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ABSTRACT

The EGNOS Signal In Space (SIS) performance is
defined in terms of accuracy, integrity, continuity
service and availability. For Civil Aviation, thodeur
components of the performance shall fulfill ICAO
requirements (particularly stringent for the intggr

EGNOS is expected to be operational by the firstrigu
of 2004. One of the major issues for Civil aviatiornthe
perspective of operating EGNOS, is to prove tha th
system is safe to use. In this context, the dematist of
the EGNOS compliance with the integrity requirensest
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of the utmost importance. This raises the following
question:

How to assesstheintegrity performance of the
EGNOSSIS?

In the frame of Eurocontrol work supporting the
operational validation of EGNOS, a number of teghes
are under investigation to evaluate measuremeat atad
provide an assessment of the integrity achieved.

It is not expected, even using a combination ofedt
techniques that compliance with integrity requiraie
will be exhaustively demonstrated as this wouldunex
an amount of data that is impracticable to collethe
main contributor to the integrity validation is thaalysis
performed during the system design. However, it is
necessary to use techniques such as the one m@sent
this paper to examine the behavior of the protadével

in relation to the position error in order to gairbetter
understanding of how the system is performing. sThi
technique will also help to identify when the systis not
performing as it should be, even during times witen
appears to be functioning correctly.

The aim of the work presented in this paper isewetbp

a methodology for the assessment of the EGNOS d&drti
Protection Level (VPL). The presented analysisased

on the processing of data from the EGNOS System Tes
Bed that is received by a network of data collettio
stations distributed throughout Europe.

The objective is to make a statistical analysis ttod
Vertical Position Error (VPE) that can be measuwatthe
output of the data collection receivers. An estedaVPL

can be computed from the position error data engldin
evaluation to be made as to whether the VPL pravize

the EGNOS system is a conservative bound on the VPE
or not. For a given processed data set, a confedtnel

in the VPL is defined as an estimated probabilitgttthe
VPL is a bound of the VPE.

The analysis aims to provide the confidence lewds
indicators of the quality of the VPL over selectdata
sets.



INTRODUCTION

Several statistical analyses dealing with the irtggf
GNSS have been carried out in the past. They often
addressed the issue of the VPL definition from the
observations performed in the range domain.

This paper proposes a VPL analysis in the position
domain and aims to address the following question:

Is the EGNOS provided VPL overbounding the
position error with a sufficient level of confidence?

The basic goal of this method is to appraise thea. VP
quality thanks to a statistical analysis of the t\tat
Position Error (VPE). It is a kind of “plug and ptaool

to be applied at the output of receivefiom the ESTB
DCN? The analysis requires a few assumptions among
them the independence of the processed samplés. It
based on the following methodology:

e« The Eurocontrol software PEGASUS processes
data from the EGNOS System Test Bed over a
minimum period of 6 days on a given site. The
output of this is a data file containing VPE and
ESTB VPL,

e The data is split into small intervals around
targeted VPL (few centimeters),

e For each targeted VPL, VPE samples that are at
least 360 seconds apart are selected (to ensure
independence of the samples). Data subsets are
then totally determined and ready to be
processed,

e From each selected subset, a Gaussian modeling
that bounds the VPE distribution (in the cdf
overbounding sense) is defined,

e From this previous modeling of the VPE, a
statistical analysis is then performed over each
selected subset in order to compute an estimated
probability that the VPL is 407 bound of the
VPE,

e This probability is denoted “confidence level in
the VPL".

The output of the presented analysis is the conéide
level for each targeted VPL on the given site.

The paper begins with a short introduction of theLV
concept for EGNOS.

Y In order to assess the EGNOS SIS, the assumpfion o
fault-free receivers has to be sought.

2 EGNOS System Test Bed data collection networls It
composed of four permanent sites in Barcelona,drisb
Toulouse and Delft.
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I.VPL AND INTEGRITY CONCEPT FOR EGNOS
|.1 Definition of the VPL

According to the SARPs [1], the SBAS Vertical
Protection Level (VPL) is defined as a bound on the
Vertical Position Error (VPE) with a probability ideed
from the integrity requirement. It is thus one loé tmajor
component of the SBAS integrity mechanism.

The VPL is computed by the user receiver usinganto
of the standard deviation of the range measurements
corrected with the data broadcast by the SBAS SIS.

For each satellite contributing to the positionusioh, the
SBAS corrected range measurement errors are assomed
have a Gaussian, independent and centered digribut
The SBAS corrected range measurement errors
components are:

. The error on the differential correction on each
satellite excluding atmospheric effects and regeive

errors Qi ft should bound the standard deviation
of this error for thd " satellite),

. The error on the ionospheric correction on each
satellite (Oiure should bound the standard

deviation of this error for thé" satellite),

. The aircraft pseudo range errors due to the
combination of receiver and aircraft multipath

(QOiarshould bound the standard deviation of this
error for thei* satellite),

. The residual pseudo range of a tropospheric
correction model which is defined by a standard

mentioned in the SARPY;,troposhould bound the
standard deviation of this error for the satellite).

The overall error distribution in the measuremenrnein
(for the i* satellite) is also assumed to be centered with a
standard deviation bounded by:

Oi :\/ O-i?flt +O-%UIRE +0i2,air +O—%tropo (1)

The knowledge of the bounds of the N standard
deviations in the measurement domain (related ¢oNh
satellites which contributes to the position sanji
allows the computation of the bound of the standard
deviation for each component of the position dombor

the vertical component it gives:

N
O-V,integrity:1 /Zs\zu Blz
i=1

Sviare geometrical parameters: they are the partial
derivative of the position error in the verticalredition

()



with respect to pseudo range error on fiesatellite.
They characterize the relative geometry betweenNhe
satellites and the user receiver.

Finally, the VPL is computed by multiplying by a K
factor:

VPL=KvIOv,ntegity 3)

-7

with Kv=Normal cdf 1 (1 - 5

F533

I.2 Link between the VPL and theintegrity requirement

The goal of this sub-section is to derive the EGNL
requirement that will be used in the analysis fitbie high
level integrity risk defined by ICAO [1] and Euratool
(2] .

First, it could be written that:

Integrity Risk = Pmdve. [P(n0 rangebiag , Pndve. being

equal to the conditional probability P(VPE>VPL/remge
bias).

After application of SBAS corrections, the range
measurements are assumed to be non affected by any
range bias meaning that P(no range bias) is close to 1.
Therefore, it could be written:

Integrity Risk = Pndvw. = P(VPE>VPL) (4)

According to [1], ICAO defines an acceptable intggr
risk for an approach using GNSS:

Acceptable integrity risk 20~ per approach (5)

From (4) and (5) it could be deduced the following
EGNOS requirement:

P(VPE>VPL) =107 per approach (6)

According to Eurocontrol [2], one approach is assdrio
last 150 seconds. Furthermore, it is commonly aeckp
that the maximum correlation time for the positemor
using EGNOS is 360 seconds (mainly due to
ionospheré) Therefore, it could be assumed that there is
one independent sample per approach. This leatiseto
EGNOS requirement that will be the basis of thdyans
P(VPE>VPL) =107 per independent sample (7
I.3 VPL issue

The integrity performance of EGNOS is a significant
contributor to safety at user level. Thereforege th

1 After application of SBAS corrections, the range
measurements are assumed to be only affected bg.noi

% This correlation time is assumed in [3].
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assessment of the VPL quality is a real issue aodld
answer the question:

Is the VPL a reliable bound of the VPE related to a
probability of 107 ?

The next sections try to address this issue.
II.METHODOLOGY OF THE VPL ASSESSMENT
I1.1 Objective and rational

The objective is to assess whether the valueseo¥VPL
for a given data set are reliable bounds of the Yét&ed
to a probability ofl0™ .

In this framework, the paper proposes a statiséinalysis

of the VPE when the VPL is around a targeted véhie

a tolerance). For each tested value of the VPL, the
information being sought is the probability thateth
targeted VPL is a reliable bound of the VPE reldtec
probability of 107. This probability is denoted
“confidence level” in the targeted VPL.

The paper presents a statistical analysis that dons
compute the confidence level in targeted VPL vafuas
a 6 day (at least) data set.

From this data set, the final results are colleatesl graph
showing the confidence level in the VPL with regpec
the tested values of the VPL.

I1.2 Selection of the processed data
First level of the data selection:

From a 6 day (at least) data file containing VPH an
ESTB VPL, it is first necessary to select the GPSchs
where the ESTB VPL is around a specific targeted.,VP
+/- a specified tolerance (nominal value of 0.12tars).
The VPE observed at these GPS epochs are thed.store

This selection process begins by selecting theetady
VPL as the lowest value of the VPL in the file and
increasing to a maximum value of 50 meters

Second level of the data selection:

Then, in line with the SARPs, the analysis is basethe
assumption that 360 seconds are enough to ensure
independence of the samples. Therefore, the nept ait

the data selection is to identify samples that aréeast

360 seconds apart among the samples that werdesklec
for each targeted VPL. This process is performecézh
targeted VPL and should systematically contain the
maximum value of the VPE (in absolute value) ared it
corresponding VPL.

® According to [2], 50 meters corresponds to the
maximum Vertical Alert Limit applicable for Civil
Aviation. If the VPL exceeds this value, the system
becomes unavailable for the user.



Third level of the data selection:

Finally, in order for the analysis to make statstisense,
the required minimum number of selected independent
samples is fixed at 200. If this requirement is settsfied,

the size of the VPL interval around the targeted. \i'®
grown until at least 200 independent samples are
included. A trade-off should be found to maximite t
number of processed samples while minimizing the si
of the selected VPL intervals.

Output of the data selection:

From an initial data set file containing VPE andTBS
VPL, data are stored in several data subsets oviehw

The VPL is almost constant (if possible within a
0.25 meter interval),

seconds apart to ensure independence of the VPE
samples; however they systematically include the
maximum absolute value of the VPE related to
the targeted VPL,

Each selected subset contains at least 200

samples.

Samples of each selected subsets are at least 360]

VPLideal
t_

- —1 e G dt=107 g

o 27 _vBLiea
which is exactly the same as:

1 VPLideaH-u] (VPLideai—u] ,
1- =lferf| ———— [rerf| ————— | |FLO" (9

2 ( o2 o2 ©)

with erf(x) = Lﬁi e mt
T

The following figure illustrates this statement:

2.0

A\ 2

I1.3 Description of the statistical analysis

The proposed statistical analysis implemented st
data subsets is based on several mathematical tteatls
will be presented step by step in this section.

First step: ideal case

This first step makes two very simple assumptioors f
each of the selected data subsets:

The VPE follows a perfect Gaussian distribution,

The mean valu@l and the standard deviati@an
of the VPE are perfectly known.

In reality these assumptions are not met. Inderckaxh
selected data subsets the VPE might not follow a
Gaussian distribution. Furthermore, the mean valne
the standard deviation of the VPE, which can be
computed are only estimates based on a limited euwib
observations.

However, this first step is necessary in order rtovigle
the reader with a simple introduction of the praces

Under both simple assumptions mentioned above, from
the statistical properties of the VPE, the errdates to a
probability of 107 can be simply derived. This error can

be denotedVPLidealinsofar as this value should be the
ideal VPL for the processed data s€RLidea Should be
the solution of the following equation:
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P=(1-107)

- VPLideal

Figure 1: VPE perfectly Gaussian, 4 and ¢ known

The next steps address the fact that those simple
assumptions are not met.

Second step: _non Gaussian distribution of the VPE

In general, the VPE does not follow a Gaussian
distribution. This is especially the case whenVRE has
a secondary peak in the tails of its distribution:

A

VPE distributior

\4

u

Figure 2: example of a non Gaussian distribution



In order to cope with such events, it should bedabhat a
Gaussian modeling can be applied to a non Gaus$an
distribution provided that the modeling properly hds
the tails of the VPE distribution. However, theldaling

question should be addressed:

With which Gaussian modeling, could the VPE
distribution be bounded?

The idea is to inflate the VPE standard deviatiamp to a
valueZ so that the Gaussian modelil@ﬁp,z) bounds (in

the cdf overbounding sense) the tails of the VPE
distribution, 4 being the VPE mean value. This means
that the energy contained in the tails of the Ganss
modeling should be above the energy contained in the
tails of the VPE distribution. This process can be
mathematically expressed:

If pdf(e) is the probability density function of a

distribution, the energy of the distribution betwee and
Lis:

L
cdf(L)= jpdf (©xde (10)

Therefore, if L1 is the limit of the left tail and? is the
limit of the right tail of the distribution, the orounding
conditions are:

cdfoverboundig(L1)=cdfvre(L1) (11)

l—Cdfoverboundig(LZ)ZL—Cdf\/PE(LZ)
> is thus computed on the basis of the following
identities:

Cdfoverboundig( Ll):Cdf\/PE( Ll) (12)

l—Cdfoverboundig( L2) :1—Cdf\/PE( L2)

Overbounding

Figure 3: overbounding thetails

Unfortunately,u and o are only estimated through the
respective valuegn and S. Therefore, instead of defining
a Gaussian modelings(,Z) as presented above, a
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Gaussian modeling?(ﬁn,i) based on estimates is defined.

Practically, the implementation of the cdf overbdimng
process consists, on the basis of another Gaussian

modelingG(i,3), in inflating S so that the new Gaussian
modeling G(r‘n,i) bounds the tails of the VPE
distribution.

It can be shown that the estimate of the energyadoed

in the left tail of the cdf overbounding Gaussian
distribution is:

Eleft (L1)=cdf overbounding (L 1):%4'%[’](( L1- ﬁ’]) (13)

SR2
It can be shown that the estimate of the energyadoed

in the right tail of the cdf overbounding Gaussian
distribution is:

Eright (L2 :l—Cdfoverbounding L2 :l—lrf IZZ_m 14

(L2) (L2)=3-3BMCE (14)
The cdf overbounding should be sought whatever
L1<m and L2 > m. This means that the condition
(11) should be satisfied whenevet < m and L2 > m.

However, in order not to introduce unnecessary aigm

inflation due to errors close th, the maximum value of
L1 and the minimum value of L2 are defined as fotd:

MAX |L1 = | Egk@0%) | (15)
MIN L2 = | Egly, 40%) | (16)

(15) and (16) assume that the sigma inflation copiés
80% of the left tail and 80% of the right tail, igarding
20 % of the overall error within the core of the

distribution and centered gn (being estimated through
m).

It should be noted that this cdf overbounding pssagoes
not aim to extrapolate 407 error by multiplying the
inflated estimate of the standard deviation byfaéor as
does the SBAS integrity mechanism. The only purpiise
this process is to define two parameténsand 3 to be
used in the modeling of the uncertainty pfand o
(addressed in the next step). In this context, the
assumption of a centered VPE distribution is not

necessary as it is in the context of the EGNOS VPL
computation.

The next two figures illustrate the implementatmithe
cdf overbounding algorithm on selected data frora th
EGNOS System Test Bed.

Figure 4 shows that when the tail of the VPE disition
has no secondary peak, the estimated standardtidavia



of the Gaussian modeling is weakly inflated by & cd
overbounding algorithm. On this figure, it could feted:

S=1.13 meters

> =1.22 meters

inflated sigrma =1.2254  estimated sigma =1.1348

Figure 4: weak effect of cdf overbounding

On the other hand, figure 5 shows that when therae i
strong secondary peak in the tail of the VPE distion,

the estimated standard deviation of the Gaussian
modeling can be strongly inflated by a cdf overlding
algorithm. On figure 5 it should be noted:

S=1.37 meters

3 = 2.56 meters

inflated sigma =2.5506  estimated sigma =1.37 11
12 ey e (i

------------- Gaussia{:} -modeH’hg

: i before inflation:

..... Ga@ssian.mbd.eling.éfter
i inflation ‘
bounding distribution)

. |

7| I Bl (over

-----------------------------------------------

Figure5: strong effect of cdf overbounding

It should be felt that the smaller the number afcessed
samples, the higher the sigma inflation due toralsi
anomaly in the tails of the VPE distribution. Appenl

proves this statement and justifies the choiceetdcsing
at least 200 samples for a data subset.
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At this level of the analysis, an estimate of theamvalue
(m) and an inflated estimate of the standard deviatio
(i) of the VPE are determined. These two values are
fundamental parameters to be used for modeling the
uncertainty ofu ando.

The third step of the analysis addresses the deteroinati
of this uncertainty: this will be the basis of the VPL
confidence level determination.

Third step: allowing for the uncertainty on zand o

Because the statistical analysis is performed over a
limited number of samples, the mean value and the
standard deviationy(and o) of the underlying random
process of the VPE cannot be perfectly known. Only
estimates of them are computegh &nd i) through the
previous step. Therefore, under this assumption it is not
possible to compute an ideal VPL for a selected data
subset (as was done in the first step thanks to the
unrealistic assumption thatando are perfectly known).

However, a modeling gi ando based on the knowledge

of mand Z will allow the estimation of the probability
that the targeted VPL fulfills the EGNOS requirements.

In the frame of the analysis, this estimated probability is
the confidence level in the VPL.

In other words, the confidence level in the VPL is an
estimated probability that the VPL computed using
EGNOS broadcast data isl8” bound of the VPE.

The mathematical modeling of p and o and the
theoretical process to compute the VPL confidence level
are explained in appendix 2.

I11. ESTB DATA PROCESSING FROM ENAC
I11.1 Presentation of the data processing

The methodology presented in the previous sections was
applied to data from ESTB DCN sites such as the ENAC
site in Toulouse, France, betweer"2@ay and %' June
2003.

On this 6 day data set, the following algorithm was
implemented:

e Selection of subsets of VPE samples related to
targeted VPL (from the lowest VPL value up to a
50 meters maximum)

e Implementation of the cdf
algorithm in order to Computé ,

overbounding

e Computation of the confidence level for each
targeted VPL thanks to a modeling jofand o

based on nfand 3,

n, mand < being respectively the number of samples,
the estimate of the VPE mean value and the inflated



estimate of the VPE standard deviation of the subset
related to a targeted VPL.

I11.2 Overall results

The results are summarized in a graph presenting the
confidence level in the VPL with respect to targetdRLV
(cf. figure 6).

As depicted in figure 6, the processing of a 6 day data set
from ENAC (from 28 May 00:00 UTC to ¥ June 2003
12:14 UTC), makes disparate results conspicuous.

Confidence level of the VPL
‘2!_’4:1_1—._. ;

P

100 - : poe
1 N S -

| e
S e e—_————
T N N I
NN SO U S T R
TN SR S ——

| oo

confidence level of the WPL [%]

R T N .

Figure 6: resultsfrom Toulouse

Good confidence levels can be noted except for a range of
the VPL between 15 and 16 meters.

I11.3 Analysis of the poor confidencelevel in ENAC

As showed in Figure 7, the poor confidence level is due to
an anomaly in the tail of the selected VPE distritnuti
when the VPL is comprised between 15 and 16 meters.

inflated sigrma =3.592  estimated sigma =1.2406

VPE rﬁodelingé after
5.......sigma inflation

Figure 7: Poor confidencelevel in ENAC

The anomaly in the left tail of the VPE distribution
induces a strong sigma inflation leading to a very poor
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confidence level below 1 %. Furthermore, for the setkcte
data subset, figure 8 presents:

e The selected VPE samples
corresponding targeted VPL,

and their

 The estimated ideal VPL related to the selected
VPE distribution,

e A value denoted VPL99 corresponding to a VPL
that would have a 99 % confidence level
according to the selected VPE,

e A value denoted VPL1 corresponding to a VPL
that would have a 1 % confidence level
according to the selected VPE,

being understood that the estimated probability that the
ideal VPL is below VPL99 is equal to 99%. In the same
way, the estimated probability that the ideal VPL is elo
VPL1 is equal to 1 %. The ideal VPL is therefore likely to
be between VPL1 and VPL&9

WPL conflevel< 1 percent (over 220 samples), estifvPLideall=19.1337

25
— VPE
— WPL
20 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —|
E P 2 :
£ ol Lo\ . Esti(VPLideal} il
s |veLi VPU |
T 5 i

independent samples [-]

Figure 8: poor VPL confidencelevel in ENAC

Figure 8 shows that the EGNOS provided VPL is below
the computed value VPL1. This means that the VPL
confidence level is below 1 % for VPL values between 15
and 16 meters.

However, on figure 8, it should be noted that, even with
this low confidence in the VPL the position error is
always exceeded by the VPL so there is no integrity
failure.

! The reliability of VPL1 and VPL99 has been verified
through a simulation described in [5].



I11.4 Analysis of a high confidence level in ENAC

In the majority of the cases, the confidence levelhia t
VPL is very good such as in the following example.

WPL conf level= 99 percent (over 210 samples) esti(vPLideal)=5.7542

g y—

e 2 Pl

Pogition Error / Protection Level [m]

Seconds [-] . 105

Figure 9: good confidence level in ENAC

This example shows that the confidence level in the
analyzed VPL is very high (by far above 99%). In a pure
statistical sense, such a VPL seems to be very
conservative with respect to the selected VPE.

The VPE distribution related to the former example is
presented in figure 10:

inflated sigma =1.2729  estimated sigma =0.680858

Figure 10: good confidence level in ENAC

From figure 10, it can be seen that only a small sigma
inflation has been necessary to allow for the non Gaussian
behaviour of the VPE distribution in its tails: indeeditb
estimated and inflated sigma are close values. They
respectively equal 0.88 meters and 1.27 meters.

More generally, all the performed analyses from several
sites have shown that poor confidence levels in the VP
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are always due to a strong sigma inflation (which is not
the case in the previous example).

I11. CONCLUSION AND FUTURE WORK

More than providing results, this paper proposes a
methodology aiming at the assessment of the ESTB VPL.

It should be noted that the proposed statistical aisabfs
the position error over few hundreds of independent
samples cannot formally be a complete validation tool.
On the other hand, this methodology may provide
indicators of the quality of the VPL.

Therefore, it will contribute to a better knowledge and
understanding of the integrity mechanism and it will serve
to highlight periods when the integrity performance
should be analyzed in detail using other methods.

The implementation of the technique on real data sets ha
showed that no anomaly in the tails of the VPE
distribution leads to high VPL confidence levels and poor
VPL confidence levels are due to anomalies in these tai
Therefore, further analyses should be carried out inrorde
to identify why such anomalies occur while not being
compensated by a VPL increase.

Furthermore, the presented analysis is based upon ESTB
data. The end of the EGNOS development phase being
planned for the first quarter of 2004, the proposed
methodology should be applied to the EGNOS Signal In
Space when it will be available.

Finally, as this analysis has only addressed thecatrti
protection levels a similar methodology could be
developed to assess the HPL.
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APPENDI X 1: Impact of the number of the processed
samples on sigma inflation

The sigma inflation applied on the data (on the basis of
the cdf overbounding algorithm) is necessary to take the
non Gaussian behavior of the VPE distribution into

account generally due to an anomaly in the tails of the
distribution.

Indeed, through the analysis of the ESTB data it should be
noted that the non Gaussian behavior of the VPE is
generally due to an anomaly in the tails of the
distribution.

In order to appraise the impact of the processed sample
number on the sigma inflation, a simulation has been
carried out. The simulation assumes a centered VPE,
having a 1 meter standard deviation and following a
Gaussian distribution except the tails that contaimglsi
VPE sample of 10 meters as depicted in the following
figure:

269 samples  inflated sigrma =3.7055  estimated sigma =1.2193
(=) bbb bbbl hb bbbty e (i
L 1 E—— Gaussiatrmodeling
it N before.inflation

Figure 11: simulated VPE distribution (269 samples)

The question addressed in this appendix is:

How does the number of the processed samples help to
mitigate the inflation of the VPE standard deviation due
toasingle error in thetails of the VPE distribution?

The scenario of simulation is based on the error
previously introduced (considering a 10 meter single VPE
in the tail of the distribution) with the number of saewpl
varying from 30 to 1000.

Intuitively it can be felt that the higher the number of
samples, the smaller the sigma inflation due to a single
error in the tails of the distribution. This conclusian
confirmed by simulation results as illustrated in the next
figure:
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A 10 meter isolated error added to a Gaussian distribution

— inflated sigma
— estimated sigma :
— mean value of the WPE [--4

inflated sigrna [rn]

)
u] 100 200

| 1 1 1 | 1 1 |
300 400 500 BOOD 700 8OO 200 1000
nurnber of samples

Figure 12: sigmainflation vs number of samples

Figure 12 shows that the sigma inflation applied in orde
to cover a tail anomaly becomes strong below 200
samples. From 30 to 200 samples, the inflated sigma is
divided by a 1.3 factor whilst being divided by a 1.2
factor from 200 to 1000 samples.

The same conclusion could be drawn by considering a
smaller anomaly in the tails (for instance a 4 metegls
error) as depicted in figure 13:

A 4 meter isolated error added to a Gaussian distribution
28 i PRl Sieivbtetrfebublutetotrulatuiutus st
: : : : V| — inflated sigma :
— estimated sigma :
— mean value of the WPE [--4

inflated sigma [m]

r i
0 100 200 300 400 500 OO 700 8O0 200 1000
nurnber of samples

Figure 13: sigmainflation vs number of samples

Therefore, the selection of at least 200 samples seems
be a good trade-off between a reasonable sigma inflation
and a reasonable size of a processed data file.



APPENDIX 2: UNCERTAINTY ON pAND @
Modeling of gand o

For each selected data subset related to a targeted VPL, an
estimate ofu ando (that are respectively the mean value
and the standard deviation of the VPE) can be computed.
Those estimates are theoretically randqgmand o are
unknown and deterministic.

In the frame of the analysis, roles are switched Brsa$

K1 ando are considered as two random variables and the
estimates will be considered as being determinigtics
allows the computation of the VPL confidence lével

In this theoretical context, the purpose of this secsao i

determine the joint probability function qf anda. It will
be noted that this function depends on three parameters:

. n, the number of independent samples over the
selected data subset,

« M, the estimate df,

« 3, theinflated estimafeof o.

In order to express the joint probability density function
of pandao, it is useful to express both probability density
functions ofu andao, respectivelyfu(m) and fo ().

Knowing that fu(m) is the derivative function of the

distribution function Fu(M) of y, it is useful to express
Fu(m) . By definition, Fy(m) = Au < m)

Assuming that t}, is the inverse function of the

student-t law with (n-1) degrees of freedom, and by
writing:

m:rﬁ+tz%_1)(6)BjT (17)
a theorem of [4], states that:
Ru(M)=P(n < m=m+tl (8)32) = 5 18
(Mm)=P(u (n- 1)( )\/n—) (18)
Using another property mentioned in [4], under the

assumption that n>30 (a fortiori when n>200 as requested
in appendix 1), the following approximation can be made:

EROESONTS

! The confidence level is an estimated probability that
VPL is a10” bound of the VPE.

(19)

2 This estimate is inflated in order to cope with the
anomalies in tails of the VPE distribution.
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(where Z7*(0) is the inverse of the normal law N(0,1))

Therefore,m=m+2_1(5)gz—

20
2 (20)
And then, 2‘1(6)=mi;ma/n—2 1)
),
inition, 8=—A=C1 [ ey du (22)
By definition, 0=———=
Y V2TU

Therefore, by using (18), (21) and (22) the following
expression offu(m) can be written:

fﬁ

Finally, knowing that fu(m)=—F— Fp( ) , the probability

Fa(m)=P(u=m)= e Sy

(23)

density functionfu(m) of g can be expressed:

n-2dg D55 m-mYy
2n 3

fH ( m ) = (24)
In the same way, knowing thafs(S) is the derivative
function of the distribution functionFo (S) of o, it is
Fe(s). By

useful to  express definition,

Fo(s) = Ao < s).

In order to find an expression ofo (S) , an intermediate
random variable X should be defined:

()32

o2

(25)

Thanks to the assumption of independence of the n
selected samples, it can be stated that X follows a chi-
square law with (n-1) degrees of freedom:

P(X2X)= [X%q) (D)0t (26)
X

(n-1)32

2 it could be deduced:

By writing x =

(n—l)E[2 (n—l)[Z[2

o2

{x=¢ -

This allow deducingP(o < s):

={os9

(27)



52

Fs(s) = P(G < s)=P[X2(n_1)E[2], or:

+00
Fo(s) = [xfy(OL
(152 ’
52

(n-1)32
52

Ro(s) = 1= [xfp(t)at
0

(28)

drs ()
ds

density functionfs(S) can be expressed:

-1)312 -1)312
e Lt B L L

Finally, knowing that fo(5)= , the probability

(29)

It is now possible to conclude on the expression of the
joint probability density function of both random
variablesp and o. Indeed, knowing thapt and o are
independent, it can be stated:

f(ms) = fu(m) B

Therefore, through the knowledge dfi(m) and fo(S)

given by (24) and (29), the functioruff) is now totally
determined:

f(uo) =

o [ s (132 —[@@—@2]
M%J%_D[T] 7

(30)

n-1

(D)=
(31)

Computation of the VPL confidence level

Introduction

For each selected data subset related to a targeRéd V

the modeling ofy and o introduced in the previous

section allows the computation of an estimated

probability that the VPL is 407 bound of the VPE: this

probability is referred to as the confidence level ia th
targeted VPL.

The computation process is presented through several
steps.
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First step of the process presentation

A theoretical assumption should be made : over each
selected data subset related to a targeted VPL, each
sample of the VPE is assumed to follow the same
Gaussian distribution totally determined by its mean value
t and its standard deviatiart. From this assumption, the
following statement can be concluded: The probability
that at least one VPE sample exceeds the VPL over the
selected data subset is a function of bptando. This
function is denotedy(p,c) and will be expressed later on.

Second step of the process presentation

For each selected data subgseando are modeled as two
random variables on the basis of:

e n, being the number of samples for the selected
data subset,

« M, being the estimate of the VPE mean value
for the selected data subset,

. I, being the inflated estimate of the VPE
standard deviation for the selected data subset
after a cdf overbounding process.

Therefore, the probability that the VPE exceeds the
targeted VPL over the selected data subset could be
modeled as a random variable that could be denoted Z:

Z=g(u,0)

Third step of the process presentation

(32

From the previous step, a theoretical expression of the
VPL confidence level (denoted CL) over the selectdd da
subset can be written:

CL=F{Z<Rn} (33)

where Rn is the acceptable probability that at least one of
the n independent VPE samples over the subset exceeds
the VPL. Rn will be expressed later on thanks to the
EGNOS requirement for the VPL introduced in §I.2.

In another way, an equivalent equation can be expressed:

cL =j I fuo)duds (9
D

where f(1,0) is the joint probability density function of
both random variablgs ando expressed in (31), and the
domain D of integration is defined as follows:

Y In fact, the VPE does not follow a Gaussian distribiutio
However, one can make this assumption because the
Gaussian modeling should bound the VPE distribution
through a cdf overbounding algorithm.



{@o)yoD}-{zcRn}
{ (no) 0D }-{ guo)< Rn }

The computation of (34) requires:

(35)

(36)

» the expression oRn,

e the expression of(u,0) ,

« aframe of the domain D of integration.
Expression of Rn

For thei™ sample of the selected data subset, the event
denotedAi is defined:

Ai = { VPEi > VPLi } (37)

The probability (denotedh ) that at least one VPE of the
subset exceeds its corresponding VPL can be expressed

by using Ai :

(38)

Pr=P( iL:JlAi )

By assuming that the n evenisi are independent, the
following identity can be written:

B= 1_|j P(Ai ):1—|j [1-PA) | (39)

Knowing that the EGNOS requirement leads to
P(Ai) <107 per independent sample (see § 1.2), the

requirement Rn for a n sample data subset can be
expressed:

n
P < Rn= 1_|_J [1-107 ] (40)
1=
Finally,
Rn=1- (1-107 )"0 nmo™” (41)
Expression of g(x,0)

Assuming that over each selected subset every VPE
sample follows the same Gaussian distributi¢otally
determined byp its mean value and its standard
deviation), gf1,0) should express the probabilifyn that

at least one VPE sample of the subset exceeds the VPL.

! This is assumed to be met because the selected VPE
samples are related to close values of the VPL.
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The probability P(Ai) = P(VPEi=ZVPLi)can be
written in the following way:
(t-w)?
HVPL T
0i{ 1,..n} ,PA) =1 - Dj e °0 @t (42)

GE/_

From (42) an equivalent expression can be derived:

i 1,.n},

ool ] o

Finally, knowing that g{,0) =Fh, an expression of
g(4,0) can be derived from (39) and (43):

1 VPLi+u VPLi—p
o) z[ﬂH o2 J ( o2 ﬂ(““’

Frame of the domain D of integration

In order to compute the confidence level in the VPL&or
selected data subset, one should have an idea of the frame
of the integration domain D for the integral (34). The

knowledge of a frame of D would allow the
implementation of an algorithm for computing (34).
From (44) it can be proven that:

0 p£0,0 0>0, g0,0)<g(1,0) (45)

Furthermore, [l the partial function m)=g(4,0) is
increasing. It can be deduced that the biggest valwe of
for which g{,0) remains belowR, is obtained when
p=0. Therefore, the maximum value af within the
integration domain D belongs to theo@xis (whenu =

0). It can also be shown that the maximum absolute value
of w within D is necessarily below the maximum value of
the VPL over the selected interval:

0 (wo) 0D, UsMAX (VPL)

o1 (40)

A frame of the domain D of integration can thus be
illustrated by the following figure:

u

-
L

VPLmax

-VPLmax O
Figure 14: domain D of integration



