available. 
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