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ABSTRACT  

 

The GPS and GALILEO systems will take advantage of 

new signal modulations such as Binary Offset Carrier 

(BOC) that uses a square wave sub-carrier to create 

separate spectra on each side of the transmitted carrier. 

That signal could share the existing frequency bands with 

each other while reserving the spectrum, it provides 

spectral isolation and leads to significant improvements in 
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terms of tracking, interference and multipath mitigation. 

As this BOC modulation, along with a modified version 

called alternate BOC (ALTBOC), is a serious candidate 

for GALILEO and GPS, it is important to understand all 

characteristics of this signal, in order to conduct several 

studies like payload design, receiver implementation, 

performance and robustness evaluation. One of the 

aspects of this signal is the power spectrum density that 

impacts all characteristics presented above. 

The aim of this paper is, in a first part, to review the 

currently admitted BOC power spectrum density 

theoretical expressions, and to discuss a deviation of the 

assumptions necessary for the derivation of these classical 

theoretical expressions w.r.t to the reality of these signals. 

Then, a second objective is to present theoretical 

expressions of ALTBOC and constant envelope ALTBOC 

power spectrum densities. 

 

First the paper recalls the formal expressions of the 

different possible offset carrier modulations: BOC, 

ALTBOC and constant envelop ALTBOC signals in the 

time domain. Then, the assumptions for the development 

of the classical power spectrum density calculation are 

clearly laid down. Next, it is shown that in the case of odd 

ratio (2*fs/fc) BOC signals, these assumptions, and 

particularly the fact that the BOC square sub-carrier can 

be incorporated in the chip waveform, are not met. Then, 

we show that, for these calculation assumptions to be met 

in that case of odd ratio BOC, it is equivalent to modify 

the code sequence. Finally, with this view, the obtained 

power spectrum density is the same as the one obtained 

with the classical theory, due to the negligible effect of 

the code sequence correlation values. Finally, we present 

the theoretical expressions of the ALTBOC and constant 

envelope ALTBOC power spectrum densities. 

 

 

I. INTRODUCTION  
 

The modernization of the Global Positioning System 

(GPS) and the development of the Galileo System have 

led to design new signals to provide different services to a 

variety of users. 

The most important innovation used for these signals is 

the Binary Offset Carrier (BOC) modulation because it 

significantly improves the performance obtained until 

then in the radionavigation system. This modulation is 

candidate for the new GPS military signal, the M-code. 

But it is also candidate for many signals in the future 

Galileo system: 

- in L1 band (1559-1592 MHz) a BOC signal 

would transmit the Open Service signal and the 

Public Regulated Services signal. 

- in E6 band (1215-1300 MHz) the Public 

Regulated Services signal would also be transmitted 

with a BOC.  

In E5a/E5b frequency (1164-1215 MHz) a modified BOC 

signal, called Alternate BOC (ALTBOC), is proposed. 

This signal is interesting because it provides spectral 

isolation between components of a same composite 

signal. Moreover with this signal, it is also possible to 

track the upper and the lower signals as independent 

BPSK signals. 

The study of the performance of these two waveforms 

(BOC and ALTBOC) is based on the study of their power 

spectrum densities which are the subject of this paper. 

The first part describes the BOC, ALTBOC and constant 

envelope ALTBOC signals. The odd case (n=2fs/fc is odd) 

is carefully examined because in this case the sub-carrier 

is not considered included in the chip waveform. Then a 

discussion is conducted on the assumptions made for the 

development of the classical power spectrum density 

expressions. It is shown that these assumptions are correct 

if a modification is made on the code sequence for the 

odd case. Finally, while taking into account this point, the 

expressions of the power spectrum densities of the BOC, 

ALTBOC and constant envelope ALTBOC signals are 

given. 

 

 

II. OFFSET CARRIER SIGNALS 

 

BOC Signal Definition 

 

In the literature two notations are used to define the BOC 

signal. 

The first model defines the BOC signal as the product of a 

materialized code with a sub-carrier which is equal to the 

sign of a sine or a cosine waveform. It is presented in 

[Betz, 2001], [Ries and al., 2003] and [Godet, 2001]. In 

this case if c(t) is the code sequence waveform and fs the 

sub-carrier frequency, the expression of the sine-phased 

BOC signal is: 

 

( )( )tfsigntctx Sπ2sin)()( ⋅=  

with                                                                             (1) 

 

)()( c

k

k kTthctc −=∑  

 

h(t) is the code materialization, it is a NRZ materialization 

equal to 1 over [0, Tc] and 0 everywhere else. 

 

The second model defines the BOC signal by the 
following equation:  

 

)()( c

k

k kTtpctx −=∑                         (2) 

with p(t) broken up into n rectangular pulses of duration 

Tc/n with amplitudes of +/- 1. In this case the sine-phased 

or cosine-phased sub-carrier is considered as a part of the 

chip waveform. It is presented in [Pratt and Owen, 2003] 

and [Betz, 2001]. 
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In the two cases BOC signals are commonly referred to 

BOC(p,q). The first parameter p defines the sub-carrier 

rate and the second parameter q defines the spreading 

code rate: 

 

023.1⋅= pfs  MHz and 023.1⋅= qfc  MHz 

 

The ratio 
q

p

f

f
n

c

s 22 ==  is the number of half periods of 

the sub-carrier during one code chip. This ratio can be 

odd or even. 

 

The two models presented above are identical if the ratio 

n is even. In fact if n is even it is true to consider that the 

sub-carrier is included in the chip waveform. However it 

is false to consider such a thing if n is odd. The example 

presented below shows clearly that these two conventions 

lead to different time series if n is odd. 

 

Example: 

 

We consider: 

- a code sequence equal to : {1,-1,-1,1} 

- a square sub-carrier which is sine-phased and 

with 2fS/fC = 3.  

 

It is represented by this scheme: 

 

 
If the BOC signal is written as (1), the scheme 

represented this signal is: 

 

 
On the other hand, if we consider that the sub-carrier is 

included in the chip waveform and that the BOC signal 

can be written as (2), we have: 

 

 
Both signals obtained are different. Indeed, there is a 

polarity inversion every 2 bits.  

 

If n is odd a modification must be made on the time series 

if we want to consider that the sub-carrier is included in 

the code materialization. We have, in [Betz, 2001]: 
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A (-1)
k
 term is introduced. This introduction is in fact 

equivalent to a modification of the PRN code sequence, 

becoming now (-1)
k
ck and not ck. Consequently in the 

case n odd if we want to consider that the sub-carrier is 

included in the chip waveform a modification must be 

made on the code sequence to obtain the same time 

domain expression as (1). It is quite easy to go from one 

convention to the other but this point is quite important 

because a receiver adapted to one convention would 

suffer large losses in receiving signal using the other 

convention. 

 

After discussions with the recognized experts in the 

domain and according to us, the first convention is the 

most suitable definition if we want to stick to the original 

BOC definition. Afterwards we assume that the BOC 

signal is defined by the first notation whatever the parity 

of n. 

 

Alternate BOC Signal Definition 

 

Contrary to the BOC signal the ALTBOC signal provides 

spectral isolation between the two upper and lower 

components of a same composite signal. This signal 

allows keeping the BOC implementation simplicity while 

permitting to differentiate the lobes. 

The idea of Alternate BOC modulation is to perform the 

same process as BOC modulation but the sub-carrier used 

is a “complex” sub-carrier. In that way, the signal 

spectrum is not split up, but only shifted to higher 

frequencies. Shifting to lower frequencies is obviously 

also possible. 

As for the BOC signal the problem of notation could exist 

but in [Ries and al., 2003] the ALTBOC signal is clearly 

defined as the product of a PRN code sequence with a 

“complex” sub-carrier. The ALTBOC signal can be 

composed of two or four codes. If there are two codes 

there is no pilot component and the expression of the 

signal is: 

 

)()()()()( *

_ tertctertctx LuBOCALT ⋅+⋅=  

with 

 

[ ] [ ] )()()2sin()2cos()( tsjtctfsignjtfsignter rrSS ⋅+=⋅+= ππ  

cu is the upper code and cL the lower code. 

 

TC 

x(t) p(t) 

x(t) 
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If a pilot channel is introduced, four codes are needed and 

the expression of the ALTBOC signal is:  

 

( ) ( ) )()()( *''

_ tercjctercjctx LLuuBOCALT ⋅⋅++⋅⋅+=  

with 

 

[ ] [ ] )()()2sin()2cos()( tsjtctfsignjtfsignter rrSS ⋅+=⋅+= ππ  

 

cu is the data upper code, cu’ the pilot upper code, cL the 

data lower code and cL’ the pilot lower code. 

 

But in this case the signal doesn’t have a constant 

envelope and thus may be distorted within the satellite 

payload due to non-linear amplification. That’s why an 

innovation was proposed in [Godet, 2001] in order to 

create a constant envelope signal which is as close as 

possible to the ALTBOC signal. The innovation 

introduces new terms which can be compared to 

intermodulation products. The expression of the new 

signal obtained, called constant envelope ALTBOC, is 

presented in [Soellner and Erhard, 2003]: 
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Fig. 1:  Shapes of sub-carriers Scas and SCap 

 

Finally the constant envelope ALTBOC signal is a 

classical 8-PSK modulation with a non-constant 

allocation of the 8 phase-states.  

 

As the BOC signal, the ALTBOC is generally referred to 

an ALTBOC(p,q) with: 

 

023.1⋅= pfs  MHz and 023.1⋅= qfc  MHz 

 

 

III. POWER SPECTRUM DENSITY OF THE BOC 

SIGNAL 
 

Assumptions 

 

If we consider a stationary signal: 

 

∑ −−⋅=
k

ck kTtpcts )()( θ                 (4) 

 

with ck the digital code sequence considered as random 

and non-periodic, p(t) the materialization waveform, Tc 

the code period and θ a variable which is uniformly 

distributed on Tc. 

 

The autocorrelation function of this signal is: 
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The power spectrum density of s(t) is the Fourier 

Transform of the autocorrelation of s(t): 
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with P(f) the Fourier Transform of the waveform p(t). 

 

If the code sequence is binary, equiprobable and 

independent, the power spectrum density is equal to: 

 

c
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The BOC signal is regarded as stationary signal. The PRN 

code sequence is considered random, non periodic, 

identically distributed, binary, equiprobable and 

independent. Consequently this formula can be used to 

calculate the power spectrum density of the BOC signal if 

the BOC time domain expression is similar to (4). To 

have a signal similar to (4), the sub-carrier must be 

included in the chip waveform. 

 

We have seen in the previous section that if n is even 

there is no problem because the materialization of the 

signal is equal to the sub-carrier over [0,Tc]. In this case 

the expression of the signal is: 
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h is the code materialization, it is equal to 1 over [0,Ts/2] . 

 

But as shown before if n is odd a modification on the 

PRN code sequence must be made if we want to consider 

that the sub-carrier is included in the code materialization. 

Nevertheless this PRN code modification has no impact 

on the final expression of the power spectrum density of 

the BOC signal if the new PRN code can be assumed to 

be an independent sequence over time. This assumption is 

true for most of the PRN sequences used in GNSS up to 

now. So this theory can be used to calculate the power 

spectrum density of the BOC signal. However it would be 

wrong to use this theory with short codes. 

 

 

 

 

Expressions of the Power Spectrum Densities 

 

If the BOC signal is sine-phased, the normalized power 

spectrum densities are equal to: 
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And if the BOC signal is cosine-phased the expressions 

are: 
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IV. POWER SPECTRUM DENSITY OF THE 

ALTBOC SIGNAL 

 
The study is made on the ALTBOC signal with four codes 

and the power spectrum densities are calculated for the 

ALTBOC with a non constant envelope and for the 

ALTBOC with a constant envelope. 

 

Assumptions 

 

The assumptions are the same as these made to calculate 

the power spectrum density of the BOC signal. The 

ALTBOC signals are regarded as stationary signals. The 

different PRN code sequences are considered identically 

distributed and independent. The most interesting 

ALTBOC signal is the ALTBOC(15,10) because it is 

proposed for the Galileo E5a/E5b frequency. 

Consequently the calculation of the power spectrum 

density will be made considering n odd and n even but the 

curves will be only plotted for n odd. The theory used to 

calculate the power spectrum density of the ALTBOC 

signal will be the same as the one used to calculate the 

power spectral density of the BOC signal. So, a 

modification will be made on each code sequence in order 
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to be able to consider that the sub-carrier is included in 

the chip waveform in the case n odd. 

 

Power Spectrum Density of the ALTBOC signal 

 

The ALTBOC is equal to: 
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The autocorrelation of the ALTBOC is equal to: 
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assuming that the crosscorrelation between the different 

codes is equal to zero. Moreover the complex 

crosscorrelation cancel each other out. 

 

So, the power spectrum density of the signal is equal to:  
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with A(f) and B(f) the Fourier Transforms of 

sign[cos(2πfst)] and sign[sin(2πfst)]. 

 

The first case studied is the case n even. In [Pratt and 

Owen, 2003] and [Betz, 2001] it is demonstrated that: 
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Consequently, for n even: 
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If n is odd, we have: 
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Finally the normalized power spectrum density of the 

ALTBOC with a non constant envelope and with n odd is: 
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The next graph represents the power spectrum densities of 

the ALTBOC(15,10) with a non constant envelope 

computed with the expression above and with MATLAB 

simulations. 

 

 

 
Fig. 2:  Power Spectrum Density of the ALTBOC(15,10) 
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Power Spectrum Density of the ALTBOC signal with a 

constant envelope 
 

The calculation of the power spectrum density of the 

ALTBOC with a constant envelope is based on the 

calculation made in [Betz, 2001] to calculate the power 

spectrum density of the BOC signal.  

The appendix shows that for n odd the normalized power 

spectrum density of the ALTBOC signal with a constant 

envelope is: 
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The next graph represents the power spectrum densities of 

the ALTBOC(15,10) with a constant envelope calculated 

with the expression above and with MATLAB 

simulations. 

 

 
Fig. 3:  Power Spectrum Density of the constant envelope 

ALTBOC(15,10) 

 

 

A comparison can be made between the spectrum of the 

ALTBOC and the spectrum of the constant envelope 

ALTBOC. 

 

 
Fig. 4:  Comparison of Power Spectrum Densities 

 

 

The spectra of the ALTBOC signal and constant envelope 

ALTBOC signal have similar main-lobes and first side-

lobes, even if the central lobe of the constant envelope 

ALTBOC is 1 dB weaker than this of the ALTBOC. 

However their further side-lobes are different. This 

difference is due to the modification made in order to 

obtain a constant envelope. Indeed the transformation 

made on the time domain ALTBOC signal expression 

added spectral lines. 

In the Galileo system these spectral lines would be 

filtered by the RF filter after the amplifier and the two 

signals would, finally, have very close shapes. 

 

 

V. CONCLUSION 

 

This paper has provided two main points. First it has 

underlined the problem of convention concerning the time 

domain expression of the BOC signal in the case n=2fs/fc 

odd. Indeed the two conventions are equivalent if n is 

even but if n is odd a modification must be made on the 

code sequence to consider that the sub-carrier is included 

in the chip waveform. Fortunately the properties of the 

PRN code sequence used in GNSS permit to neglect this 

modification on the code and the classical expressions of 

the power spectrum densities can be used. 

Secondly the expressions of the power spectrum densities 

of the ALTBOC and the constant envelope ALTBOC 

signal have been presented. A particular attention is made 

on the ALTBOC(15,10) which is candidate for Galileo 

E5a/E5b frequency band. The constant envelope 

ALTBOC signal is very interesting because it provides 

spectral isolation between the two upper and lower 

components of a same composite signal. By this way it is 

possible to track each component separately or together. 
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APPENDIX 

CALCULATION OF THE ALTBOC SIGNAL WITH 

A CONSTANT ENVELOPE 

 

The ALTBOC signal with a constant envelope is 

expressed as: 
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We note )(1_ tscsc asas = , 





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4

2_
Ts

tscsc asas
, 

)(1_ tscsc apap =  and 
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

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4

2_
Ts

tscsc apap
. 

 

Different terms of crosscorrelation must be taken into 

account and analyzed. The code sequences are 

independent, so the crosscorrelation between two 

different codes is equal to zero. Consequently, all the 

crosscorrelation terms in which the crosscorrelation 

between two different codes appears are null. Other 

crosscorrelation terms are null because the 

crosscorrelation between the different sub-carrier (scas and 

scap) is equal to zero. The last crosscorrelation terms are 

complex. Fortunately they cancel each other out. 

 

The correlation function of the constant envelope 

ALTBOC signal is equal to: 
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As the autocorrelations of the different codes are equal, 

we obtained: 
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with SCas_1(f), SCas_2 (f), SCap_1 (f) and SCas_2 (f) the 

Fourier Transform of scas_1(t), scas_2 (t), scap_1 (t) and 

scap_2(t) over [0,Tc]. 

 

 

Beginning with the calculation of the Fourier Transform 

of scas_1 over [0,Tc]: 
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Before calculating the Fourier Transform of scas_1(t) the 

calculation of the Fourier Transform of µts/2(t) is 

necessary. 
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So the Fourier Transform of scas_1(t) is : 
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For n odd we have: 

( ) ( )



















=−
−−−

=

−

∑
2

cos

2
cos

1 2
11

0

2
2

s

s
T

fnjn

m

T
fmj

m

T
f

T
fn

ee
ss

π

π
ππ  

Presented at ION GNSS 2005, San Diego 8



So,

( )





















+






+








+−



















−=
−

1
4

cos2

2
cos12

2
cos

2
cos

2
)(1_

2

s

s

s

sT
fjn

as
T

f

T
f

T
f

T
fn

fj

e
fSC

s

π

π

π

π

π

π

 

Finally if n is odd, 

( ) ( )
2

2

2

22

2

1
4

cos2

2
cos12

cos

cos

4

1
)(1_





















+






+








+−









=

s

s

c

c

as
T

f

T
f

n

T
f

fT

f
fSC

π

π

π

π
π

 
 

The same calculation are made for SCas_2 (f), SCap_1 (f) 

and SCas_2 (f). 
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So the Fourier Transform of scas_2(t) is : 
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And if n is odd, 
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Continuing with the calculation of the Fourier Transform 

of SCap_1 (f), 
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So the Fourier Transform of scap_1(t) is : 
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And if n is odd, 

 

( ) ( )
2

2

2

22

2

1
4

cos2

2
cos12

cos

cos

4

1
)(1_



















+






−








−









=

s

s

c

c
ap

T
f

T
f

n

T
f

fT

f
fSC

π

π

π

π
π

 

 

 

To finish with the calculation of the Fourier Transform, 
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So the Fourier Transform of scap_2(t) is : 
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And if n is odd, 
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Finally, the normalized power spectrum density of the 

ALTBOC signal with a constant envelope is if n odd: 
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