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ABSTRACT
Navigation with an integrated INS/GPS approach requires to solve
a set of nonlinear equations. In this case, nonlinear filtering tech-
niques such as Particle Filtering methods are expected to perform
better than the classical, but suboptimal, Extended Kalman Filter.
Besides, the INS/GPS model has a conditionally linear Gaussian
structure. A Rao-Blackwellization procedure can then be applied to
reduce the variance of the state estimates. This paper studies dif-
ferent algorithms combining Rao-Blackwellization and particle fil-
tering for a specific INS/GPS scenario. Simulation results illustrate
the performance of these algorithms. The variance of the estimates
is also compared to the corresponding posterior Cramer-Rao bound.

1. INTRODUCTION

The global positioning system (GPS) has been extensively used
in navigation because of its accuracy and worldwide coverage.
GPS augmentations such as satellite-based augmentation systems
(SBAS) and ground-based augmentation systems (GBAS) allow to
improve the accuracy of the navigation solution. Indeed, ground
stations estimate GPS measurement errors that are then transmit-
ted to the GPS receiver thanks to a satellite constellation. However,
many tracking channels can be affected simultaneously by interfer-
ences, which can result in a loss of the GPS signal. In this case, a
self-contained system such as a calibrated inertial navigation system
(INS) can ensure the continuity of navigation with a good accuracy.

The principles of the hybridization GPS/INS are recalled in sec-
tion 1. Section 2 focuses on the nonlinear filtering model which
is usually associated to satellite-based systems. Section 3 studies
different appropriate estimation strategies for this nonlinear model.
These strategies include the extended Kalman filter and particle fil-
tering methods. Simulation results are presented in section 4. Con-
clusions are reported in the last section.

2. GPS/INS INTEGRATION

GPS is a satellite-based navigation system that provides precise po-
sitioning and timing information to any user properly equipped with
a receiver. The basic principle is to estimate the user’s position by
processing distance measurements from the receiver to GPS satel-
lites of known locations. The ranging information is determined
from the propagation delay of a signal transmitted by the satellite
and is therefore biased by the receiver clock offset with respect to
the satellite time. Consequently, this measurement is called pseudo-
range (instead of range) to allow for this bias. Moreover, each satel-
lite broadcasts useful information to solve the navigation problem:
data relative to the satellite’s current position and different param-
eters necessary to compensate for some GPS measurement errors
(for instance, the satellite clock offset with respect to the GPS time
and the atmospheric delays). Assuming these terms are reasonably
well corrected, the user position can be obtained as the solution of
the so-called pseudorange equations:

ρi = ri + cτr + wi, 1 ≤ i ≤ ns,

where ρi and ri denote the pseudorange and the true geometric
range from the receiver to the satellite, τr is the receiver clock offset
from the GPS time, c is the speed of light (3 × 108m/s), wi are the
residual measurement errors and ns is the number of visible satel-
lites. Note that a minimum of four equations is required to estimate
both the position in free space and the receiver clock offset.

Contrary to satellite-based navigation systems, INS are au-
tonomous onboard navigation systems. They are based on inertial
sensors (accelerometers and gyrometers) that measure the rectilin-
ear acceleration and the inertial angular velocity of a vehicule ac-
cording to the physical laws of motion. The sensor outputs are inte-
grated to maintain an estimate of the vehicule dynamics, provided
a precise knowledge of the initial position, velocity and attitude is
available. Note that INS are robust to interferences because the iner-
tial sensors do not depend on the reception of an exterior signal. INS
consist of an inertial measurement unit containing the cluster of sen-
sors, combined with a computer that determines the navigated tra-
jectory. This paper focuses on strapdown systems, which are char-
acterized by sensors rigidly attached to the host vehicule. The mea-
surements are resolved in the vehicule frame. Consequently, coor-
dinate transformations are required to express the measurements in
a frame of interest for the user (usually the locally level frame with
the X, Y and Z axis pointing respectively north, east and down).

The sensor outputs are sequentially processed to derive the nav-
igation solution. The accelerometers deliver a non gravitational ac-
celeration called specific force f s. This force is first transformed in
an appropriate coordinate system, then compensated for the grav-
ity, and finally double-integrated to yield the position. The gy-
rometers outputs are used to compute the attitude angles of the
vehicule, hence to update the transformation between the vehicule
frame and the desired reference frame. The equations relating the
sensor outputs to the dynamic states estimated by the INS are re-
ferred to as mechanization equations. They will be denoted as
Ẋ INS = f(X INS, U INS), where X INS is the vector of navigated states
and U INS is the vector of actual sensor outputs. In contrast, the
ideal equations corresponding to the error-free sensor outputs and
the actual dynamic states are written Ẋ = f(X, U). Due to the
integration process, instrumentation and initialization errors result
in a linear and parabolic growth of the velocity and position errors.

GPS and INS have complementary features. A data fusion ap-
proach can take full advantage of this synergism to improve the ac-
curacy and reliability of the navigation solution. On the one hand,
interferences do not affect INS sensors, but they may lead to a loss
of GPS measurements. On the other hand, the navigation states
are computed by a differentiation-based process for the GPS and
an integrative-based process for the INS, which entails respectively
high frequency and low frequency errors. Allowing for the dis-
tinct frequency content of GPS and INS errors, a complementary
filter methodology can be applied advantageously: the GPS pseu-
doranges are used to estimate the inertial errors (rather than the total
dynamic states). The system can still rely on the INS in case GPS
measurements are lost.
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3. THE GPS/INS NONLINEAR FILTERING MODEL

3.1 State model
In the proposed framework, the state vector is composed of the INS
error that are defined as the deviation between the actual dynamic
quantities and the INS computed values δX = X − X INS. The
state model describes the INS error dynamic behavior depending
on the instrumentation and initialization errors. It is obtained by
linearizing the ideal equations around the INS estimates as follows:

δẊ = f(X, U) − f(X INS, U INS)

δẊ = 5f(X INS, U INS)δX.

The state vector is usually augmented with systematic sensor errors:

δX = (δvn, δρ, ba, bg, δλ, δφ, δh, b, d),

where

• vn stands for the velocity relative to the earth centered/earth
fixed frame and resolved in the locally level frame,

• ρ is the vector of attitude angles,

• (λ, φ, h) is the geodetic position in latitude, longitude, altitude,

• ba and bg represent the accelerometers and gyrometers biases,

• b = cτr and d are respectively the GPS clock offset and its drift.

A coarse analysis shows that the errors develop through a va-
riety of sources. Horizontal position and velocity experience a
pendulum-like motion called Schuler oscillation. In addition, the
earth rotation introduces a cross-coupling between the horizontal
dynamic components, hence a modulation of the previous oscilla-
tion (Coriolis effect at Foucault frequency). Supposing that the atti-
tude angles are perfectly known, such a behavior is well described
by:

δφ̈ = −Ω2
Schulerδφ + ΩFoucaultδλ̇,

δλ̈ = −Ω2
Schulerδλ.

As for vertical channel, gravity compensation results in an unstable
altitude error propagation of the form:

δh =
1

2
(e−kt + ekt)δh0,

where k =
√

2g

R
, g being the gravity and R the earth radius. How-

ever, this paper assumes that the altitude h is known (thanks to an
independent vertical reference such as a barometric altimeter).

Accurate models of the instrument biases are required to
achieve a good localization performance. For short-term applica-
tions, the acceleremoters and gyrometers can be properly defined as
random walk constants ḃa = wa and ḃg = wg . Note that the stan-
dard deviations of the white noises wa and wg are related to the
sensor quality. The navigation solution also depends on the receiver
clock parameters b and d modeled as ḃ = d + wb and ḋ = wd,
where wb and wd are mutually independent zero-mean Gaussian
random variables (whose variances can be determined by the Allan
variance parameters [4]). For simplicity, denote as X (instead of
δX) the state vector. The discrete-time state model takes the fol-
lowing form:

Xt+1 = AtXt + vt, vt ∼ N (0, Σv),

where t = 1, . . . , T and T is the number of samples. The coupling
effects between the components of Xt results in a block diagonal
matrix At whose elements are detailed in [5] or in many standard
textbooks such as [4, p. 204]. Section 4 explains how this block
diagonal structure for At can be used to reduce the computational
complexity of the estimation algorithm.

3.2 Measurement model

The hybridization filter is driven by the GPS pseudoranges. Conse-
quently, the observation equation associated to the ith satellite can
be defined as:

ρi =
√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2 + b + wi, (1)

where i = 1, . . . , ns (recall that ns is the number of visible satel-
lites). The vectors (x, y, z)T and (Xi, Yi, Zi)

T are the positions of
the vehicule and the ith satellite expressed in the rectangular coor-
dinate system WGS-84 [4]. However, these observations have to be
expressed as functions of the state vector components to make the
filtering problem tractable. Thus, the position is transformed from
the geodetic to the rectangular coordinate system as follows:





x = (N + hINS + δh) cos(λINS + δλ) cos(φINS + δφ)
y = (N + hINS + δh) cos(λINS + δλ) sin(φINS + δφ)
z = (N + hINS + δh) sin(λINS + δλ),

where N = a√
1−e2 sin2 λ

. The parameters a and e denote the semi-

major axis length and the eccentricity of the earth’s ellipsoid. These
expressions have to be substituted in (1) to obtain the highly non-
linear measurement equation:

Y t = ht(Xt) + CXt + wt, (2)

where wt ∼ N (0, Σw), Yt = (ρ1, . . . , ρns
) is the pseudorange

vector and C = [ 0ns×14|1ns×1|0ns×1 ] (0p×q is the null matrix
of size p × q and 1p×q is a matrix of ones of size p × q).

4. FILTERING APPROACH

This section investigates some strategies to estimate recursively the
inertial errors Xt conditioned upon the GPS measurements Y t.
In a Bayesian setting, all inference about the unknown state pa-
rameters is constructed from the conditional probability density
function (pdf) p(X0:t|Y 1:t), where X0:t , (X0, . . . , Xt) and
Y 1:t , (Y 1, . . . , Y t). However, estimating the state vector via
the minimum mean square estimator (MMSE) or the maximum a
posteriori (MAP) generally leads to intractable integration or op-
timization procedures. A notable exception is the linear Gaussian
state space model. Indeed, the MMSE for this model can be im-
plemented easily by using a standard Kalman filter. In this case,
the pdf p(Xt|Y 1:t) is Gaussian and thus characterized by its mean
and covariance matrix that obey closed-form recursions. When the
state-space model exhibits nonlinearities as in (2), the popular Ex-
tended Kalman Filter (EKF) can be used. This paper studies several
alternatives based on Particle Filtering (PF) which approximate the
posterior distribution of interest from a set of weighted particles.
These methods are presented in the next sections.

4.1 The Extended Kalman Filter

The EKF proceeds by linearizing the model about the latest esti-
mate to meet the Kalman Filter assumptions. The state space model
described in section 3 can be classically approximated as follows:

{
Xt = AtXt−1 + vt

Y t ' Ht(Xt − mt|t−1) + ht(mt|t−1) + CtXt + wt,
(3)

where Ht = dht(x)
dx

|x=mt|t−1
. Consequently, the conditional prob-

ability of the state p(Xt|Y 1:t) can be estimated by a Gaussian pdf
whose mean mt|t and covariance Pt|t can merely be computed by
Kalman recursions.
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4.2 Particle Filtering methods
PF methods refer to a class of recursive simulation-based estima-
tion methods that can handle nonlinear possibly non Gaussian state
space models. An increase in the computational power has recently
drawn much attention on these techniques (see [2] and references
therein). PF methods construct an empirical estimate of distribu-
tions such as p(X0:t|Y 1:t) from weighted random support points
(called particles):

p(X0:t|Y 1:t) '
N∑

i=1

w(Xi
t)δ(X0:t − X

i
0:t).

X
(i)
0:t (i = 1, . . . , N) are the particles and w(X i

0:t) the associated
weights. The particles are propagated sequentially according to an
Importance sampling (IS) method. Indeed, it is usually difficult to
draw samples directly from the posterior distribution p(X0:t|Y 1:t).
IS consists of generating samples from an arbitrary proposal distri-
bution q(X0:t|Y 1:t). Weights are then assigned to these particles
according to their relevance with respect to the distribution of inter-
est. A simple rule for computing the weights is recalled below:

w(Xi
0:t) ∝

p(Xi
0:t|Y 1:t)

q(Xi
0:t|Y 1:t)

, i = 1, . . . , N.

An appropriate importance function allows to preserve the past tra-
jectories (Xi

0:t+1 = (Xi
0:t, X

i
t+1)) and evaluate recursively the

weights according to the following procedure:

w(Xi
0:t)

w(Xi
0:t−1)

∝ p(Y t|Xi
0:t, Y 1:t−1)p(Xi

t|Xi
0:t−1)

q(Xi
t|Xi

0:t−1Y 1:t)
.

Unfortunately, the variance of the weights is bound to increase until
all but one particle have negligible weight. This problem referred to
as degeneracy is classically reduced by a resampling step. In order
to concentrate the particules in regions of high probability, a good
choice of the importance function is also decisive. This choice is
crucial in our GPS/INS application since the small noise variance in
the state equation prevents an appropriate exploration. The optimal
importance function p(Xt|Xi

0:t−1, Y 1:t) was derived in [3]. How-
ever, it is not straightforward to sample from this distribution. Some
strategies overcoming this difficulty are briefly presented hereafter.

4.2.1 Local linearization

By linearizing the measurement equation, a Gaussian approxima-
tion of the optimal importance function denoted by N (mt, Σt) is
obtained [3]. This linearization is performed for each particule and
yields the following recursions:

Σ−1
t = Σ−1

v + HT
t Σ−1

w Ht,

mt = Σt(Σ
−1
v AtXt−1 + HT

t Σ−1
w (Y t − ht(AtXt−1)−

CtAtXt−1 − HtAtXt−1)),

where Ht = dht(x)
dx

|x=AtXt−1
.

4.2.2 Auxiliary particule filter

Another approach improving particle exploration is the auxiliary
particule filter (APF) [7]. The APF only requires to simulate
from the prior density p(Xt|Xt−1). The principle is to propagate
the particles that are expected to yield a high value of the likeli-
hood. The propagation of each particule one step ahead enables to
compute the predictive density p(Y t|µt), where µt is related to
p(Xt|Xt−1). The particules Xi

t−1 (i = 1, . . . , N) that will ac-
tually evolve are then obtained by simulating from this predictive
density. The standard steps of PF, i.e. Importance sampling and
Resampling, are then applied to derive the state estimates.

4.3 Rao-Blackwellization

The performance of the previous PF algorithms can be improved
when the state-space model has a block structure. Indeed, Rao-
Blackwellization techniques allow to decrease the variance of the
state estimates by solving analytically the linear part of condition-
ally linear Gaussian models ([1]). A convenient partition of the state
vector allows to rewrite the INS-GPS system model as follows:

Xt+1 =




A1
t C2

t [0]
C1

t A2
t [0]

[0] [0] A3
t


 Xt +




B1
t [0]

D1
t [0]

[0] B3
t




(
v1

n

v3
t

)
,

Y t = ht(X
2
t ) + C3

X
3
t + D3

t W t,

where X1
t = (δvn, δρ, ba, bg, )T , X2

t = (δλ, δφ, δh)T , X3
t =

(b, d)T and Xt = ((X1
t )

T , (X2
t )

T , (X3
t )

T )T . Note that the mea-
surement equation does not depend on X1

t . Moreover, the obser-
vations depend non-linearly on X2

t and linearly on X3
t . Conse-

quently, the distributions p(X1
0:n|X2

0:n) and p(X3
0:n|Y 0:n, X2

0:n)
are Gaussian. The means and variances of these distributions, de-
noted mn|n,1, mn|n,3, Pn|n,1 and Pn|n,3 respectively, can be com-
puted by standard recursions associated to the following Kalman
state-space models:

{
X1

t = A1
t X

1
t−1 + C2

t X2
t−1 + B1

t v1
t ,

X2
t = C1

t X1
t−1 + A2

t X
2
t−1 + D1

t v1
t ,

{
X3

t = A3
t X

3
t−1 + B3

t v3
t ,

Y t = ht(X
2
t ) + C3X3

t + D3
t wt,

The posterior distribution of the state X2
t (non linearly related to

the observations) is estimated by one of the PF methods described
before:

p(X2
t |Yt, X

2
0:t−1) '

N∑

i=1

w
(i)
t δ(X2

t − X
2,i
t ).

Note that the Kalman filters associated to each particle X
2,i
t provide

both the importance distribution p(X2
t |X2

0:t−1) and the likelihood
p(Yt|X2

0:t). The pdfs p(Xk
t |Y1:t) (k = 1, 3) are finally approxi-

mated by a mixture of Gaussian distributions:

p(Xk
t |Yt, X

k
0:t−1) '

N∑

i=1

w
(i)
t N (Xk

t , mi
t|t,k, P i

t|t,k).

4.4 The posterior Cramer Rao Bound (PCRB)

The PCRB provides a lower bound on the mean square errors
(MSEs) of the state estimates. It can be viewed as a reference
to which the state MSEs of suboptimal algorithms can be com-
pared. The PCRB is often referred to as the Bayesian version of
the Cramer-Rao Bound. The recursive formula allowing to com-
pute the PCRB are detailed in [1]. As the altitude is supposed to
be known, this paper focuses on the PCRB for the horizontal INS
position error denoted by HPCRB. We recall here that the horizon-
tal position error HE can be defined as a function of the latitude δλ
and longitude δφ inertial errors by HE = (Rδλ)2 + (Rδφ cos λ)2,
where R stands for the earth radius [6].

Figure 1 illustrates the intuitive dependence of the HPCRB on
the number ns of visible satellites. Indeed, the higher ns, the lower
the PCRB. Further investigations show that the number of visible
satellites is not the only important feature. In navigation, a well-
known parameter referred to as Horizontal Dilution Of Precision
(HDOP) quantifies the effect of the GPS satellites configuration on
the horizontal position estimation error. The HDOP represents the
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Fig. 1. HPCRBs en meters2 for different values of ns.

ratio of the positioning accuracy to the measurement accuracy. This
factor can be computed as follows:

V = (H̃T
t H̃t)

−1,

HDOP =
√

(V11 + V22),

where x = (Xl, Yl, Zl) denotes the mobile position in the lo-
cally level frame, b is the GPS receiver clock offset, H̃t =
dht(x)

dx
|Xl,Yl,Zl,b and V = (Vij)i,j=1,...,4. We invite the reader

to consult [4, p. 160] for more details. The variations of HPCRBs
for different values of HDOP and for the same number of visible
satellites are depicted in figure 2. The lower the HDOP, the lower
the HPCRB, as expected.
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Fig. 2. HPCRBs for different values of HDOP.

5. SIMULATION RESULTS

The different estimation strategies detailed in the previous sections
are applied to an INS/GPS scenario. First, the vehicule trajectory
is generated according to the position-velocity-acceleration model
(the acceleration is modeled as a Gauss-markov process). The INS
estimates of the vehicule dynamics are then computed for low cost
inertial sensors with an accelerometer bias of 500µg and a gyrom-
eter bias of 1deg/h. The observation model is finally used to com-
pute the GPS pseudoranges that are associated to the simulated tra-
jectory. The standard deviation of the GPS measurement noise is
chosen as σw = 10 meters and the number of visible satellites en-
sures a good observability (i.e. ns ≥ 4).

The results obtained with the EKF and the PF (with 5000 par-
ticles) are compared for a simulation duration of 500s. For each
method, the horizontal positioning root mean square error HRMSE
is computed from 100 Monte carlo runs. The RMSEs are also com-
pared to the corresponding posterior bound

√
HPCRB. Figure 3

shows the results obtained with the EKF and the local linearization
(the APF approach has not been plotted since it performs very sim-
ilarly to the APF). After 50s, the HRMSEs of both state estimates
converge to a constant which is close to

√
HPCRB ( ' 2.3 meters).

Figure 3 shows that the EKF and the PF perform quite similarly
in nominal situations where the error dynamics are reasonable (i.e.
when the local linearization is appropriate).
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Fig. 3. HRMS estimation errors for the EKF (dashed), the Rao-
Blackwellized PF (dotted), and

√
HPCRB (solid line).

6. CONCLUSIONS

This paper has studied alternatives to the classical EKF to solve the
nonlinear INS/GPS filtering problem. PF methods do not require
any approximation on the state-space model, contrary to the EKF.
A Rao-Blackwellization procedure was applied to decrease the vari-
ance of the estimates. However, simulation results conducted in
nominal situations (with a good observability) show that quite sim-
ilar performance is achieved with the different filtering strategies.
A comparison in critical situations (such as loss of observability or
presence of multipath) is currently under investigation.
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