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ABSTRACT 
 
It is currently stated and widely accepted by industry and 
users that the RAIM is designed to provide timely 
warnings in the situation where only one of the range 
measurements used at the current epoch is affected by an 
unacceptable bias. However, given the range of potential 
applications of RAIM in the future, in particular with the 
advent of Galileo and the generalization of Safety of Life 
applications, which should spread from the civil aviation 
community to many other professional sectors, it is very 
important to better understand the fundamental properties 
of RAIM, and in particular the potential of RAIM to 
detect multiple failures on range measurements. 
 



The purpose of the study presented in this paper is to 
analyze the performance of a RAIM in the presence of 
multiple simultaneous range errors. In particular, we 
conduct a theoretical analysis to determine in which cases 
the Least Squares Residuals RAIM detection criterion is 
not affected, and analyzed results of Monte-Carlo 
simulations in presence of up to four range failures. 
The theoretical analysis outlined above aims at 
determining in what conditions the Least Squares 
Residuals RAIM detection criterion remains unaffected 
by multiple range failures, searching for what we call 
criterion unaffecting range errors. We show that, 
provided the satellite constellation does not have any 
degenerated geometrical properties, the dimension of the 
vector sub-space of these criterion unaffecting errors is 
max(4-(N-p),0), where N is the number of tracked 
satellites and p is the number of faulty pseudorange 
measurements. The immediate conclusion is that if N-4 
pseudo range measurements are affected, or less than 
that, by a large error, there exists no error that will not 
affect the RAIM detection criterion, and globally due to 
the negligible probability that unintentional interference 
lies in a small dimension sub-space, the RAIM detection 
criterion exhibits a natural detection capability even if up 
to N-2 pseudo-range measurements are faulty. This 
theoretical result defines the properties of the errors that 
lead to zero change in the detection criterion. To jump to 
a more operational conclusion, it remains to know what 
the possibility is for multiple range errors to induce a 
detection criterion that is below the detection threshold. 
So to complement the theoretical analysis outlined above, 
we ran Monte Carlo simulations inserting up to four 
range failures and analyzing the detection capacity. The 
capacity of RAIM detection is also analyzed in the 
presence of intentional jamming. 

 
I. INTRODUCTION 
 
The pseudorange measurements made by a Global 
Navigation Satellite System (GNSS) receiver are affected 
by residual atmospheric delays, multipath, noise and 
background interference. These range errors induce errors 
in the estimated position. 
 
The International Civil Aviation Organization (ICAO) 
has stated the requirements that need to be fulfilled by a 
GNSS to be used as navigation means for specific phases 
of flight. These requirements are applicable to the GNSS 
receiver and to the GNSS signal, and are stated in terms 
of accuracy, integrity, continuity and availability. These 
requirements specify a nominal RF environment and 
feared events leading to abnormal situations. 
 
In order to satisfy the ICAO GNSS requirements from the 
en-route to the Non Precision Approach phases of flight, 
a GPS receiver needs to include a Receiver Autonomous 
Integrity Monitoring (RAIM) module. This module is 
mainly designed to warn rapidly the user in the case of an 
unacceptable measurement error, such as the error caused 
by a failure of an atomic clock onboard a GPS satellite. It 
can also include an algorithm to exclude the faulty 
measurement from the navigation solution calculation. It 
must provide the user with a Horizontal Protection Level 
(HPL), which is the estimation of the impact in the 
horizontal plane of the smallest range bias that can be 
detected. 
 
It is important to recall that the RAIM performance can 
only be guaranteed in the situation where only one of the 
range measurements used at the current epoch is affected 
by an unacceptable bias. 
 
The purpose of the study presented in this paper is to 
analyze the performance of a RAIM in the presence of 
multiple simultaneous range errors. In particular, we 
conduct a theoretical analysis to determine in which cases 
the LSR RAIM detection criterion is not affected, and 
analyzed results of Monte-Carlo simulations in presence 
of up to four range failures. 
 
The first part of this paper recalls the design parameters 
of a RAIM algorithm and the principle of classical Least 
Squares Residuals RAIM. On this basis, we then 
determine what the mathematical condition on multiple 
range measurement errors is for the LSR RAIM detection 
criterion to be equal to zero, defining what we call 
criterion unaffecting range errors. We show that, for non-
degenerated visibility matrices, the dimension of the 
vector sub-space of these criterion unaffecting range 
errors is max (4-(N-p),0), where N is the number of 
tracked satellites and p is the number of faulty 
pseudorange measurements. The natural resistance of the 
detection criterion in presence of unintentional jamming 
is then very strong. This condition is then physically 
justified, and graphically illustrated in a two dimension 
example. We also check this particular RAIM detection 
criterion performance in several cases, using a real GPS 
receiver connected to a GPS signal generator.  In order to 
move towards a more operational conclusion on this 
RAIM performance by analyzing the impact of errors that 
induce a detection criterion which is below the detection 
threshold, we then provide results of Monte-Carlo 
simulations showing that this robustness is indeed very 
large in presence of up to four faulty ranges. Then, 
detection capability in presence of intentional 
interference is discussed. A conclusion on this overall 
detection performance is then drawn, particularly in the 
context of future GNSS, comprising GPS and GALILEO, 
broadcasting signals on several frequency bands. 
 
II. PSEUDORANGE MEASUREMENTS MODEL 
 
Let us denote yi(k) the pseudo-range measurements made 
by the user receiver at each epoch k  on the signal 



coming from satellite i , and corrected from the broadcast 
satellite clock offset, ionospheric delay, tropospheric 
delay. 

These corrected measurements are modelled as: 
( ) ( ) ( ) ( )kektckky i

u
ii +∆+= ρ  

where 
• iρ  is the true geometrical distance between the 

satellite antenna and the user receiver antenna 
• ut∆  is the user receiver clock offset w.r.t GPS 

time. We note uu tcb ∆=  the receiver clock 
bias expressed in meters. 

• ie  is the sum of the measurement errors due to 
multipath, background interference, noise, 
ionospheric and atmospheric propagation delay 
residuals, satellite clock residuals. 

 
These measurements can also be expressed as a function 
of the receiver true position, and of the satellite position 
as follows: 

( ) ( ) ( ) ( ) i
u

iiii ebzzyyxxky ++−+−+−= 222  
where 

• x , y , z  are the cartesian coordinates of the 
receiver antenna at the time of signal reception 
expressed in an ECEF reference frame. 

• ix , iy , iz  are the cartesian coordinates of the 
satellite antenna at the time of signal emission 
expressed in an ECEF reference frame. 

 
We gather in a vector denoted ( )kY  the corrected 
pseudorange measurements made by the receiver at time 
k. These measurements are modelled as follows: 

( ) ( ) ( )[ ]tN kykykY 1=  where N is the number 
of satellites used for positioning at the current epoch. 

( ) ( ) ( )

( ) ( ) ( ) 















+



















+−+−+−

+−+−+−
=

N
u

NNN

u

e

e

bzzyyxx

bzzyyxx
kY

1

222

212121

)(  

We note 

( )


















=

b
z
y
x

kX , ( )
















=
Ne

e
kE

1

, ( )( )
( )

( )















=
Xh

Xh
kXh

N

1

  

where 

( )( ) ( ) ( ) ( ) ( )kbzzyyxxkXh u
iiii +−+−+−= 222

 
The measurement model is thus expressed as: 

( ) ( )( ) ( )kEkXhkY += . 
III. LEAST SQUARES NAVIGATION SOLUTION 
 
The measurement model is not linear because the 
measurements do not linearly depend on X. Therefore, we 
implement an iterative least squares estimation technique. 
This method uses the linearization of the measurement 
model around successive estimates of the receiver 
position. 
 
Let us denote ( )kX 0

ˆ  an initial estimate of ( )kX . This 
initial estimate can be determined using past 
measurements or can be provided by other navigation 
means. 
We then denote ( ) ( ) ( )kXkXkX ∆+= 0

ˆ . Therefore, 
we can rewrite the measurement model as follows: 

( ) ( ) ( )( ) ( )kEkXkXhkY +∆+= 0
ˆ  

This model is linearized around ( )kX 0
ˆ  : 

( ) ( )( ) ( )( ) ( ) ( )kEkXkX
X
hkXhkY +∆×

∂
∂+≈ 00

ˆˆ  

The first order derivative that appears in this last equation 
is an 4×N  matrix that can be expressed as: 

( )( )kX
X
hH 0

ˆ
∂
∂=  

( ) ( ) ( ) ( )
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It can be shown that these derivatives can be expressed 
as: 

( )( ) ( )
( )( ) ( )( ) ( )( )2

0
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and ( )( ) 1ˆ
0 =

∂
∂ kX

b
hi

. 

The linearized model can also be rewritten as: 

( ) ( )( ) ( ) ( )kEkXHkXhkY +∆×=− 0
ˆ  

or 
( ) ( ) ( )kEkXHkY +∆×=∆  

if we note ( ) ( ) ( )( )kXhkYkY 0
ˆ−=∆  the deviation 

between the measurements made and the predicted 
noiseless measurements that the receiver would have 
made if its position and clock delay were ( )kX 0

ˆ . 



 
 
 
 
 

Considering this new linear model between ( )kY∆  

and ( )kX∆ , we can compute a least squares estimate 

of ( )kX∆ . 
This estimate is: 

( ) [ ] ( )kYHHHkX tt ∆×=∆ −1ˆ  
Let us denote that if the measurement error covariance 
matrix is known, then the weighted least squares estimate 
is: 

( ) [ ] ( )kYRHHRHkX tt ∆×=∆ −−− 111ˆ  

where ( ) ( )( )kECovkR = . 

This quantity ( )kX̂∆  is an estimate of ( )kX∆ , 
which is defined as the deviation between the initial 
estimate ( )kX 0

ˆ  and ( )kX . 
We can therefore imagine the implementation of 

an iterative algorithm starting from an initial 
estimate ( )kX 0

ˆ  and improving progressively this 
estimate through the comparison between the 
measurements and the predicted measurements for each 
estimated position. The iterative algorithm can be 
implemented to stop if ( )kX̂∆  is a vector that has a 
small norm. 
Another possibility is to look at ( )kY∆ , but then starts 
the RAIM. 
 
IV. RAIM ALGORITHM BASICS 
 
The norm of vector ( )kY∆  can be used as a quality test. 
Indeed, if the mathematical model of the measurements is 
correct, if the measurements are only affected by noise 
with a standard deviation adequately described by the 
model, and if the estimated position and receiver clock 
bias are close to reality, then the norm of this vector 

( )kY∆  is the of the same order as the noise.  
Indeed: 

( )XhYY ˆ−=∆  
This can be expressed as: 

( ) ( ) ( )
( ) ( ) EXXhXXh

EXhXhXhY

+∆+−∆+=

+−=−
ˆˆˆ

ˆˆ

00

 

This can be linearized as: 

( ) ( ) EXXHEXHXHXhY +∆−∆=+∆−∆≈− ˆˆˆ
 

But ( ) [ ] ( ) ( )( )[ ]kXhkYRHHRHkX tt
0

111 ˆˆ −×=∆ −−−

, 
therefore

( ) [ ] ( ) ( )[ ]kEkXHRHHRHkX tt +∆××=∆ −−− 111ˆ  
This is equivalent to 

( ) ( ) [ ] ( )kERHHRHkXkX tt ×+∆=∆ −−− 111ˆ , so 

( ) ( ) [ ] ( )kERHHRHkXkX tt ×−=∆−∆ −−− 111ˆ  
If we integrate this in the first equation, we get 

( ) [ ] EEHHHHXhY tt +−≈− −1ˆ  
and finally, we have 

( ) [ ]( )EHHHHIXhYY tt 1ˆ −−=−=∆  
where E is the vector containing all the measurement 
errors. 
Therefore, there is a linear relation ship between the 
measurement error vector E and the prediction error 
vector Y∆ . 
 
The RAIM test statistics is then computed using the sum 
of squared residuals which is defined by: 

2YYYSSE T ∆=∆⋅∆=  
As we can see, if all elements of E have the same 
Gaussian distribution, are independent and with zero 
mean and standard deviation σ, then, the statistical 
distribution of SSE  is independent from the geometry of 
the constellation, for any value of N. 
With the previous assumptions on the distribution of E, 

2σSSE  is centred and 2χ -distributed with N-4 
degrees of freedom, provided the number of visible 
satellites N is at least 6. 
Note that for N=5, it is shown that 2σSSE has a 

Gaussian distribution: )1,'(~2 µ
σ

NSSE
. 

The classical operational test statistic is 
4−

=
N
SSET . 

 
V. RANGE FAILURES UNAFFECTING THE 
DETECTION CRITERION 
 
To identify the errors that do not affect the test statistics T 
in the above mentioned RAIM, we look for the 
systematic errors E that induce no variation of Y∆ . We 
call these errors the criterion unaffecting range errors. 
 
The pseudorange measurement errors E can be modelled 
as the sum of the noise plus the range errors that do not 
originate from noise itself. So we can write 

noisebias EEE +=  
 



where: 
• noiseE is the vector of the noise errors 

• biasE is the vector of the range faults not 
originating from the noise, but rather from 
satellite failures or interference. These errors are 
modeled as biases at each epoch. 

 
Let us assume that the measurement error vector 

biasE  has p non-zero coordinates. This means we assume 
now that not all the GNSS pseudorange measurements 
are affected by unacceptable errors but only p GNSS 
channels. We denote the measurement error vector in that 
case

pbiasE .  

 
It is assumed that the 4 columns of the matrix H are 

independent, i.e. the partial derivatives of the non linear 
function h w.r.t. x, y, z and b are an independent family of 
vectors. This implies that 4=Hrank . Let us define the 

set of indexes { }piiiI ,,, 21=  such that 0)( ≠kp iE  

and { }
piiiI eeespanF ,,,

21
=  the linear space 

spanned by the vectors { }
piii eee ,,,

21
, where ie is the 

i-th vector of the canonical basis of nR .  

Let us now denote [ ] tt HHHS 1−=  the 
pseudoinverse of H. The prediction error vector Y∆ , 
which is the base for the RAIM test statistic, can be 
expressed as: 

( )EHSIY −=∆  
where E  is the vector of the measurement errors. 

 
Therefore the prediction error vector can be expressed as: 

( ) ( ) noisebiasnoisebias YYEHSIEHSIY ∆+∆=−+−=∆
The prediction error has two contributors: the noise and 
the range errors not originating from the noise. Let us 
look at the impact of the range errors 

( )
pp biasHbiasbias EPEHSIY =−=∆ , 

where HSIPH −= is the orthogonal projection onto 
the null space of Ht. Consequently, all error vectors 

pbiasE affect the detection criterion, 0≠
pbiasH EP , if the 

intersection J between IF and HIm is restricted to the 
null-vector. In [Fillatre and Nikiforov, 2005], it is shown 
that it is equivalent to assume that the set of 
rows{ }

pNjjj HHH
−

,,,
21

 is linearly independent 

for all possible set I by denoting 

( ) ( ) ( ) ( )
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the set of indexes associated to the rows of H which are 
not affected by the p pseudorange errors whose locations 
are defined by I.  
In other words, an error vector which affects p 
pseudorange measurements does not affect the criterion if 
and only if the sub-matrix KH , composed of the N-p 
other measures, is not full rank column. 
 
Given only one satellite constellation like the GNSS, it is 
straightforward to verify that each row of the matrix H is 
linear independent from the others due to the different 
orientations and positions of each satellite composing the 
constellation. Hence, it is straightforward to verify that 
the extraction of N-p rows of H by an arbitrary set I still 
generates a sub-matrix KH  such 
that { }pNHrank K −= ,4min .  
 
Consequently, an error vector always affects the 
detection criterion when N-4, or less, pseudorange 
measurements are erroneous. On the contrary, it always 
exists errors that do not affect the detection criterion 
when more than N-4 pseudorange measurements are 
affected by errors. More specifically, it will be proved 
later that the intersection J between IF and HIm has 
the dimension max(4-(N-p),0).  

 
This means that, noting N the numbers of visible 
satellites: 

• if N-4 pseudorange measurements are faulty, or 
less than that, there are no errors that do not 
affect the RAIM criterion. 

• if N-3 pseudorange measurements are faulty, the 
vector sub-space of the criterion unaffecting 
errors has a dimension 1. This means that these 
measurement errors for all the satellites are all 
linearly related to a unique arbitrary parameter, 
which seems very unlikely. 

• if N-2 pseudorange measurements are faulty, the 
vector sub-space of the criterion unaffecting 
errors has a dimension 2. This means that these 
measurement errors for all the satellites are all 
linearly related to 2 arbitrary parameters, which 
seems very unlikely also. 

• if N-1 or N pseudorange measurements are 
affected, the vector sub-space of the criterion 
unaffecting errors has a dimension 3 or 4. This 
means that these measurement errors for all the 
satellites are all linearly related to 3 or 4 
arbitrary parameters, which reduces also the 
probability for this to occur. 

 
It is important to note that some changes in error 
detectability may appear when two satellite constellations 
are used simultaneously due to the existence of two 



satellites which have the same elevation and azimuth 
with respect to the GNSS receiver. Hence, some linear 
dependencies may exist between the rows of the matrix H 
and it certainly becomes possible to extract 4 linearly 
dependant rows of H. In this case, it may exist some 
criterion unaffecting errors when only N-4 pseudorange 
measurements are affected by errors. 
 
VI. POSITION ERRORS INDUCED BY 
CRITERION UNAFFECTING RANGE FAILURES 
 
Let us now try to characterize the position errors induced 
by these measurement errors that do not affect the LSR 
RAIM detection criterion. This characteristic will be 
expressed as the linear relationship between these 
position errors and a basic vector that has dimension 4-
(N-p). This expression will be in turn used to express the 
linear space of the criterion unaffecting measurement 
errors themselves. 
 
We have seen in section IV that the position errors 
induced by measurement errors are defined as: 

EHHHXX tt 1)(ˆ −=∆−∆  

If we denote again tt HHHS 1)( −= , then the position 

errors XX ∆−∆ ˆ  induced by the criterion unaffecting 
errors are such that XXSE

pbias ∆−∆= ˆ , and as we 

know
pbiasbias EHSIY )( −=∆ , then 

0=∆ biasY  is equivalent to 
pp biasbias EHSE .= , and 

this leads to the following relationship between the 
criterion unaffecting errors and the position error that 
they induce: 

( )XXHE
pbias ∆−∆= ˆ  

This relation can be used to split the H matrix in two 
blocks pH →1  from lines 1 to p and npH →+1  from lines 
p+1 to N: 
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Therefore, we see that ( )NpHXX →+∈∆−∆ 1kerˆ . 
Let us now try to define this linear space of the position 
errors induced by the criterion unaffecting errors. 
Let us denote q=N-p and let us decompose the 
vector XX ∆−∆ ˆ as the collection of a vector with 
dimension q, and a vector with dimension 4-q: 

( ) 







=∆−∆=

−q

q

W
W

XXW
4

ˆ  

The Nx4 matrix H can be accordingly rewritten as the 
following 4 block matrix: 
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Note that both decompositions only exist if 4-q>0, or 
equivalently 0)(4 >−− pN . 
The previous property ( )NpHXX →+∈∆−∆ 1kerˆ can be 
expressed as: 
[ ]( ) 0ˆ

2221 =∆−∆ XXHH . 

We have then [ ] 0
4

2221 =








−q

q

W
W

HH . This is 

equivalent to 042221 =+ −qq WHWH . 

As the left corner block of H, 21H  is a square matrix with 
full rank N-p, we can write: 

qq WHHW −
−−= 422

1
21  

So the position errors can be expressed as a 
linear combination of the same vector qW −4 : 
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Therefore, the dimension of the vector sub-space of the 
position errors induced by the measurement errors that do 
not affect the detection criterion is the dimension 
of qW −4 , which is )(44 pNq −−=−  . 
 
Let us now express in the same way the linear space of 
the criterion unaffecting range measurement errors that 
do cause these position errors: 

[ ]( ) [ ] q
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We see again that we are dealing with a linear sub-space 
defined as all linear combinations of qW −4 , so this linear 
sub-space of the criterion unaffecting errors has a 
dimension )(44 pNq −−=− . 
 
VII. ILLUSTRATION IN 2 DIMENSIONS 
 
To illustrate this theory on criterion unaffecting biases, 
we consider examples in simplified conditions. First of 
all, in order to simplify the interpretation of the drawings, 
we assume the user clock bias is resolved, so the user 
clock bias is considered estimated. Therefore, in absence 
of error, the position solution is at the intersection of the 
iso-range surfaces. Then, we consider that only 4 
satellites are used for positioning. 
 
Let us first consider the case without failure, as illustrated 
in figure 1. The RAIM does not detect any failure.  

Figure 1: Illustration in a 2 dimension case of an 
estimated position without range failure in the absence of 

noise. 
 

In the following, spheres are approximated as lines 
because the satellites are very far compared to the 
position errors illustrated in the figures shown. 
 
We now consider in figure 2 the case where a single 
range error appears, on satellite 3. The estimated position 
is wrong. The measurement prediction error for each 
satellite can be illustrated as the projection of that 
estimated position on the satellite iso-range surface. As 
the deviation between the predicted range and the 
observed range is too large for satellites 2 and 3, we can 
anticipate that the RAIM criterion detection is affected by 
the error. This result is expected as the RAIM is designed 
to detect one range error among all the measurements. 
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Figure 2: Illustration in a 2 dimension case of an 

estimated position with one range failure. 

We can, on figure 2, discuss the conditions for range 
errors not to affect the detection criterion. We saw in the 
theoretical section that the detection criterion is based on 
the measurement prediction errors. For measurement 
errors not to affect the measurement prediction error, we 
see in this illustration that the estimated position must 
stay close to the iso-range surfaces of all satellites, 
including the unaffected satellites. For example, when 
only one range is affected by an error, for that error not to 
affect the detection criterion, the estimated position must 
stay close to the iso-range surfaces of the N-1 unaffected 
satellites. 
 
If at least 5 satellites are used for positioning and one of 
them induces a faulty pseudo-range measurement, the 
iso-range surfaces of the 4 unaffected satellites already 
intersect in one unique point after clock resolution, so the 
estimated position will in any case move away from that 
point, therefore the detection criterion is always affected. 
 
Also, in general, if more satellites are affected, then for 
the detection criterion not to be affected, the estimated 
position has to stay close to the iso-range surfaces of the 
unaffected satellites. For example, if only 1 satellite 
remains unaffected, the estimated position can be 
anywhere along the iso-range surface of that satellite, so 
there are 3 degrees of freedom for the estimated position 
if we include the clock, therefore 3 degrees of freedom 
for the affected ranges. If 2 satellites are unaffected, there 
are 2 degrees of freedom for the errors. If 3 satellites are 
unaffected, there is only one degree of freedom. If 4 
satellites or more are unaffected, then there is no degree 
of freedom, no possibility for the criterion unaffecting 
errors to exist. 
 
Figure 3 illustrates the case where two range failures 
occur: one on satellite 3 and one on satellite 4. The 
measurement prediction error for all 4 satellites is large, 
so the detection criterion is affected by the errors.  
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Figure 3: Illustration in a 2 dimension case of an 

estimated position with 2 failures. 

Again, when 2 ranges are affected, for them not to affect 
the detection criterion, the estimated position must stay 
on the iso-range surfaces of the other N-2 sats. But if N-2 
is greater or equal than 4, these iso-range surfaces already 
have a unique intersection, and the estimated position has 
to move away from this intersection, so the detection 
criterion sees the error in any case. 

 
We now consider in figure 4 the case where three range 
errors appear, on satellites 1, 2 and 3.  

 
Figure 4: Illustration in a 2 dimension case of an 

estimated position with 3 failures. 

In the case illustrated here, the measurement prediction 
error is large for all 4 satellites and the RAIM detection 
criterion is affected. For the detection criterion not to be 
affected, the estimated position has to stay on the iso-
range surface of the unaffected satellite (sat 4). This is 
illustrated in figure 5: the prediction error is 0 for all sat, 
so the detection criterion stays unaffected. 
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Figure 5: Illustration in a 2 dimension case of an 

estimated position with 3 failures. 

As a conclusion, when several range failures occur, there 
are limited degrees of freedom for the pseudo-range 
errors to cause the estimated position to stay close to the 
iso-range surfaces of the unaffected satellites, except 
when all N or N-1 satellites are affected. Therefore, this 
leaves very limited occasions for the detection criterion 
not to be affected by the pseudo-range errors. 
 
One question that now remains to be answered is: when 
is the impact on the detection criterion large enough for 
that criterion to go over the threshold ? 
 
To test this and the theoretical results illustrated here, we 
conduct tests with a real receiver and a RAIM 
implemented with a threshold conform to DO229 specs. 
In a further section, we test the performance of the RAIM 
in presence of up to four range failures. 
 
VIII. PRESENTATION OF TESTS 
 
In order to check the definition of the linear sub-space of 
the criterion unaffecting errors, we have tested the 
performance of a LSR RAIM algorithm using pseudo-
range measurements from a NovAtel OEM3 receiver 
connected to a GSS signal generator. 
 
As our main goal is to test the existence of these criterion 
unaffecting errors in the linear sub-space identified 
earlier, we place the receiver in a situation where these 
errors exist. 
As the dimension of the linear space of criterion 
unaffecting errors, is in the general case, 4-(N-p), then if 
p=2, the condition for criterion unaffecting errors to exist 
is N<6. If 5 satellites are tracked, the space of the 
undetectable errors has dimension 1. 
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We conduct two simulations: one with two identical 
range errors, one with ranges errors linearly related by a 
pre-computed value. This value is the coefficient of the 
unit vector of the solution sub-space. We know that this 
linear space is defined as:  

( ) 0=×− pESHI  with ( ) tt HHHS ××= −1
. If 

we denote SHG ×=  this is equivalent to: 
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To insert errors e1 and e2, we determine first the matrix G 
in advance, and we instruct the GSS signal generator to 
generate signals with these errors. 
 
In the same way, if we consider a case where there are 3 
range failures (p=3), the dimension of the linear space of 
the criterion unaffecting errors is 4-(N-3)=7-N. With 5 
satellites it is a 2 dimension sub-space. In the same way 
as above, we find a unit vector with 3 non zero 
components from equation ( ) 0=×− pESHI . 
 
IX. TESTS RESULTS 
 
First of all, we consider the design case of the RAIM 
with one failure in figure 6. A ramp error (5 m/s) is 
applied on 1 among the 10 tracked satellites, and we 
observe here the detection occurs 20 seconds after the 
initiation of the failure, which is quite early because the 
threshold is low. 
1 ramp, 10 sats 

0

20

40

60

80

100

120

140

412072 412082 412092 412102 412112 412122 412132 412142
TIME IN SECONDS

M
E

TE
R

S

Figure 6: Ramp of 5 m/s on 1 range among 10 (blue: 
HPL, black: horizontal position error, red: detection 

flag). 
Now, with 5 satellites in view, a 5 m/s ramp error is 
applied on 2 satellites, at GPS time 412 110 seconds. 
According to the values of G, the ramp on the 1st satellite 
must be equal to the ramp on the 2nd satellite multiplied 
by -2.44. Here, the ramps are identical, and as we can see 
in figure 7, the failure is detected only 2 s after its 
initiation. 
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Figure 7: 2 identical ramps of 5 m/s (blue: HPL, black: 
horizontal position error, red: detection flag). 

  
It must be noted that the same thing happens when the 
identical ramps are applied on two different satellites. 
  
It must be noted that the HPL is very high as the number 
of satellites is low (5 ou 6), but we are only interested 
here in the behaviour of the detection criterion. 
 
Now the ramp failures are applied on 3 satellites while 
using 6 of them for positioning, as shown in figure 8. 
These range errors are identical on all three satellites and 
the detection occurs 10 seconds after the initiation of the 
failure (3 ramps at 5m/s). Note the horizontal position 
error does not go over the HPL. 



3 identical ramps, 6 satellites
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Figure 8: 3 identical ramps of 5 m/s (blue: HPL, black: 

horizontal position error, red: detection flag). 
  
The performance is the same for the same constellation 
but this time with ramps applied on 3 different satellites 
(5 m/s). The detection occurs 15 seconds after the 
initiation of the errors.  
 
So the presence of these multiple range failures does 
affect the detection criterion. We now try to check the 
predicted performance in presence of undetectable errors. 
 
The ramps are applied on 3 satellites and they are related 
by the coefficients calculated previously. The position 
error is very large. We can clearly see in figure 9 that the 
failures are not detected. The horizontal position error 
grows up to 400m, and there is no indication of detection. 
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Figure 9: 3 ramps inter-related (blue: HPL, black: 
horizontal position error, red: detection flag). 

  
For the previous examples, the tests were made with 
simple configurations including few satellites (5 or 6) to 
simplify the calculation of the coefficients. But in the real 
case of GPS use for navigation, the number of satellites 
varies between 8 and 10. We show in figure 10 results of 
a simulation with a configuration of 10 satellites, 6 of 
them being affected by a ramp of 5 m/s at time 412 110. 
We can see that the detection is very quick, less than 15 
seconds after the initiation of the failure. 

6 identical ramps, 10 satellites
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Figure 10: 6 identical ramps of 5 m/s and 10 satellites in 
view (blue : HPL, black: horizontal position error, red: 

detection flag). 
 
Indeed, with 10 satellites and 6 failures, the set of the 
undetectable errors has a dimension of 0. 
 
X. MONTE CARLO ANALYSIS OF RAIM 
PERFORMANCE 
 
The main objective of this analysis is to make a statistical 
assessment of the behaviour of RAIM facing several 
range errors. During those simulations, we introduce up 
to four simultaneous range errors with various 
amplitudes. 
 
The simulation assumptions are : 

• Constellation : ‘Optimized 24 sat’ (RTCA DO 
229) with no satellite failure 

• False alarm probability Pfa=3.333.10-7 per test 
(specification MOPS DO 229) corresponding to 
10-5 / hour in presence of SA 

• Missed detection probability Pmd=10-3 
• Noise affecting the pseudoranges: σ=8m 
• Simulation duration: 86400 s with a 1s step 

 
The RAIM detection threshold is determined in 

order to insure a given false alarm rate and is computed 
as follows: 
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The thresholds used for RAIM detection are : 
n Normalized  

threshold (a) 
Threshold (ro)  
for sigma 8m 

5 26.046 40.828 
6 29.828 30.895 
7 32.929 26.504 
8 35.701 23.900 
9 38.267 22.132 

10 40.689 20.833 
11 43.001 19.828 
12 45.226 19.021 

Table 1: Thresholds used for detection. 
 
The threshold used to determine the availability of the 
RAIM algorithm is determined as a function of the 
missed probability, of the considered alarm limit and the 
detection threshold ro presented above. The criterion used 

in our case is the 
λσ

ALHDOPceil=∆  where λ is the 

normalized threshold computed 
as 32 10),4,( −==− mdCDF Pna λχ . 
 
The thresholds used for availability decision are: 

 Table 2: Thresholds used for availability decision. 
 
The measurement error is assumed white and gaussian 
with identical power (σ =8 m) on all visible satellites. 
The failures are simulated as biases affecting a number k 
of measurements. The failure amplitude is uniformly 
distributed between 5* σ noise  and Amax which can be 
preset. 

 
Figure 11: Distribution of failures inserted in 

observations. 
 

All results presented below are average results on the 
complete duration of the simulation. The total number of 
samples is 8640000 (100 failures by constellation, 1 
constellation per second over 24 h). Instant percentages 
can significantly vary as a function of the number of 
satellites used and the corresponding geometry. 
 
The first important result is the rate of detection of the 
RAIM for all the simulations run, that is the percentage 
of runs where the RAIM detection criterion is above the 
threshold ro. This is shown in figure 12. 

0 -5*σnoise -Amax Amax 5*σnoise 
 
Figure 12: Rate of RAIM detection. 

 
Then, figure 13 shows the rate of non integrity events, 
declared as the percentage of runs where the horizontal 
position error is larger than the horizontal alert limit 
while the RAIM detection criterion is below the 
threshold. This definition does not include the time to 
alert, as failures and their consequence are only analyzed 

at the current epoch. 

 
Figure 13: Percentage of non integrity events. 

 
In order to test the statistical validity of the results, two 
cases were simulated on a double number of random 

n Normalized  
thresholds (√λ) 

Threshold for 
sigma 8m 

5 8.19 8.485 
6 8.48 8.195 
7 8.69 7.997 
8 8.86 7.844 
9 9.01 7.713 

10 9.14 7.603 
11 9.26 7.505 
12 9.38 7.409 

500 100 150 200 250
92

93

94

95

96

97

98

99

100

%
D
E
T
E
C
TI
O
N

% RAIM DETECTION 
1 failure 
2 failures
3 failures
4 failures

500 1000 1500 2000 2500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

MAXIMUM ERROR AMPLITUDE

% 
H
MI

% NON INTEGRITY EVENTS

1 failure 
2 failures
3 failures
4 failures



samples (200 outdraws per constellation). The observed 
results are very close to the results obtained with 100 
outdraw/constellation, so the Monte Carlo methodology 
used seems appropriate. 
  
The results obtained show that the RAIM algorithms, 
although designed to guarantee integrity performance 
when facing a single failure on a single pseudo-range, 
allow to detect multiple failures. In presence of multiple 
failures, the detection performance varies as a function of 
amplitude and number of failures.  
 
The worst integrity results are obtained for failures with 
average amplitude, around 1000 m, as the position error 
can be large enough to be above the alert limit while the 
RAIM does not detect. For a large number of failures or 
strong failures amplitudes, the integrity improves 
considering the better probability of going over the 
RAIM threshold.  
 
In all simulated cases, the probability of non integrity 
(knowing a failure is present) is lower than 10-3. To get 
an absolute probability of non integrity, it remains to 
multiply that conditional probability by the probability of 
occurrence of the worst case of failure. 
 
These results are based on statistical averages and do not 
describe the worst detection performance that can be 
encountered by a specific user at a given epoch. 

 
XI. SENSITIVITY OF CRITERION 
UNAFFECTING ERRORS TO POSITION 
UNCERTAINTIES 
 
Let us assume now that the RAIM test statistics T is 
computed by using the matrix H and the decision 
unaffecting error pE  is computed by using the matrix Ĥ 
which is different from the matrix H. A question which 
naturally arises concerns the sensitivity of the decision 
function with respect to this error. In particular, the 
following scenario is assumed: the decision unaffecting 
errors pE are generated at the geographical position 
which is different from the geographical position of the 
GNSS receiver. The distance between two positions 
varies from 0 to 150 km.  The common orientation of 
these geographical positions is fixed. This scenario is 
relevant to examine the robustness of the decision 
unaffecting errors with respect to some lack of a priori 
information about the matrix H.  
 
Pseudorange errors are generated to induce an error in the 
estimated altitude of the GNSS receiver. This result is 
presented in figure 15: the induced vertical position error 
is about 1090 meters. As it is shown in figure 16, these 
errors are not detectable by the receiver’s RAIM. 
  
 
Figure 15: Error on the estimated altitude as a function 

of the distance between two geographical positions. 
 

 
Figure 16: Probability of detection as a function of the 

distance between two geographical positions 
 
This numerical illustration shows that the decision 
unaffecting errors generation method is low sensitive 
with respect to the distance between the GNSS receiver 
position and the location of the errors pE  calculation. 

 
 
CONCLUSIONS 
 
This paper has presented the results of a study that aims 
at characterizing the performance of RAIM in presence of 
multiple range failures. 

The study was conducted in two steps: first we have 
made a theoretical analysis of the linear sub-space of the 
pseudo-range measurement errors that have no effect on 
the LSR RAIM detection criterion, and then we have run 
simulations to observe the conditional rate of non-



integrity events induced by up to four simultaneous range 
failures. 
 
From the theoretical analysis presented here, we have 
shown that, provided the satellite constellation does not 
have any degenerated geometrical properties, the 
dimension of the linear sub-space of the errors that do not 
affect the decision criterion is max(4-(N-p),0), where N is 
the number of tracked satellites and p is the number of 
faulty pseudorange measurements. The immediate 
conclusion is that if N-4 pseudo range measurements are 
affected, or less than that, by a large error, there exists no 
error that will not affect the RAIM detection criterion, 
and globally due to the negligible probability that 
unintentional interference lies in a small dimension sub-
space, the RAIM detection criterion exhibits a natural 
detection capability even if up to N-2 pseudo-range 
measurements are faulty. 
 
The level of impact of the errors on the decision criterion 
has been further assessed through Monte-Carlo 
simulations over 24 hrs, inserting up to four simultaneous 
range errors. It is mainly shown that in that case, the 
conditional probability of non integrity events knowing a 
failure is present is limited to 10-3, disregarding of the 
time to alert. 
 
In addition, it has been shown that, even though the exact 
position of the user receiver may not be known accurately 
to within tens of kilometres, it would be possible to 
determine what errors on the pseudorange measurements 
would go undetected by the RAIM. 
 
A more complete analysis could be now conducted to 
characterize the theoretical definition of the linear sub-
space of the errors inducing a detection criterion below 
the detection threshold, conducting simulations 
incorporating more failures, and taking into account the 
time-to-alert. 
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