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ABSTRACT

GPS/IRS hybridization is a good candidate to fulfill demanding civil aviation requirements. When the integrity of the GPS measurements is ensured they may be used to calibrate inertial position and improve accuracy. This can be done in a tightly coupled manner by means of a Kalman filter. Calibrated IRS can ensure coasting while maintaining good short term accuracy and helps detect large GPS failures.

The hybridized system must also be able to detect slowly growing errors on GPS measurements that may affect inertial calibration. These errors may affect one or several GPS measurements.

Fault detection and exclusion capacity of Receiver Autonomous Integrity Monitoring is limited for GPS, as it is designed for one satellite failure only. Therefore other solutions have been proposed. Among these are the extrapolation method and the solution separation method that are also designed to detect one satellite failure at a time.

The study reported in this paper presents first results obtained with an extension of Mats Brenner's separation algorithm for fault detection. That extension concerns detection and isolation of more than one failure during operations ranging from en-route to NPA, with the objective of satisfying the availability requirement.

The paper starts with a brief review of the classical Solution Separation method for a single satellite failure detection and isolation. In this section the model of the tightly coupled GPS/IRS system involved in simulations is also presented. The third section is dedicated to theoretical description of the one failure Solution separation fault detection and exclusion algorithm.

The next section considers the behavior of the algorithm when two simultaneous range failures occur. In particular the impact of two faulty measurements on the test metrics in the former fault detection and exclusion algorithm is examined. These simulation results are used to discuss the contribution of a two range failure detection algorithm.

Afterwards, a two simultaneous range failure detection and exclusion algorithm based on an extension of the nominal Solution Separation method is introduced. Definitions of performance parameters (Horizontal Protection Level, Horizontal Exclusion Level, and Missed Detection Probability), when several pseudo range failures (ramp, bias, etc.) occur simultaneously, are discussed. Finally initial simulation results are presented.

I. INTRODUCTION

In GPS/IRS hybridization, GPS measurements are used as observations of the integration processor which provides estimates of inertial errors. These estimates are on one hand added to IRS output to form the navigation solution to the pilot (position, velocity, Euler angles). They are on the other hand used to calibrate the inertial platform (nominal position, velocity and Euler angles, and inertial error sources compensation). Thus when GPS data are unavailable, the calibrated IRS can ensure the navigation continuity.

However, several types of perturbations can affect the signal processed by a GPS receiver and thus lead to a corrupted inertial calibration. Since inertial navigation systems greatly depend on initial conditions, this may have a great incidence on solution navigation accuracy.

GPS perturbations are thermal noise, atmospheric disturbances, multipath and interference. Interference remains the most feared perturbation for civil aviation users because it can affect several tracking channels at a time during a long period.

Efficient failure detection and isolation algorithms have been designed ensuring high availability and integrity monitoring of GNSS navigation means, but they have been implemented assuming that there is a unique satellite failure.

For this reason, there is a need to appreciate the ability of fault detection and exclusion algorithms to detect and isolate multiple range failures.

As a first step the following paper discusses the use of Solution Separation theory to achieve two-failure detection and isolation.

II. SOLUTION SEPARATION METHOD

Fault detection and exclusion function of the Solution Separation algorithm consists in maintaining a primary Kalman filter which incorporates the N measurements of the whole system, as many Kalman subfilters as the number of tracked satellites (i.e. N subfilters), and for each of these sub-filters a bank of N-1 sub-sub-filters using measurements of N-2 satellites.

Initially, the primary filter 00 F provides an estimate of IRS error in order to form the inertial corrected position at the output of the whole system.

Sub-filters which each of these incorporate the measurements from N-1 satellites are dedicated to detection only. They are noted N n F n 1 , 0

=

. Sub-sub-filters are dedicated to exclusion. Each of these is excluding the measurement excluded by its "parent" subfilter, and the measurement from a different satellite. They are noted nm F with

N m N n 1 , 1 = =
and m n ≠ . F and each n F 0 is estimated: it is the difference in the horizontal/vertical plane between the state vector estimated by 00 F and the state vector estimated by n F 0 . Fault detection is performed by monitoring the separation between the main-solution and each of sub-solutions and comparing it to a computed detection threshold that depends on the separation statistics and the false detection probability FD P which is deduced from false alarm rate. When a failure occurs at least one solution separation will exceed this threshold. This method also guarantees a protection radius against any failure (even slow ramp) in straight relationship with the threshold and the value of the required missed detection probability MD P .

Fault exclusion

Fault exclusion assumes that there is only one satellite failure at a time.

When there is a detection, the separation between each sub-sub-filter and its parent sub-filter is computed and compared to an exclusion threshold that depends on the expected separation statistics and FD P . If for subfilter n F 0 , there exists one solution separation such that one separation between it and sub-sub-filter nm F exceeds the threshold, it can't be the faulty satellite. But if there is only one sub-filter n F 0 for which all separations between its solution and its sub-sub-filters nm F are under the threshold, satellite n is the faulty satellite.

After exclusion succeeds, the sub-filter which has not used measurement from the failed satellite becomes the primary filter. Its sub-sub-filters are the new bank of detection filters.

All of the Kalman filters are running in the same way.

II. GPS/IRS KALMAN HYBRIDIZING FILTERS

All measurements and simulations have been made with Matlab. This section presents the models we have implemented.

For any of the Kalman filters, the implemented system is composed of three units: an inertial unit -Inertial

F 00 F 01 F 02 F 0N F 0n F n1 F n2 F nN F nm
Reference System -(Inertial measurement Unit + Strapdown calculator), a GNSS receiver (GPS measurements) and an integration process (Kalman filters) that also performed FDE function. Figure 2.

Figure 2. GPS/IRS architecture

Inertial unit

It provides to the integration process Matlabgenerated inertial position, velocity and attitude angles and gyrometric and accelerometric measurements.

The Inertial Measurement Unit generates realistic gyro and accelero measurements at

Hz 100 rate from trajectory definition and attitude angles evolution of an aircraft. Sensor noises and biases have also been modelled.

IMU measurements are processed by Strapdown inertial navigation to provide inertial solution at Hz 100 : mobile positions and velocities relative to the earth frame in the navigation frame, and the attitude angles of the mobile body frame to the navigation frame.

GPS Receiver

Pseudo range measurements (PRs) are generated at Hz 1 . Random noise is added on each satellite range measurement and is composed of a white-Gaussian noise due to noise process ( PR b ).

GPS/IRS Kalman filtering

As shown in figure 2, the position output by the whole system is the corrected inertial position. The role of Kalman filters is to estimate inertial errors using GPS measurements in order to correct inertial outputs.

Kalman filtering state model

The dynamical evolution of the system is given by inertial error model equations. The measurement vector consists of the difference between two PRs to each satellite (GPS PR and predicted PR computed with inertial data). Each component x δ of the Kalman filter state vector stands for the difference between the true value x and the measured x ~(or computed x ˆ) value. Using inertial data as nominal trajectory these non-linear equation are linearized and lead to the matrix presentation of the dynamical evolution equation of the linearized Kalman filter [START_REF] Farrell | The Global Positioning System & Inertial navigation[END_REF]:

v X F X + ⋅ = ( 2 
)
where

F
is the state transition matrix v is the state noise vector. It is a zero-mean Gaussian white noise vector, whose components are all independent

Let Φ be the discrete form of F . Let Q be the state noise covariance matrix: 

[ ] T E v v Q ⋅ = (3)

Kalman filtering measurement model

GPS Receiver

Pseudorange measurements

IRS position output

Inertial error estimate

Each component of the measurement vector z at filter input is the difference between two PRs to each satellite. One is the measured PR input from the GPS receiver; the other is the predicted PR computed on the basis of the satellite positions obtained from the GPS receiver and the user location as calculated by the IRS.

The coefficients of the measurement matrix H are direction cosines computed from the GPS navigation equation linearization. Let R be the measurement noise covariance matrix: all measurement noises are independent.

The size of thez vector and of the R and -H matrices depends on the number of tracked satellite.

Kalman filters implementation

Let ij be the subscript for the Kalman filter ij F . The maximum number of tracked satellites is 10 = N . There is one primary filter, N sub-filters, and N*(N-1) sub-sub-filters that are running in parallel. The estimated state vector for each are primary filter:

00 x ∆ˆ sub-filter: N n , 1 , ˆ= 0n x ∆ sub-sub-filter: n m N m n n ≠ = = ; , 1 ; , 1 , ˆnm x ∆
The estimation error covariance matrix for each is primary filter: 00 P sub-filter:

N n , 1 , = 0n P sub-sub-filter: n m N m n n ≠ = = ; , 1 ; , 1 , nm P where [ ] ∆x x ∆ δx δx δx P ij ij ij ij ij - = ⋅ = , T E
x ∆ is the true error between estimated IRS and true position:

X X x IRS - = ∆ ˆ
Because GPS and IRS data are not available at the same rate, the error model is updated at Hz 100 and Kalman filters measurements are updated at Hz 1 . So the Kalman corrections are available every second.

Next section details implementation of FDE algorithm using Kalman filters parameters.

III. FAULT DETECTION AND EXCLUSION FUNCTION WITH KALMAN FILTERS

Fault detection function

At each estimation time the discriminator for the n th sub-filter is based on Solution Separation vector between the primary filter and the n th sub-filter:

( ) ( ) ( ) ( ) ( ) N n k k k k k 1 , ˆ= - = - = + + + + + 0n 00 0n 00 0n δx δx x ∆ x ∆ dx (4) 
whose statistics are described by the covariance matrix

( ) ( ) ( ) ( ) ( ) [ ] T k k E k + + + ⋅ = 0n 0n 0n dx dx dP (5) 
with ( ) L is projected in an orthogonal plane so that,

T 0n P ∆ P L ⊥ ⊥ ⋅ ⋅ = (6) 
and

H X P X ⋅ = ⊥ ⊥ T
is a Gaussian vector whose covariance matrix is the diagonal matrix ∆ (eigenvalues matrix of 0n L ).

One of the two eigenvalues is dominating. Let dP λ be the variance ( ( ) ( )

2 , 2 1 , 1 ∆ ∆ or
) of the dominating error in the horizontal plane.

For each sub-filter the decision thresholdn D 0is set so that the test metric n d 0 will exceed n D 0 with the probability FD P . Since all sub-filters have the same chance of false alarm

        ⋅ = - N P Q D FD dP n 2 1 0 λ (7)
with ( ) ( )

u erfc u Q = -1 FD P is the false detection probability [see Table1]. and ( ) ( ) 2 1 0 ⊥ ⊥ = X or X d n (8) depending on ( ) ( ) 2 , 2 1 , 1 ∆ ∆ = = dP dP or λ λ . Indeed 0n
L is degenerated, the test metrics norm value is only expressed in ( )

1 ⊥ X or ( ) 2 ⊥ X .
The test for detecting one satellite failure is -0 H no detection:

n n D d 0 0 < - 1 H detection: { } n n D d N n 0 0 , , 1 ≥ ∈ ∃ [test 1]

Horizontal protection level HPL

By definition HPL is the error bound that contains the primary filter error with a probability of

MD p - 1 when n n D d 0 0 = [2].
Since for each sub-filter 

( ) ( ) ( ) N n k k k 1 , = + = + + + 0n 0n
MD P n p Q a n - ⋅ = -1 1 0 0 λ (11)
Besides we have to consider the rare normal performance that is to say the contribution of the primary filter The horizontal protection level is

0 HPL         ⋅ = -
( ) { } N n HPL HPL HPL n , 1 , max , max 0 = = (13) 

Fault exclusion function

Fault exclusion is accomplished in the same manner than detection but one layer down in the filters hierarchy. The discriminator of each of the sub-sub-filter is the separation between each sub-sub-filter estimate solution and its parent's sub-filter estimate solution in the horizontal plane. For the n th sub-filter they are

( ) ( ) ( ) ( ) ( ) n m N m k k k k k ≠ = - = - = + + + + + , 1 , ˆ nm 0n nm 0n nm δx δx x ∆ x ∆ dx (14) 
whose statistics are described by the covariance matrix

( ) k + nm dP .
Since the N sub-systems formed by the N subfilters are tested in an independent manner, for each subsub-filter the decision threshold is set so that (assuming that each filter nm F has the same chance for a false alarm)

( )         - ⋅ = - 1 2 1 N P Q D FD dP nm nm λ (15)
The test statistic associated to nm D is ( ) ( ) 

2 1 ⊥ ⊥ = m m nm X or X d ( 16 
)
{ } N m a D HEL nm nm n , 1 , max = + = (17) 
The horizontal exclusion level is

{ } N n HEL HEL n , 1 , max = = ( 18 
)
as defined in [START_REF] Lee | Summary of RTCA SC-159 GPS Integrity Working Group Activities[END_REF] IV.

TWO-FAILURE DETECTION AND EXCLUSION WITH A ONE-FAILURE ASSUMPTION FDE ALGORITHM -SIMULATION RESULTS

Failures impact on test metrics of row 2

Let b be the pseudo range bias vector when measurements on channel i and j are affected by bias of 

m N m ≠ = , 1 , is ( ) ( ) ( ) ( ) ( ) ( ) ( ) k b k k w k k x k k x m ⋅ Γ + ⋅ Γ + ⋅ Σ = - + 0 δ δ with ( )       ⋅ - ⋅ - ⋅ - = m m m m m m m I I 0 n 0 0 n 0 0 H K H K K H K Σ ' ' 0       - = Γ mn m m ' K K K 0 0 n K m is
k P k x k x E dual mn T = ⋅ + + δ δ , with, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) T m T dual mn dual mn k k R k k k P k k P Γ ⋅ ⋅ Γ + Σ ⋅ ⋅ Σ = - 0
, when the two simultaneous range failures assumption is made we may theoretically expect that there is no sub-filter m F 0 for which there is no test metrics mn d which won't exceed its threshold. In other words we may expect that there is no sub-filter m F 0 for which two simultaneous range failures have no impact at row 2 of Kalman filters. For the following we denote this state as "simultaneous impact" [figure 3].

Let assume that SAT1 and SAT2 are at channels 2 and 4 Figure 3. Test metrics vs decision threshold: simultaneous impact.

Yet simulations we have conducted have put the stress on the "transition states" which may exist. A reason for this is that under no-failure condition, all test metrics involved at rows 1 and 2 in the Kalman filters hierarchy are lower than their respective decision threshold [see figure 4]. The presence of the two failures implied these test metrics to become progressively larger than their decision thresholds and this even for the subfilters which exclude one of the two failures. Depending on the constellation and the range failures size value, due to noise process in GPS measurements, the impact of one of the two failures may be delayed such as there is one of the sub-filters for which tests metric at row 2 are all inferior to their decision threshold.

In that case if condition of [test 2] is fulfilled, the satellite tested by this sub-filter may be excluded from the constellation [see figure 5].

It is similar to two successive one range failure assumptions.

For the following we denote this phenomenon as "delayed impact".

Figure 5. Test metrics vs decision threshold: delayed impact.

Yet, there is a risk to exclude a wrong satellite, but we may assume it is greatly reduced since in [test 2] we identify the faulty satellite for each of the subset which contains a detection alarm.

Simulations background

Failures setting

Two ramp failures are added to the measurements of the worst two case satellites; that is to say the pair of tracking satellites for which the two ramps will produce the greatest SLOPE: SLOPEmaxmax. The calculation of SLOPEmaxmax is performed according [START_REF] Brown R | Solution of the Two-Failure GPS RAIM Problem Under Worst-Case Bias Conditions: Parity Space Approach[END_REF]. Let SAT1 and SAT2 be the faulty satellites.

Civil aviation requirements

Appendix R to RTCA/DO 229C [START_REF]Requirements and Test Procedures for Tightly Integrated GPS/Inertial Systems Appendix R to DO-229C[END_REF] clarifies FDE requirements to GPS/IRS application for en-route to nonprecision approach. ( 

Simulations results

Delayed failure impacts

In the case in which failures impact is delayed, failures behave such as there were two successive failures. The classical Solution Separation FDE algorithm is able to detect and isolate them. To illustrate this, the following simulation was performed:

-Table 3: simulation hypothesis -Figure 6 and After isolation of SAT1, the error size is of 5 m and is getting growing due to a miss-initialization of Kalman filters. Indeed, 00

F is initialized with

1 0 SAT F
which is still running with SAT2 faulty measurements. This corrupted initialization is creating an additional error on position solution; this error is growing to 10m until isolation of SAT2. At time 373, the horizontal error size is reduced to 6.5m. Despite no Monte-Carlo simulations have been conducted, simulations have shown that the error size after isolation greatly depends on the constellation. In fact long-duration simulations -with fixed-positioning trajectory assumptions -have shown that the delay after isolation for Kalman filter re-convergence depends on constellation.

Simultaneous failure impacts

In the more rare case in which failures impact is simultaneous, the classical Solution Separation FDE algorithm is no more able to isolate them. The first row of Kalman filters is effectively detecting failures, but the test at the second row can't find any sub-filter for which all the tests metric between it and its parents sub-sub-filters are under their decision threshold. This is a failed exclusion case that leads to a true alert [START_REF]Minimum operational performance standards for global positioning system / wide area augmentation system airborne equipment[END_REF]. To illustrate this, the following simulation was performed:

-Table 5: simulation hypothesis -Figure 7 and 

V. PRINCIPLE OF ISOLATING TWO FAILURES

Principle

Isolation of two failures is performed by estimating the solution separations between sub-sub-filters and sub-sub-sub-filtersmnp dx , forming test metricsmnp d , and comparing them with their correspondent decision thresholdmnp D .

In the nominal case, the entire tests results are negative. When there are two failures, there is no sub-filter for which all the tests metric between it and its parents' subsub-filters are under their decision threshold. But, there exists only two sub-sub-filters nm F and mn F for which all separations between their solution and their sub-sub-subfilters solution are under the corresponding thresholds. Thus satellites n and m are claimed as the faulty satellites. For each sub-sub-sub-filter the decision threshold is set so that (assuming that each filter mnp F has the same chance for a false alarm)

) ( ) ( ) ( ) ( ) n p m p n m N p k k k k k np m np m np ≠ ≠ ≠ = - = - = + + + + + , , , 1 , 
( )         - ⋅ = - 2 2 1 N P Q D FD dP mnp mnp λ (20)
The next paragraph discuss with the use of FD P .

The test statistic associated to mnp D is 

( ) ( ) 2 1 ⊥ 
k j i k j i D d k s j r i , , , , / , , ≥ ∃ ≠ ∀ ≠ ∀ and srm srm D d < for all s m r m ≠ ≠ ,
and

k j i k j i D d k r j s i , , , , / , , ≥ ∃ ≠ ∀ ≠ ∀

VI. FAILURES DETECTION AND EXCLUSION WITH A TWO-FAILURE ASSUMPTION FDE ALGORITHM

Process principle

As for one-failure FDE algorithm, the new algorithm discussed bellow is based on hypothesis testing 0

H

Normal case: no range fault Abnormal case: more than one range failure

The following process is based on the experimental assumption that when there are two simultaneous range failures; filter solution which is using the two faulty measurements is far more affected by the failures than filter solution which is using only one faulty measurement. Thus the impact of the second failure is such that the test metric between a one-failure filter and a two-failure filter is always exceeding the threshold (in the same manner that, the test metric between a one-failure filter and a zero-failure filter is always exceeding the threshold). Detection occurs at the first row, but there is no decision taken whether there are one or two range failures. The hypothesis test is 0 H no detection:

(i) Failures detection

n n D d 0 0 < 1 H , 1 , > n H n detection: { } n n D d N n 0 0 , , 1 ≥ ∈ ∃
For the following points the assumption that detection occurs is made.

(ii) One-failure 1

H identification and exclusion

The identification of H .

(vi) Two failures exclusion

The exclusion of the two faulty satellites occurs at row 3 according [test3].

Figure 9 is illustrating what we theoretically expect when there are two failures (points (iii) and (iv)). Let assume that SAT1 and SAT2 are at channels 2 and 4. 0fm Kalman filter using no faulty measurement 1fm Kalman filter using one faulty measurement 2fm Kalman filter using two faulty measurements Figure 9. Two failures theoretical impact on tests metric.

Discussion on the use of the FDE requirements

Setting the thresholds

One-failure exclusion function

In [START_REF] Vanderwerf | FDE Using Multiple Integrated GPS/Inertial Kalman Filters in the Presence of Temporally and Spatially Correlated Ionospheric Errors[END_REF], the author defines exclusion threshold as a function of FD P [see equation 14] since the detection function has to be available after exclusion. Indeed, after exclusion, the main filter and the sub-filters are re-initialized with the safety sub-filter and sub-subfilters respectively. These last sub-sub-filters are then dedicated to detection of a next failure.

Two-failure exclusion function

The same idea has been applied to set the thresholds for the tests at the third layer of Kalman filters [see equation 20]. After exclusion of the two faulty satellites, the main filter and the sub-filters are reinitialized with the safety sub-sub-filter and sub-sub-subfilters respectively.

Definitions of HPL

The HPL may be defined as a function of the Since the global HPL has to satisfy these three conditions, in a first approach it would be defined as 

Definitions of HEL

In the one-failure assumption, by adding "the requirement that detection must be possible after exclusion has occurred […] HEL is given by the largest HPL of the subsets of ( ) 

1 - N satellites" [ 9 

Simulation results

With similar assumptions than those taken at chapter IV, we get the following result with the process presented above -Table 7: simulation hypothesis -Figure 10 and We can notice that the identification of the presence of two failures occurs soon after the algorithm is detecting failures. HPL and HEL which are presented on this figure are HPL computed at the first row of filters hierarchy and HEL calculated at the second row. They are standing for the one-failure FDE algorithm levels and are not representative of the whole process. As mentioned in chapter VI, we have not clearly defined a global HPL / HEL , which could be compared to HAL in order to appreciate the availability of the process. Yet the horizontal error at the output of the system is very bellow the HAL defined for the non-precision approach phase of flight (556m), and thus it can't involve an alert.

VII. SUMMARY AND CONCLUSION

Despite the fact that the occurrence of multiple simultaneous range failures is a roughly unlikely event when failures are independent, it can become more important in the case of jamming. This paper presents a hypothesis test which is being investigated at the ENAC in order to use the GPS/IRS hybridization Solution Separation integrity monitoring method under the assumption that two simultaneous range failures can occur. The paper also proposes the integration of this test with the current onefailure FDE algorithm to form three test levels.

Practically, the detection of failures occurs at the first level.

In case of one failure, the exclusion of the faulty satellite -as well the identification of the one-failure hypothesis -is performed at the second level.

In case of two failures, due to the fact that the FDE process is based on hypothesis testing, the simulations which were conducted have shown that the failures may have simultaneous or delayed impact on the test metrics. In the first case, the tests allow identifying the two-failure hypothesis at the second level, and the two faulty measurements are excluded with the tests at the third level. In the second case, the tests at the second level allow identifying two successive failures and excluding them. Thus the FDE function can be performed either by a onefailure assumption or by a two-failure assumption algorithm.

The definitions of global HPL and HEL are not clearly laid down and doesn't allow us to completely appreciate the performance of the process.

Figure 1 .

 1 Figure 1. Detection and exclusion filters hierarchy

  the navigation frame relative to the inertial frame in the navigation frame n Ie ω Earth rotation rate in the navigation frame n en ω rotation rate of the navigation frame relative to the Earth frame in the navigation frame

dP

  One can show that the impact of b (at its first time of apparition) on the test metrics which links subfilter m F 0 to sub-sub-filter mn F , with n

Figure 4 .

 4 Figure 4. Test metrics vs decision threshold: no-failure case.

Figure 6 :

 6 Figure 6: Horizontal position error vs HPL/HELDespite the success of isolating the two faulty satellites, the impact of the faulty measurements is not negligible on the horizontal position solution. After isolation of SAT1, the error size is of 5 m and is getting growing due to a miss-initialization of Kalman filters. Indeed, 00F is initialized with

Figure 7 :

 7 Figure 7: Horizontal position error vs HPL/HEL This impossibility to isolate the two failures may be solved by adding one more Kalman filters layer: sub-subsub-filters which each one is excluding measurements from 3 satellites of the constellation [see figure 8]

Figure 8 .

 8 Figure 8. New Kalman filters hierarchy Test data definition Let
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  and requires further discussion.

2 HEL 2 HEL

 22 would be given by the largest HPL of the subsets of ( )2 -Nsatellites under the condition that detection must be possible after exclusion has occurred. And HEL would be the maximum of 1 and so forth HEL is only assumption, and requires further analysis.

Figure 10 :

 10 Figure 10: Horizontal position error vs HPL/HEL

  Satellite r is excluded as the failed satellite if and only if [test 2]

			rm d <	D	rm	for all	m ≠	r
			and			
			nr d ≥	nr D	for all	r ≠	n
	Horizontal exclusion level HEL
			HEL is the error bound that contains the primary
	filter error with a probability of	1	-	p	FE	when the failure is
	excluded.			
	"For a failed exclusion to occur, the solution of one of the
	sub-filters	0n ∆ˆwhich does contain the failed satellite x
	must be separated from one of its sub-sub-filter's solution
	x ∆ˆ	nm	by less than the threshold nm D plus the sub-sub-
	filter position error" [2]
	Let nm a be the sub-sub-filter horizontal estimation error
	bound and [ : 8,7 : 7 P + nm	8	nm P : λ ] a	nm	be the maximum eigenvalue of ( ) FE P p Q nm -⋅ = -1 1 λ .
	For the nth sub-filter

n HEL is given by

  the Kalman gain of filter mn F .

	n K m ' is constructed from	n K m so that it operates on the
	full set of measurements by extending the 17x(N-1)
	matrix	n K m sub-solution matrix with a n th zeroed column.
		Since	[	( )	(	( ) )	] ( )

Table 1

 1 

								4 satellites	<	00 d D <	Main filter < <	row 1
									01	02	03	04	Sub-filters
										<	<	<	< < <	row 2
										21 23 24	31 32 34	Sub-sub-filters
										?	<	00	?	?	Exclusion of SAT1 on channel 2
									01	02	03	04
								>	< <	<	<	<	< > <	< > <
		?		>	00	?	>	12 13 14	21 23 24	31 32 34	41 42 43
	01		02			03		04	
	? > >	?	?	>		? > >		? > ?	
	13 12 14	21 23 24	31 32 34	41 42 43	
										)

Table 1 .

 1 FDE requirements.These requirements are defined assuming that there is only one satellite failure at a time.

		Simulation conditions	
	-	GPS constellation: mask angle 5° (no change)
	-	GPS receiver: total measurement noise 12.5m
	(1σ)																			
	-	Inertial error sources		
	These errors are added on accelero and gyro
	measurements at the IMU output
	Gyrometer constant bias					0.01 °/hr
	Gyrometer white noise						3.10 -5 °/s/ Hz
	Accelerometer constant bias			50 µg
	Accelerometer white noise				6.4 µg/ Hz
	Table 2. Good IRS error sources
	-	GPS/IRS hybridization is performed in an open-
	loop manner.																
	FDE algorithm																
	-	No. of independent tests/hr=4
	-	P FA	=	1	/	3	.	10	-	6	/	hr	=	1	/	12	10 .	6 -	/	test
	-	P ff	=	1	/	3	.	10	-	8	/	test		
	-	ramp errors (m/s) are added simultaneously at
	time t 0 on satellites SAT1 and SAT2.
	We are interesting in the Horizontal error.

Table 4

 4 

			: simulation results on
	position error	
	Number of tracked satellites = 9, t 0 = 300s
	SAT1	channel: 3	error size: 1m/s
	SAT2	channel: 9	error size: 0.7m/s
	Table 3: Simulation hypothesis: delayed failure impacts
			delay after t 0
		detection	isolation
	SAT1	47 s	51 s
	SAT2	69 s	74 s

Table 4 :

 4 Time of detection and isolation

Table 6

 6 

	: simulation results on

Table 6 :

 6 Time of detection

  HPLIs the value of HPL for which in the one range failure case,

	v.	Ρ	( HE >	HPL	no	alert	H	21	)	is	the	missed
	detection probability in the case when there are two
	range failures														
	The difficulty is that we need to allocate values to these
	probabilities.																
	The acknowledgment of these may allow us to give a
	definition of the global HPL , which would determined by
	the following ways											
	1. we calculate		0 HPL value from (i)
	2. we calculate		1 HPL value from (iii)
	3. we calculate		2 HPL value from (v)
	with																			
	HPL	0		Is the value of HPL for which in the fault
				free case, ( HPL HE > Ρ	0	) ( HE Ρ =	>	HPL	no	alert	H	0	)
	1																		
				Ρ	(	HE	>	1 HPL	) ( HE Ρ =	>	HPL	no	alert	H	1	)
																					Integrity Risk requirement ( MI P )
				Ρ	(	HE	>	HPL	2	) ( HE Ρ =	>	HPL	no	alert	H	2	)	[ HE Ρ	>	HPL	no	alert	] MI P <
																					where HE is the horizontal error; and "no alert" means
																					"without an alert during time to alert".
																					(for phases of flight from en-route to NPA ,
																					P MI	=	10 7 -	/	hr	and the time to alert is s 10 ).
																					Using 0 H , 1 H , 2 H , the former expression may be written
																					Ρ	( OR OR HE ( (     	alert alert H alert no HPL no HPL no HPL HE HE ∩ > ∩ > ∩ > 0	) H H	2 1	) )     	<	MI P
																	2fm			which is similar to
	2fm 01 > ?	>		? ?	1fm 02 ?	> >	00	?	? 2fm 03 >	> >	?	1fm 04 >	?	Ρ	( HE Ρ + Ρ +	) ( ) ) ( ) H H alert H H alert no HPL no HPL HE ( ( Ρ ⋅ > Ρ ⋅ > 0 0 1 1 ) ( ) MI P H H alert no HPL HE < Ρ ⋅ > 2 2
	12 13 14 1fm 2fm 1fm	21 23 24 0fm 1fm 1fm	31 32 34 41 42 43 1fm 1fm 2fm 1fm 0fm 1fm	As for the one-failure assumption the following allocation
	123 124 … … > > > > >	241 243 0fm 0fm < <	> > > >	241 243 0fm 0fm < <	>	is made i. performance rate ( HPL HE > Ρ ii. 1 H Ρ is the probability of having one GPS ) 0 H alert no ( ) is the rare normal
																					satellite failure per hour per aircraft iii. ( ) 1 H alert no HPL HE > Ρ is the missed detection
																					probability in the case when there is only one satellite
																					failure iv.	Ρ	( ) 2 H	is the probability of having two GPS
																					range failures per hour per aircraft

2

HPL

Is the value of HPL for which in the two range failures case,

Table 8 :

 8 simulation results on position error The process succeeds in isolating the two faulty satellites and after isolation the main Kalman filter is re-initialized with 39 F .

	Number of tracked satellites = 9, t 0 = 300s
	SAT1	channel: 3	error size: 0.7m/s
	SAT2	channel: 9	error size: 1m/s
	Table 7: Simulation hypothesis
	Delay after t 0		
	Failures detection	60s
	Identification of 2 H	70s
	Exclusion		118s

Table 8 :

 8 Times of detection and isolation
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