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ABSTRACT

The Fast Adaptive Bandwidth (FAB) algorithm is a new
method that is able to compute in real-time the optimal
setting of the loop filters of a GPS receiver in order to
minimize the thermal noise on the code or carrier phase
measurements. The optimal setting is computed by taking
into account of the imposed line of sight dynamics and of
the signal to noise ratio of the incoming signals.

We will present in this paper any results of the
implementation of the FAB algorithm on the carrier
tracking loops of a real Gec-Plessey GPS receiver. A high
dynamics spacecraft flight scenario has been tested by
simulating GPS signals with the GSS 2760 GPS signal
simulator. An analysis of the results on the improvement
of carrier phase measurement accuracy is proposed.

INTRODUCTION

In radio navigation and localization systems, the technique
to compute the position of a user is based on pseudorange
measurements between several transmitters and the
receiver. The receiver has to synchronize its own local
replicas with the incoming signals to extract the
navigation data and to perform the measurements. The
most popular way to synchronize and to extract
information from signals mixed with a carrier and pseudo-
random binary sequences (PRN codes) in a noisy
transmission channel context, is to use the common Phase
and Delay Lock Loops (PLL and DLL) tracking systems.

The most present sources of PLL and DLL
synchronization error are the thermal noise, which is
proportional to the Equivalent Noise Bandwidth (ENB)
and is due to the noise on the transmission channel, and
the dynamics stress error, which is conversely
proportional to the ENB (see [1]). As these two error
sources are conversely proportional, the common method
to choose the ENB of the loop is to consider the worst
cases of Signal-to-Noise Ratio (SNR) and dynamics of the
incoming signal. This results in a sub-optimal use of the
loops during periods where dynamics is not maximal.
That’s why we have proposed in [2] the Fast Adaptive
Bandwidth (FAB) algorithm that is able to adapt the ENB
of the loops with respect to the real-time dynamics and
noise level of the incoming signals. Based on real time
estimations of dynamics and SNR of the incoming signal,
the FAB algorithm computes the optimal setting of the
loop filter coefficients in order to minimize the thermal
noise on the code or carrier phase measurements. We have
implemented the algorithm on the software of the Gec-
Plessey GPS BUILDER receiver, and have made many
measurements on signal provided by the GSS 2760 GPS
signal simulator.

In this paper, we will present results on the efficiency of
the FAB algorithm in the case of a relatively high
dynamics application. As the GPS satellite constellation
altitude is close to 20000km, dynamics on signals received
by users that stand on the earth are often small. To
increase dynamics on signals, we have decided to
construct a scenario where the distance between the
receiver and a GPS transmitter is reduced as possible. This
type of situation is realized if we consider the case of a
transmission channel between a spaceborne receiver in
Low Earth Orbit (LEO) and a pseudolite (for pseudo GPS
satellite, which is a ground station that transmitted GPS
signals) for the transmitter. In our case, we have simulated
a LEO satellite that stands at an altitude of 2000km to
obtain a maximal acceleration of 2.5g on the signal when
the satellite is exactly above the pseudolite.

The first part of the paper recalls the main properties of
the linear model of the loops and describes the FAB
algorithm. The second part presents the flight scenario that
we have chosen to simulate with the GSS 2760 GPS
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signal simulator. The last part shows results of
measurements and deals with improvements due to the
method.

THE FAB ALGORITHM

The aim of the FAB algorithm is to compute in real-time
the optimal setting of the loop filter in order to minimize
the power of the thermal noise on the phase measurements
by taking into account of the imposed Line Of Sight
(LOS) dynamics of the incoming signal. A schematic
representation of the algorithm is shown on figure 1. The

two main sources of error of a loop are the thermal noise
and the bias due to dynamics on the signal. These two
errors are conversely proportional and depend on the
length of the Equivalent Noise Bandwidth (ENB) of the
loop. The idea of the algorithm is to compute real-time
estimations of these two parameters by observing the error
signal at the output of the discriminator. The error signal
is completely characterized by the transfer function of the
loop. Let’s consider the useful linear model of a digital
PLL that is shown on figure 2 (see [3]). Note that the

linear model of a DLL (see [1]) is the same as for the PLL
where the carrier phase is substituted by the code phase.
The local code generator and the local carrier generator
are both modeled by a digital integrator. The gain KD is
the product of the discriminator gain with the Numerically
Controlled Oscillator (NCO) gain. The transfer function
F(z)  of the loop filter of an Nth order loop is modeled as
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Then we can derive the expression of the transfer function
of the error signal from figure 2 as
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Let’s note the N poles of E(z) as {pn}n=1..N . Then (3) is
equivalent to
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The relations between the poles of the transfer function
and the coefficients of the loop filter are obtained by
developing and identifying the denominators of (3) and
(4). Then, for an Nth order loop, these relations are
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Table 1 gives relations for useful orders. For more

convenience and in the context of the FAB theory, we
have chosen to work with a unique pole of order N. This
pole is define as

pp
Nkk =

= ...1

Then, the stability of the system imposes that
1<p

The transfer function of the error signal became equal to
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Now we can easily predict the level of the noise and the
bias on the error signal from equation (9). Suppose that
the phase of the baseband input signal is modeled by
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mϕ is the initial value of the mth derivative of the

input phase and n(t) is the equivalent Gaussian phase
noise. It has been shown on [2] that the sampled and
integrated version of (10) over the predetection bandwidth
Bp (usually 50Hz) is equal to
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Figure 1: Schematic representation of a FAB loop
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where )(
0

mA  is the equivalent initial value of the mth

derivative of the meaning input phase over the
predetection interval, and is approximately equal to (see
[2])
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nIN(k) is the equivalent Gaussian phase noise after the
predetection filtering. Its variance is equal to
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for the DLL, where d is the chip spacing between the
advanced and delayed arms of the code discriminator.
Finally, the variance of the noise on the error signal is
equal to
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The expression of the squared norm of E(z) as been
derived in [2]. Table 2 gives these relations for useful
orders of loops in the case of a unique multiple pole of

order N. The bias on the error signal due to dynamics is
given by this particular property of the z-transform (see
[4]):
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If we derived (18) with the expression of E(z) for an Nth

order loop given in (9), we find that the terms whose order
is smaller than N are equal to zero (the error converges
towards zero), the ones whose order is greater than N tend
towards infinity (the loop diverges), and the term of order
N is a constant. It means that an Nth loop can track an
input phase of order N with a steady state error of
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Finally, if the greater significant dynamics order is N, then
the error signal will be the sum of a bias and a noise. Its
expression will be
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where nerr(k) is a zero mean Gaussian noise with a
variance expressed in equation (15). The values of the
dynamics component and of the noise component can be
finally estimated by observing the error signal. The
dynamics component is equal to the mean value of e(k)
divided by the SSEF, and the variance of the noise
component is equal to the variance of e(k) divided by the
squared norm of E(z). An easy and low cost method to
estimate the mean value µe(k) and the variance σe

2(k) of
e(k) at epoch k  is to use two low-pass filters of order 1
defined by
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where pLP sets the time constant and the bandwidth of the
low-pass filters. We proposed to adapt the bandwidth of
these filters to the bandwidth of the loop in order to have
proportional time constants. We have chosen to set the
low-pass filter bandwidth at epoch k  as
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that is two time lower than the power of noise on the
phase measurements. We shown that the relation between
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To perform good pseudorange or carrier phase
measurements, it is better to minimize the power of the
random part of the error. But minimizing the power of the
random part of the error results in an increasing of its
mean value because the squared norm of E(z,p) and the
ENB are conversely proportional with the SSEF.
Moreover, we must be careful that the error signal doesn’t
leave the lock range of the discriminator. This lock range
depends on the discriminator used in the loop. Let’s note
the lock range of the discriminator as

Lock Range = [-Lth, Lth]
As the error signal is completely characterized by (21), we
can compute the better compromise between the SSEF
and the squared norm of the error transfer function in
order to minimize the ENB, and consequently the thermal
noise error on measurements, with the constraint that the
error signal stays in the lock range. As the statistic
properties of the noise in the error signal and the dynamics
component value are known, the optimal condition is
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Table 2: Squared norm of the observable error transfer function
of a lock loop as a function of the multiple pole of the transfer
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where the parameter a sets the probability to be out of the
lock range. This probability is given by
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As an example, if we choose a equal to 1, then the
probability P0 that the error signal is out of the lock range
is 0.16, if a equal 2 then the probability is 0.02, and if a
equal 3 the probability will be 0.001. Finally, the optimal
multiple pole of the transfer function that minimizes the
power of the thermal noise on the measurements is a
solution of the equation
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Equation (32) has two solutions. The first is close to –1
and corresponds to a wide ENB, and the second is close to
1 and corresponds to a small ENB. Only the second
solution is valid for our algorithm. To find the optimal
zero of f(p), we propose to use the iterative method of
Newton-Raphson. An iteration is given by
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The use of the absolute value function on the second term
of (34) is the condition to converge toward the solution
that is close to 1. This method has good properties of
convergence and is able to track the optimal solution even
if the parameters of dynamics and noise are variable in
time. The algorithm is initialize with the pole that
corresponds to the highest ENB chosen by the user. This
highest ENB is chosen as a function of the highest
dynamics that the loop can track. Note that the resulting
transfer function of the FAB loop is variable with time
because of the variability of its poles. E.I. JURY has
shown in [4] that if the poles are not enough slowly
variable, then the filter can produce important peak values
in the time domain. In the FAB loop, these undesirable
peaks could cause the error signal to be out of the lock
range. For this reason, it is necessary to smooth the
optimal pole of the FAB loop by a low-pass filter before
updating the loop filter coefficients. We used a low-pass
filter with a minimal time constant of 2 seconds.  In the
case of quick rise of the dynamics, the time constant of the
algorithm doesn’t open the effective bandwidth of the
loop as fast. As a consequence, a detection system has to
be inserted. We propose to watch the difference between
two samples of the error signal, and to suddenly open the
loop bandwidth and re-initialize the algorithm if this value

is greater than the predicted 4-sigma value of the noise on
the error signal. In practical, the lower bound of the loop
bandwidth is a function of the level of the phase noise of
the NCOs. At low dynamics, the FAB algorithm provides
low optimal loop bandwidth that could be under the lower
bound if the NCOs are not good. In this case, the loop
could not be set at its optimal values. As a conclusion, the
different steps in one iteration of the FAB algorithm are:
1) To estimate the variance and the mean values of the
observable error signal at the input of the loop filter; 2) To
build the optimization function f(p); 3) To find its greater
zero in the stability range with the Newton-Raphson
method; 4) To smooth the optimal solution not to have
undesirable peaks; 5) To update the loop filter coefficients
with the appropriate expressions (as it was shown in (5))
as a function of the optimal pole. Finally, the code delay
or carrier phase measurement must be corrected by the
estimation of the steady state error to cancel the bias due
to dynamics.

DESCRIPTION OF THE SIMULATED SCENARIO

Our objective was to create a high dynamics signal
configuration. The highest dynamics situation is obtained
in the case of the transmission channel between a
pseudolite and a low earth orbit spaceborne receiver. In
our case, we have simulated a LEO satellite that stands at
a constant altitude of 2000km above the equator (figure
3). The direction of rotation of the satellite is opposite
with the one of the Earth. The pseudolite stands at 0° of
longitude and latitude. The GSS 2760 GPS signal
simulator provides GPS signal. The resulting LOS
acceleration is plotted on figure 4.

(27)

(32)

(33)

(34)

2000km
Earth

Pseudolite
Spaceborne receiver

Figure 3: Simulated scenario
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(30)

(31)
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RESULTS OF MEASUREMENTS

We use the Gec-Plessey GPS Builder receiver to test our
algorithm. The 2.5g maximal LOS acceleration of the
scenario is to small to become a problem for the DLL. So
we decided to implement our algorithm just in the PLL.
There are only Frequency Lock Loops (FLL) in the
original source code of GPS Builder, so we had to
implement PLL. As the power of the received signal is
proportional with the distance between the receiver and
the transmitter, the upper bound of C/N0 is obtained when
the receiver is just above the pseudolite. Moreover, the
LOS acceleration is also maximal at the same instant.

That’s the reason why we choose to implement a second
order FAB PLL. We know that for second order loops, the
bias on the phase measurements is proportional with the
LOS acceleration. It means that the noise will be low
powered when we need to open the loop bandwidth to
track high acceleration and that acceleration will be low
when the noise is powerful. This results on a good

compromise between the real-time loop bandwidth and the
level of the noise on the received signal.

Let’s first see the estimated parameters computed by
observing the error signal provided by the phase
discriminator. Figure 5 shown the estimated variance of
the equivalent phase noise as defined on equation (13).
For convenience, we have computed the equivalent C/N0

from equation (13) as shown on figure 6. The step of
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power at the beginning of the curves is due to the fact that
we have enhanced the power of the signal to be sure to
well acquire the signal. After the acquisition, the power
was decreased and the evolution of the C/N0 was only du
to the evolution of the range between transmitter and
receiver. Figure 7 shows the evolution of the estimated
LOS acceleration. Note that estimated LOS acceleration is
very close to the real one shown on figure 4.

From the estimated parameters of the signal, the FAB
algorithm has adapted the loop bandwidth in real-time as

it is shown on figure 8. The initial loop bandwidth has
been set to 20Hz. When the FAB algorithm has been turn
on, the bandwidth has quickly converge toward its
minimal value (sets to 5Hz) because of the low dynamics
at the beginning of the run. After that, the algorithm has
opened the loop when dynamics increased, and closed it
when dynamics decreased. Figure 9 shows the evolution
of the error signal at the output of the discriminator. We
have implemented an ARCTAN 4-Quadrants
discriminator in our PLL. The lock range of this
discriminator is in the range of –pi to pi. We have limited

it in the range of –3 to 3 radians in the algorithm to
decrease the probability of loss of lock. As it has been
predicted by the theory, optimal loop bandwidth provided
by the FAB algorithm results in an error signal composed

of bias plus noise that stays always in the lock range of the
loop.

To compare the theoretical power of the thermal noise on
the phase measurements of the FAB PLL with a reference
PLL with a fixed bandwidth of B  Hz, it is necessary to
remind the expression of this error power. This expression
for a B  Hz PLL is
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Consequently, the rate between the thermal noise on phase
measurements of a B Hz reference PLL and the FAB PLL
is

FABPLLFABPLL

BHzPLL
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We have plotted this rate for a reference PLL with a fixed
bandwidth of 20Hz on figure 10. We can see that the
power of the thermal noise error in the FAB PLL is 3
times lower than in the 20Hz PLL much more than 50% of
the time.

CONCLUSION

This implementation of the FAB algorithm in a real GPS
receiver has shown that this method is operational in a real
case context. The results of the test have shown that the
algorithm provides an efficiency solution to track high
dynamics signals with a low power of noise on the phase
measurements, especially if high dynamics occurs not any
time.
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