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ABSTRACT

The purpose of this paper is to present a new systematic,
low cost and real-time adaptive algorithm to automatically
set the loop filters parameters of the phase lock loops or
delay lock loops used in synchronization systems like
GPS. The aim of this method is to compute the loop filter
coefficients which minimize the power of the thermal
noise within the total tracking error, to improve the
pseudorange measurements accuracy on each locked
channel. Method is based on real-time estimations of the
dynamics and signal-to-noise ratio of the incoming
signals, which are used to compute the better compromise
between the equivalent noise bandwidth and the steady
state error factor of the loops. Estimates of signal
parameters are obtained in real-time from observations of
the error signal delivered by the dicriminator. From these
estimates and from the knowledge of the equivalent linear
model of the loop, an optimization function is built that
gives the pole position of the loop transfer function that
minimizes the equivalent noise bandwidth keeping a fixed
probability that the error signal becomes greater than the
lock threshold. This solution is evaluated by an iterative
method with an update rate of 50 Hz or less, depending on
the velocity of the variation of the dynamics and on the
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hardware constraints. The Fast Adaptive Bandwidth Lock
Loop (FAB-LL) results in a real-time optimal use of the
loops because it minimizes the power of the pseudorange
measurement thermal noise with respect to the imposed
error due to dynamics. Practical and theoretical
approaches have shown the method is operational and
robust.

INTRODUCTION

In radio navigation and localization systems, the technique
to compute the position of a user is based on pseudorange
measurements between several transmitters and the
receiver. The receiver has to synchronize its own local
replicas with the incoming signals to extract the
navigation data and to perform the measurements. The
most popular way to synchronize and to extract
information from signals mixed with a carrier and pseudo-
random binary sequences (PRN codes) in a noisy
transmission channel context, is to use the common Phase
and Delay Lock Loops (PLL and DLL) tracking systems.
The most present sources of PLL and DLL
synchronization error are the thermal noise, which is
proportional to the Equivalent Noise Bandwidth (ENB)
and is due to the noise on the transmission channel, and
the dynamic stress error, which is conversely proportional
to the ENB (see [1]). As these two error sources are
conversely proportional, the common method to choose
the ENB of the loop is to consider the worst cases of
Signal-to-Noise Ratio (SNR) and dynamic of the
incoming signal. This results in a sub-optimal use of the
loops during periods where the dynamic is not maximal.
The proposed algorithm adapts the ENB of the loop with
respect to the real-time dynamic of the signal.

The first part of the paper describes a linearized model for
common loops with integrate and dump predetection
filters and provides the true analytic expressions of the
synchronization error as a function of the poles of the
transfer function of the loop. We derived from these
expressions the Fast Adaptive Bandwidth (FAB)
algorithm, which provided an optimal solution to adapt the
loops to the signal as it is exposed in the second part of the
paper. The last part deals with results of an initial
implementation of the algorithm on a real GPS receiver.



I. LINEARIZED LOOPS MODELS

This section is divided in two parts. The first part deals
with the linearized PLL model, and the second deals with
the DLL model. Let’s now consider the case of the PLL.
LINDSEY and CHIE have derived digital linearized

discriminator Loop
nondinearity filter

buit) BN He(”) a() }_. FQ)

Bour(n NCO
OUT( ) model

1-77

Figure 1.1: Model of a digital PLL from LINDSEY and CHIE

models of various phase lock loops in [2]. The generic
model is given in figure 1.1. This model doesn’t take into
account of the effect of the predetection filters on the loop.
As it is shown in figure 1.2, the predetection filters are
included in the feedback arm and they must not be ignored
if the loop is set for high dynamics. Then we have

us(n) Predetection Sip(n)
Filter
H(2)
sin(our(n))
Ad(n).Sin(@n(n)) Numerically Loop e(n)
Controlled |« Filter
Oscillator E(z)
Cos(Pour(n))
Predetection
Filter
uz(n) H(z) Sio(n)
Figure 1.2: Digital Costas type PLL

developed an extension to the generic model that includes
the effects of predetection filters. If we derive the error
signal of the Costas loop discriminator of figure 1.2, we
obtain:

Discriminator

Predetection
filter
H@)

q>u\l(r')

e(n)

Loop filter|

NCO@) |« o[

Figure 1.3: Generic linearized loop model with predetection filter

e(n) = S;p (N)-S,q (n) = (U, (M) Th(n)).(u, (MIh(n))

with
u (n) = Ad(n).Sin(g,y (n)).Sin(@oyr (M) @
= W[COS@) w (M) =@our (N)) = Cos(@ y (N) +Bor (N))]
u,(n) = Ad(n).Sin(¢,, (n)).Cos(¢oyr (N)) -
Ad

D[S0 (1) ~Bour (M) SIn(B 3 )+ G ()]

where d(n) is the sampled data. Suppose that the
predetection filter suppresses the double frequency
components and that the difference between the local
phase and the received phase is small, then the cosine term
is equivalent to 1 and the sine term is equivalent to the
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difference between the two phases. Under these
assumptions, we can rewrite the in-phase and in-
quadrature signals Sp(n) and S,g(n) as:

S (1) = 20 Cos(@, (1)~ e () TR
4
_ Adz(n) Chn) = /shdz(n)‘H(z)‘z_1 i} HD.Agd(n) 4)
S10(1) =2V Sin@ (1)~ Pour (M) R
(5)
= @ww ()= Pour (M) Ch(n)

As the incoming sampled data d(n) is theoretically a
succession of +1 and -1 values, the expression of the error
signal becomes:
H,.A?
4 (¢IN (n)_ ¢OUT (n)) Eh(n) (6)
The result of (6) shows that the real phase error between
the local and the incoming signals is filtered by the
predetection filter to form the error signal of the loop.
According to this, we can propose the generic linearized
loop model of figure 1.3. Most of receivers use integrate
and dump (1&D) predetection filters. These filters perform
an accumulation over a block of Np samples and output
the sum with a rate Np times slower than the input rate.
The length of the accumulation window Np corresponds to
the ratio between the sampling frequency and the
predetection bandwidth. This operation can be modeled in
time by

e(n) =

sum,, (k) = Npfu(k.Np -1-n) @)

=0

>

We can rewrite it as
Sumy, (k) = boxcary, (n) O u(n)

n=k.Np-1 (8)
where boxcar(n) is the box function defined as
0 if n<0 or n=Np

1 if 0s<ns<Np-1 ©)

and where the symbol [0 represents the convolution
operation. In conclusion, the 1&D predetection filtering is
equivalent to a convolution with the box function taken at
epoch k.Np-1. Applying the 1&D filter on the input signal
is therefore equivalent to filter, delay and under-sample by
Np as it is shown in figure 1.4. The under-sampling
operator is defined by

yunder—sampled (k) = y(n)|n=k.Np (10)

In real receivers, the command signal of the NCO is held
during all the predetection period. It means that we have
to model the holding operation to complete the loop
model. This operation can be modeled by an over-
sampling convoluted with a box function, using the basic
signal processing definition of the over-sampling that is

n
y —_

yover—sampled (n) = ( Np
0 otherwise (11)

This model is shown on figure 1.5. The inclusion of the
I&D predetection filter model (figure 1.4) and of the
holding operation model (figure 1.5) in the generic loop
model of figure 1.3 results, after simplifications shown in

boxcar,, (n) =

J if n=kNp (kON)



appendix A of section V, on the model shown on figure
1.6. This model can be split in two parts: an 1&D filtering
part and a closed loop part. The I&D filtering part
performs the accumulation over a block of Np samples of

Box filtering Delay Under-sampling
u(n) —z7Np ~ Sumnp(k)
— i z = » 77 > l Np L °
A

Figure 1.4: Model of the 1&D filter

the input phase, and the closed loop part is a well-known
linear feedback system that can be characterized by its
transfer function. Note that the closed loop part of the

Over-sampling Box filtering
u(k) N 1-z7N Ureta(N)
—> T p > - —»

Figure 1.5: Model of the holding operation

model differs from the model proposed by LINDSEY and
CHIE in [2] (as represented on figure 1.1): our model
includes an additional delay in the feedback arm that
models the effect of the predetection filters on the loop.
Now, we have to derive some interesting properties of the
model like the expressions of the transfer function, the
ENB and the steady state error as a function of the loop
filter parameters. From the scheme on figure 1.6, we can

18D filter
T Loopfiter ~ NCOmocel
l\b<¢|N(n)>KK% © .
) | 1-z27" 4 o 7
=y No > » O
e B ! +\J 1
y G
Np.fourfk)
<@i(n)> is the mean of E(n) over
the K" block of Np samples.
L <« Nl 7
Figure 1.6: Simplified digital model of the 1&D PLL

write the transfer function of the loop H(z) and the
transfer function of the observable error E(z) as a function
of the mean value over the k™ block of Np samples of the
real input phase define by

1 Np-1
<¢IN (n)>k :N7p Z¢IN (k.Np —1—n) (12)
n=0
These transfert functions are:

H(z)=TZ Pour (K) | _ _KD'Np-F(Z).Z_Z _(13)
(#u (), | 1-27+K; NpF(2).27

and
_ o1
E(z)=TZ e(k) |- _|1<D.Np.(l z ) .
<¢IN(n)>k 1-77+Ky.Np.F(2).2
Let’s model the transfer function F(z) of the loop filter as

N-2
db,.z™"

F(2) = W (15)

(14)

where {b,} are the coefficients of the filter, and N is the
order of the transfer function of the loop. Loop filter is an
N-2" order filter because of the presence of the additional
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unity delay in the feedback arm of the I1&D loop model of
figure 1.6. Transient behaviors are modified but steady
state behaviors are kept, as it will be shown later. It means
that you always need to use a 1% order loop filter to track a
2" order signal (constant phase acceleration produced by
a constant radial acceleration of the receiver). We obtain
the two transfer functions as a function of the loop filter
coefficients by inserting (15) in (13) and (14):

H(z)= n=0

and

E(z) = — (17)
L-2)"" + Ko Np. S b,z

Note that

E(z) =K,.Np.(L-H(2)) (18)
Note that the two transfer functions on (16) and (17) have
the same denominator of order N, so they also have the
same poles. Let’s note these N poles as {pn}n=1.n-
Furthermore and for greater convenience, we will denote
as K the constant product of the discriminator gain Kp
with the integration length of the predetection filters Np.
Then, equations (16) and (17) can be expressed as

Kf-27)"
E()=—y =) 19
[]4-p.2") -
d (according to (18
and (according to (18)) E) (20)

H(Z) :1_7

The relations between the poles and the coefficients of the
loop filter are obtained by identifying the denominators of
(17) and (19). We have derived this calculation and the
results for an N order loop are given in (21).

N N
Kby, =>"p,p, —Cii Kb ==>p,pp, +Ci;
k=1 k=1

12k |¢1<|
v (21)
i Kby, =(-1) l—l Py
where
cr=— M _and K=Kg.Np (22)

pt(n - p)!
Table 1 gives relations for useful orders. Note that the
identification of the first order terms in (17) and (19) gives

Loop filter | Loop Loop filter
order order coefficients
0 2 K.b, = p.p,
1 3 Kby =pip, +p.ps + PP -1
K.b, =-p,p,p;

Table 1: Relations between poles and loop filter coefficients for
2" and 3" order 1&D-PLL
a characteristic property between the poles of the transfer
function that is

N N-1
Zpk:N_lij :N_l_zpk (23)
k=1 k=1




It means that the number of free setting poles is the same
as the number of loop filter coefficients, which is N-1. We
have derived the ENB and the steady state error of this
linear system in the case of a setting of the N-1 poles as a
unique multiple pole of order N-1. So let’s define the
value p of this multiple pole as:

Py ‘k=l..,N—1 =P (24)
The value of the other pole is derived from (23), so
pw =(N -1)(L-p) (25)

With this setting, the transfer function of the observable
error is (from (24), (25) and (19)):
4N
E(z) = - Nli'(l_z ) . (26)
L-pz? )" - (N -2~ p)z?)
The stability of this system implies that its poles are in the
unity circle of the z-plane. So, the system is stable if

“l<p<d N -2 @7)
and A m<p<1
-1<(N-D(@-p)<1

The normalized equivalent noise bandwidth B, is usually
defined as:

[H@,
2

BL = (28)
where

2_ 1 1y 0z 29

H@): zqi‘le(z).H(z - (29)

To compute the ENB as a function of the multiple pole p
of the loop, it is better to compute B, as a function of the
squared norm of the error transfer function E(2).
According to (18) and (29), we have

2 _ K? : B 4 di
[E@, = 55§, @ HE@-A-HE™)- (0

As H(z) is a low-pass filter, we shown that

[E@, =K*.@+[H@;) (31)
and consequently (from (28) and (31)):
B, :1[E(22)z_1] (32)
2| K

Note that this bandwidth is normalized by the sample rate
of the loop. You have to multiply B, by the 50Hz
frequency to obtain the bandwidth in Hertz unit. The

Loop filter | Loop order HE(Z)HZ
order ’
0 2 o
2-p+2p°-p’
1 3 2K? (6p* -3p+1)
(p+1)’.(3-2p)(t-2p+2p?)

Table 2: Squared norm of the observable error transfer function
of an I&D PLL as a function of the multiple pole of the transfer
function.

squared norm of E(z) as a function of the multiple pole p
defined in (24) has been derived for several usual order
loops in table 2. The corresponding normalized loop
bandwidths have been plotted on figure 1.7. The
equivalent phase thermal noise at the input of a Costas
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loop is usually modeled (see [1]) by a white noise with a
power of

2 Fs Bp
= 1+
ablN 2 C 2 C (33)
7N . 7N .

where Fs is the sampling frequency. This expression is

0.3

I T
| [
| i

025 ————— ===k == - - === H—— ==
— 2nd order | |
| |
| |

|
| —— 3rd order
| —— 4thorder

0.2

0.15

normalized frequency

0.1

0.05

Figure 1.7: Normalized ENB of 1&D-PLL of order 2, 3 and 4

(in their stability range)

obtained by analyzing the effect of the noise in the
discriminator using the narrow-band noise decomposition
theory of RICE (see [1]), and is the power of the phase
thermal noise at the input of our model. The term in
bracket in (33) is due to the squaring losses. Then, the
noise at the input of the filter H(z) defined in (13) is the
mean value of the equivalent phase thermal noise as

defined in (12). Its power is then
2
2 _ Ub,N

U<bIN> - Np (34)
The ratio between the sampling frequency and the length
of the predetection window Np is exactly equal to the
predetection bandwidth (in Hertz unit) Bp. Then, the total
power of the thermal noise on the output phase of the

NCO is

2= P14 (inrad”) (35
JbOUT C/ 1 2(/ ( )
N, /N,

where By is the ENB in normalized frequency unit and B,
is the predetection bandwidth in Hertz unit. This result is
coherent with the usual expression of the total error power
due to thermal noise (cf [3] for example). Note that this
model of noise neglects the effect of the phase noise
produced by the NCO. In reality, the NCO phase noise
cannot be neglected if the loop has a very narrow
bandwidth. The steady state error depends on the order of
the loop and on the input phase of the signal. Suppose that
the phase of the baseband input signal is given by

00 n tITI

P (=20 — (36)
m=0 m:

where @{™ is the initial value of the m" derivative of the

input phase. Its sampled version is then

B ()= 94",

m

37)

ml.F"



where F; is the sampling frequency. As it is derived in
annex B of section V, the mean value over the k™ block of
Np sample of the input phase is

(B (M), = ;Aé )'ﬁ (38)

where Aém) is the equivalent initial value of the m"
derivative of the meaning input phase. It is also shown in

—— 2nd order |
—— 3rd order E
—— 4thorder |

4
10

[ e s (i

[
AT
[
[

TIm

steady state error factor (normalized by K)

T

Figure 1.8: Steady state error factor normalized by K of 1&D-PLL

of order 2, 3 and 4 (in their stability range), in the case of a
multiple pole of order N-1

annex B that A™ can be approximated by
(m)
(my ~ %o 39
AR >
p
Then, the steady state error of the system is given by this
particular property of the z-transform (see [4]):

E. =lim{z-0)E@TZ|g, )} )

&
E.= iﬁtip—l]{(z—l).E(z).Tz[km} (41)

If we derived (41) with the expression of E(z) for an N™
order loop given in (19), we find that the terms whose
order is smaller than N-1 are equal to zero (the error
converges towards zero), the ones whose order is greater
than N-1 tend towards infinity (the loop diverges), and the
term of order N-1 is a constant. It means that an N™ loop
can track an input phase of order N-1 with a steady state
error of

K.AND
E, =t (@2)

D(l-pn)

Let’s define the steady state error factor G as the ratio
between the steady state error E,, and the equivalent N-1"
derivative of the meaning input phase A{"™as

G = E\lm—l) = K (43)
mo)e-w)

The steady state error factor (SSEF) has been plotted on
figure 1.8 for several order loops in the case of the
multiple pole p of order N-1 defined in (24) and (25). Note
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that the ENB (figure 1.7) and the SSEF (figure 1.8) are
conversely proportional.

Let’s now introduce the second part of this section that
deals with the DLL model. The generic scheme of a DLL

"‘ me 1e)

A

C 3 . le(k)
)

T | W
=
28in(fon(n)  Early | Prompt| Late

K
‘ FromPLL ‘ Code generator }¢ Loop filter 4&{ Code discriminator
Fe)

o Cos(far()  Early | Prompt|  Late b4
e QW
»2

b4

éi )

§ o

Figure 1.9: Generic scheme of a DLL

Pn(n.Te-Ti) Sin(9(r)

is shown on figure 1.9. where

IL(k) = an(rw ~Tour _%)'COS(<¢IN (n)>k _¢OUT (k))

IE (k) = an (TIN “Tour +%)'COS(<¢IN (n)>k _¢OUT (k))
IP(k) = an (TIN ~Tour )'COS(<¢IN (n)>k - ¢OUT (k))
Q.(k) = an (TIN ~Tour _gj'Sin(<¢lN (n)>k ~Pour (k))

QE (k) :an(rw “Tour +%)-Sin(<¢w (n)>k _¢OUT (k))
Qp(k) = an (TIN ~Tour )'Sin(<¢IN (n)>k ~Pour (k))

and where d is the delay between the early and the late
channel, 7y is the delay of the input code, and 7oyt is the
delay of the prompt locally generated code. Note that
these expressions are only true if we consider that the
delay of the input code is relatively constant during the
predetection time interval. The code discriminator forms
the error signal by differencing early and late correlation
functions (see [3]). As an example, the coherent early
minus late discriminator is define as:
e(k) =(1c (k)= 1_(k))sign(1 )
Each discriminator has a linear range. For example, the
discrimination function of the early minus late is linear in
the range [-d/2, d/2]. In its linear range, the gain of this
discriminator is
_ =2
° Tc
where Tc is the duration of a code chip. In its linear range,
the DLL can be modeled as shown on figure 1.10. The
local code generator is modeled as a digital integrator as
the NCO in the case of the PLL (see [1]). As for the PLL,
we can derive the expressions of the transfer function, the
ENB and the steady state error of the loop as a function of
the loop filter. The transfer function of the loop is

_ Tz[rour (K)] _ Kp.F(2).2" (44)
H (Z) - - -1
Talr, (K] 1+(Kg .F(2)-1)2
The transfer function of the observable error is given by




= T - Kofozt) )
Tz[r, (k)] 1+(K,.F(z)-1)z™
Note that
H(z)=1-E@ (46)
KD
e(k)
K Loop filter
RO % )
Tour(K
our(k) Code generator
Zfl
1-z7
Figure 1.10: Linear model of a digital DLL

The transfer function F(z) of the loop filter of an N™ order
DLL is modeled as

N-1

Z_“bn.z'”

F(2) = W (47)

Then the transfer functions can be denote as a function of
the coefficients of the loop filter as

N-1

Kp. Y bz

H(z) = R (48)
A-zYN+K, D bz
k=0
and

_ -1\N

E(Z): KD(]' zZ ) (49)

N-1
A=z +Kp. D bz ™
k=0

Let’s note the N poles of these transfer functions as
{Pn}n=1.n- Then
Ky.(1-zH)"

- (1— pn.z‘l)

The relations between the poles of the transfer function
and the coefficients of the loop filter are obtained by
developing and identifying the denominators of (49) and
(50). Then, for an N" order DLL, these relations are

N N
Ko by :_z P +N; Kby :Z PP —Ciss (51)
k=1 k=1

12k

E(z) = (50)

N N
KD'bz :_Z P Py Py +Cf:-1;“'§KD-bN-1 :(_1)N'(l<_l Py _]J
k=1 _

where
n!
Cl=-—— (52)
p!(n - p)!
Table 3 gives relations for useful orders. Then, we have
derived expressions of the ENB and of the steady state
error of the DLL in the case of a setting of the N poles as a

unique multiple pole of order N. This pole is define as

Pe e =P (53)
Then, the stability of the system imposes that
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[p[<1 (54)
The ENB is defined in (28) and (29). The relation between
Loop filter Loop Loop filter
order order coefficients
0 1 Kb, =1-p,
1 2 K'bo :2_(p1+p2)
Kb, =p,p,-1
Table 3: Relations between poles and loop filter coefficients for
DLL of order 1 and 2

the squared norm of H(z) and E(z) in (32) is also true for
the DLL, with Kp instead of K. Computed results for "
and 2" order loops are given in table 4, and the
corresponding ENB are plotted on figure 1.11. The power
of the thermal noise tracking error is

g, =0, "B.Bp (55)
where By is the ENB in normalized frequency, Bp is the

Loop order HE(Z)HE
1 2K’
p+1

2 2K,*.(p +3)
(p+1)

Table 4: Squared norm of the observable error transfer function
of a DLL as a function of the multiple pole of the transfer

predetection bandwidth and o ?is the power of the

equivalent code phase thermal noise of the input signal of
the loop. As an example, this value is
»_ d
Ton =o€ (56)
Ny

for the coherent discriminator, Oy, 2 isiin squared units of

chips and the delay d between the early and late channels
is also in units of chips. This variance is converted in
squared seconds by multiplying its expression by the
squared duration of a chip. To derive the steady state
error, let’s consider that the input PRN code delay is
composed by the sum of different order components. So

00 tm
I ()= Zfém).—l (57)
m=0 m:

where r{mis the initial value of the m™ derivative of the

input code delay. Under the assumption that this delay is
relatively constant during the predetection period, its
sampled version at the output of the 1&D filters is then

T (k)= Aém)-% (58)
m=0 .

where A{™ is the equivalent m™ derivative coefficient of
the input code delay defined by

A = 7" (59)
B m
p
Then, the steady state error is done by
E.. =lim{(z-1)E(2)72[r,, ()} (60)
©



o p(m)
e, =3 S ime-ne@Tzhe} e

If we derived (61) with the expression of E(z) for an N
order loop given in (50), we find that the terms of (61)
whose order is smaller than N are equal to zero (the error

2 \ T 1 \
I Y —  1st
18F-——-————— ¥7: 7777777777 :74‘77777%— —— 2nd
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D
converges towards zero), the ones whose order is greater
than N tend towards infinity (the loop diverges), and the
term of order N is a constant. It means that an N™ order
loop can track an input code delay of order N with a
steady state error of

Ko A"
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As for the PLL, we can define the steady state error factor
G of the DLL as the ratio between the steady state error
value by the equivalent N™ derivative of the input code
delay, so

B __ K

A ﬁ(l-pn)

n=1
The SSEF has been plotted on figure 1.12 for several order
loops in the case of the multiple pole p of order N defined
in (53).

(63)
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Il. FAST ADAPTIVE BANDWIDTH LOCK LOOP
ALGORITHM

In this section, we describe how the FAB algorithm
computes a real-time optimal solution for the parameters
of the loop. Note that this theory is just as valid for the
PLL as for the DLL by substituting the appropriate model
described in section | in the following development. The
aim of the FAB algorithm is to compute in real-time the
optimal multiple pole of the transfer function of the loop
that minimizes the thermal noise on the measurements by
taking account of the steady state error due to dynamic.
Let's consider the observable error signal e(k) at the output
of the discriminator. Assuming that the main sources of
error are the thermal noise and the steady state error, we
can model e(k) as the sum of these two contributions:

e(k) =b(k) + E, (k) (64)
where b(k) is a zero mean value gaussian noise with a
standard deviation g, of

o, =\[E@p)[; o, (65)

where E(z,p) is the transfer function of the observable
error as defined in section | by (14) for the PLL and by
(44) for the DLL, and where 0 is the standard deviation
of the equivalent gaussian carrier phase or code delay
thermal noise at the input of the loop, as also defined in
section | by (33) for the PLL and by (56) for the DLL.
E.(K) is the steady state error at epoch k, and

E.. (k) = Ay (k).G(p) (66)
where A(K) is the N-1™ derivative of the equivalent input
carrier phase (see (39)) or the N™ derivative of the
equivalent input code delay (see (59)) and G(p) is the
steady state error factor (SSEF) as defined in chapter 1.
The error signal is then a gaussian noise with an
instantaneous mean value of E.(k) and a standard
deviation of g,. To perform good pseudorange or carrier
phase measurements, it is better to minimize the power of
the random part of the error. But minimizing the power of
the random part of the error results in an increasing of its
mean value because the squared norm of E(z,p) and the
ENB are conversely proportional with the SSEF as it was
shown in section I. Moreover, we must be careful that the
error signal doesn’t leave the lock range of the
discriminator. This lock range depends on the
discriminator used in the loop. Let’s note the lock range of
the discriminator as

Lock Range = [-Ly, L]
and let’s fixe the probability P, that the error signal takes
values outside the lock range as

Po = prob Je(K)| = L] (67)
As the statistic law of the error signal is gaussian, then
(67) is equivalent to

Po = prob[ [e(k)| 2 [Ex(K)| +a.0p ] (68)
where a is a function of Py, E(k) and g, and is defined by
o 1 _(xEa|f
@ % dx=P
J-Ew+a‘ab 0[1\/51 ’ (69)

For example, if we take a equal to 1, then (69) gives a
probability P, that the error signal be out of the lock range



of 0.16, if a equal 2 then the probability is 0.02, and if a
equal 3 the probability will be 0.001. Then, from (67) and
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Figure 11.1: Optimal loop bandwidth as a function of the LOS
acceleration for several C/Ny (@), and as a function of the
CIN,_for several LOS accelerations (b) for an unaided 2™

ol ..—I-. m:..-...- 1 4-. ImYIN | |.“:+L\ > NDNwrac Aat. tion
(68), the optimal setting is obtained if
[Ea(K)| +a.0, =L (70)

This optimal condition can be written in function of the
poles of the transfer function of the loop by inserting (65)
and (66) in (70) as

AW (K).G(p)|+ay|[E@ )i 0 =Ly (TD)

Finally, the optimal multiple pole of the transfer function
that minimizes the power of the thermal noise on the
measurements is a solution of the equation

f(p)=0 (72)

£(p) =|An (K).G(P)|+a|E@ P)[;-T ~ L (73)

Moreover, as the ENB and the squared norm of E(z) are
conversely proportional with the pole (see figures 1.7, 1.8,
1.11 and 1.12), the solution that minimizes the ENB is the
largest solution of (72) with the constraint that it stays in
the stability range of the loop given in (27) for the PLL
and in (54) for the DLL. When the loop is set with its
optimal pole, the power of the random true error on the
carrier phase or code delay measurements is minimized
and

with
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2
0y,," =Bp|H(z Po)|, 0’ =2Bp.Bl,_ 0.7 (74)
Optimal loop bandwidth has been plotted on figure I1.1 as
a function of the line of sight (LOS) acceleration and as a
function of the C/N, ratio for the 2" order DLL which is
describe in the legend of the figure. It is necessary to
estimate the two parameters Jeqz and An(k) to build the
function f(p). These estimations can be obtained by
observing the observable error signal e(k). Its mean value
divided by the SSEF at epoch k gives An(k) according to
(66), and its variance divided by the squared norm of E(z)
gives Jeqz according to (65). An easy and low cost method
to estimate the mean value £(k) and the variance g.2(k) of
e(k) at epoch k is to use two low-pass filters of order 1
defined by
1, (k) =(1-b).e(k) +b.4, (k ~1) (75)
and
0.’ (k) =(1-b).(e(k) - 4, (k))* +b.o,*(k 1) (76)
where b sets the time constant and the bandwidth of the
low-pass filters. For information, the time of convergence
(normalized by the sampling period) toward 95% of a
constant input is
I In(0.05)
95% In(b) (77)

Then we can construct the function f(p) and compute the
optimal solution. To find the optimal zero of f(p), we
propose to use the iterative method of Newton-Raphson.
An iteration is given by

F(Pop(K))

popt(k +1) = popt(k) - f.(p (k))

It is necessary to initialize the optimal pole value near to
1, which is the upper bound of the stability range of the
loops, to find the largest stable solution. This method has
good properties of convergence and is able to track the
optimal solution even if the parameters of dynamic and
noise are variable in time. As an illustration, results on
figure 1.1 have been computed by sweeping the LOS
acceleration in (a) or the C/NO in (b) over 100 iterations of
(78). The function f(p) and its derivative have been built at
each iteration with the new parameters values, and then
the new optimal solution has been updated with respect to
(78). In the FAB loop, the optimal solution is updated at
the rate of the loop, which corresponds to 50Hz in general.
But if the parameters have slow variations, the update of
the optimal solution can be done at a lower rate to
decrease the calculation cost of the processor in the
receiver. Note that the resulting transfer function of the
FAB loop is variable with time because of the variability
of its poles. E.I. JURY has shown in [4] that if the poles
are not enough slowly variable, then the filter can produce
important peak values in the time domain. In the FAB
loop, these undesirable peaks could cause the error signal
to be out of the lock range. For this reason, it is necessary
to smooth the optimal pole of the FAB loop by a low-pass
filter before updating the loop filter coefficients. In the
case of quick rise of the dynamics, the time constant of the
algorithm doesn’t open the effective bandwidth of the
loop as fast. As a consequence, a detection system has to

(78)



be inserted. We propose to watch the mean plus 3 sigma
value of the error signal, which is the value of f(p) minus
Ly, at the effective pole, and to suddenly open the loop
bandwidth and re-initialize the algorithm if this value is
greater than the upper bound of the lock range. In
practical, the lower bound of the loop bandwidth is a
function of the level of the phase noise of the NCOs. At
low dynamics, the FAB algorithm provides low optimal
loop bandwidth that could be under the lower bound if the
NCOs are not good. In this case, the loop could not be set
at its optimal values. As a conclusion, the different steps
in one iteration of the FAB algorithm are: 1) To estimate
the variance and the mean values of the observable error
signal at the input of the loop filter as defined in (75) and
(76); 2) To build the optimization function f(p) defined in
(73) with the appropriate expressions defined in section I;
3) To find its greater zero in the stability range with the
Newton-Raphson method as defined in (78); 4) To smooth
the optimal solution not to have undesirable peaks; 5) To
update the loop filter coefficients with the appropriate
expressions (as it was shown in section 1) as a function of
the optimal pole. Finally, the code delay or carrier phase
measurement must be corrected by the estimation of the
steady state error to cancel the bias due to dynamic.

I1l. RESULTS OF THE IMPLEMENTATION
A FAB loop has been implemented on a channel of the

GEC-PLESSEY GPS-BUILDER. The GPS-BUILDER
board is plugged on the PCI bus of a PC computer. The

12

|
|
|
| | |
0 400 600 800 1000 120

alanced time (in )

board performs the frequency down conversions of the
received HF signal, the analog to digital conversion, and
the mixing with a local in-phase and in-quadrature carrier
and a local prompt and delayed code for 12 channels. The
computer receives all these outputs integrated over 1ms,
treats it and drives the NCOs and the local code
generators. We have inserted our algorithm in the C code
source of the software provided with the board. The signal
has been simulated with the GLOBAL SIMULATION
SYSTEMS 2760 GPS signal simulator. We have built an
unaided second order FAB-DLL to support dynamics of
order 2. The acceleration of the simulated vehicle has
been set to 1g during 600s and to a small value from 600s
till the end. The resultant LOS acceleration on the
considered channel is plotted on figure I11.1. The C/Ny is
over 45dB.Hz. The real-time FAB loop bandwidth is
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plotted on figure 111.2. The initial loop bandwidth has been
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set to 1.7 Hz. Note that the time of convergence is over
60s due to the convergence of the estimators and to the
smoothing of the optimal solution. After the convergence
step, algorithm tracks the evolution of the acceleration and
provides real-time optimal loop bandwidth.

IV. CONCLUSION

This paper has proposed a new systematic method to
minimize the thermal noise error on code delay and carrier
phase measurements using the FAB lock loops. Its
robustness, which is due to a precise analytic study of the
models of the loops, has been shown by a real initial
implementation. As it depends on the variability of the
signal parameters, various tests are actually performed to
evaluate the efficiency of the algorithm on several realistic
scenarios. Finally, the method is limited by the quality of
the signals provided by the NCOs of the receiver, which
fixes the lower bound of the loop bandwidth at low
dynamics.

V. APPENDIX

A- Simplification of the linear model of an 1&D-PLL
The inclusion of the I&D predetection filter model (figure

18D filter
Ko

dn(n) + £(n) 1-z7% . gmUOh(n)= = x(k.

N C e - (n)Eh(n)=x(n) e(k)—x(kNp)

dour(n) Loop
HE@ filter

1-27" rp ‘
1-z7 \—‘ dourkk)

Over-sampling and holding operator

Figure V.1: I&D-PLL digital linear model

1.4) and of the holding operation model (figure 1.5) in the
generic loop model of figure 1.3 provides the model
shown on figure V.1. We will show that it is possible to
simplify this multi-rate model. Let’s write the error signal
e(k) with respect to ¢n(n) and §oyr(n):



e(k) = x(M)lh=knp = E(M)TNM) In=kcnp (79)
& e(K) = Kn.[ (9(N)I(n) Jheicnp = ( s(M)ON(M) lncicn |
where Ky, is the gain of the discriminator and

h(n) =TZ 1{1'ZT W} (80)
1-z

According to (79), the digital linear model of the loop on
figure V.1 is equivalent to the one that is showing on
figure V.2. Finally, the branch between labels A and B in
figure V.2 can be simplified as it is shown on figure V.3.
We finally obtained the simplified digital linear model of
the 1&D-PLL (shown on figure 1.6) by inserting the
simplification of figure V.3 in figure V.2.

dw()Oh(n) K e(k)
D

dourk)
Figure V.2: First simplification of the I&D-PLL model

B- Calculation of the mean value over blocks of Np
samples of the input phase

As an example, let’s consider an input phase of order 2.
So

P ()= Z¢<m>-t (81)
The sampled version of (81) is
P (n) = Z¢‘”‘)- s (82)

where Fs is the sampling frequency. Then, the mean value
over the k™ block of Np samples of the input phase is

(@ (M), Z¢‘""-< > (83)
with
") =N (8)

The computation of (84) for the 3 terms of (83) results in

1
n’) =L(n") =k.Np-=(Np+1
(), =x(r), =kNo~3(p+1) o
<n2> =k?.Np? - k.Np(Np +1) + Np l\;p+%
As the length of the accumulation wmdow Np is the ratio
between the sampling frequency Fs and the predection
bandwidth By, insertion of equations of system (85) in

(82) results in
2 n km
(Pw (), =2 A7 (36)

where A,™ is defined as the equivalent initial value of the
m™ derivative of the meaning input phase and
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Figure V.3: Simplification of the feedback arm

If we consider that the rate Np between the sample
frequency and the predetection bandwidth is larger than 1,
then the system (87) can be approximated by

(0) (0) ¢él) (gZ)

= -0 4

AO ¢0 ZBp 6Bp2

N P
M e, e e

Finally, as the predetection bandwidth is greater than 1,
we can approximate the equivalent initial value of the m™
derivative of the meaning input phase by

(m)
(m) ~ ¢0 (89)
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