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Abstract

GPS by itself is unsatisfactory as a sole means of navigation
for civil aviation users. ‘Receiver Autonomous Integrity
Monitoring’ (RAIM) has been proposed whereby a receiver
makes use of redundant satellite information to check the
integrity of the navigation solution. Two types of algorithms
can provide RAIM function: the currently used snapshot
methods only process the current measurements and the
sequential ones process all past and current measurements.
The principal limitation of snapshot RAIM is its availability.
Indeed, for a Non-Precision Approach (NPA) phase of
flight, there are periods when the five satellites (with
sufficiently good geometry) required for fault detection are
not available; these periods sometimes last more than 10
minutes. As well, the fault detection and exclusion function
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can be unavailable for more than an hour. Use of sequential
algorithm will with no doubt improve this situation but will
probably not be sufficient to allow GPS to meet Civil
Aviation requirements. As a solution, an attempt could be
made to hybridize GPS with an Inertial Navigation System
(INS). Two solutions for hybridization are considered. The
simplest solution is to use the INS as a primary system of
navigation and to update it periodically with the GPS
solution. The GPS position must then be carefully monitored
by a sequential algorithm that tests the least squares residuals
of the GPS solution. The integrity of the INS must then be
monitored by another algorithm. The other solution is to
hybridize more finely the two systems by using a bank of
Kalman filters that take into account all the measurements
from GPS satellites and INS. Then a sequential algorithm
will try to detect and isolate any fanlty GPS channel or INS
Sensor.

L System performance requirements

For the civil aviation application, major problems of the
existing systems consist in their lack of accuracy and
integrity and their vulnerability in presence of multipath or
jamming. The Required Navigation Performance (RNP)
concept has been defined by the Intemnational Civil Aviation
Organization (ICAO) to specify performances to be
respected by a universal civil navigation system. The
proposed requirements on continuity and integrity for
different phases of flight are given for the total system in
table (1). For RNP 0.5 to 0.3/125 the outer containment limit
is twice the 95 % accuracy value and assumes a probability
of 10°® per hour that the aircraft will exceed the containment
limit.

RNP Type | Containment

TSE 95% | limit Continuity Integrity
Lat/vert Lat/vert

0.5NM 1NM 1-10*/h 1-10°/h
0.3NM 0.6 NM 1-10*/h 1-10°/h
03NM/ [0.6NM/ 1-104/h 1-10”/h
1251t 250 fi

Table (1): Total system performance requirements for
approach, landing and departure operations (see [ICAO97]).



II. Loosely Coupled GPS/INS

An INS that has not been calibrated in flight by GPS has a
specification of 2NM/h (2dRMS) [ARINC 704-6]. It would
therefore not be capable to meet the NPA accuracy
requirement during the integrity outage periods. On the other
hand, calibration of INS with GPS dramatically increases its
performance; but the problem is that a soft GPS failure can
contaminate the integrated GPS/INS solution before the
failure is detected. Because of this, if the GPS becomes
unavailable due to a failure that could not be isolated, both
the INS and GPS would become unavailable. By using
sequential algorithms such as CUSUM (Cumulative SUM,
see [1,2,3,4,5]) rather than conventional snapshot methods to
check the integrity of GPS, a hybrid GPS/INS receiver can
detect a soft bias range error of one of the satellites. If the
faulty GPS channel is isolated then it should be eliminated
from the navigation solution, if the channel isolation step is
failed, then the integrity algorithm disable the INS updating
with GPS.

A. hybridization scheme

We define the INS periodically calibrated by GPS as the
primary navigation system. Three tuning parameters can be
introduced :

AT, period between calibrations of the INS under

normal conditions

Teaubraion - delay to apply to the GPS solution before it can
be used for INS calibration

Tns delay since the last calibration before INS would

become unusable for the current phase of flight.
(when the position given by INS is outside the
Horizontal Protection Level or HPL)

It should be noted that A7, will essentially depend on
computing facilities. Ideally, this parameter would be equal
to zero but INS calibration needs a lot of calculation.
Furthermore, the GPS solution must be delayed by %ismmon
before being used to calibrate INS. Indeed we have to be
sure that GPS based position and velocity are not infected by
a failure before we can use them. Figure (1) shows how GPS
and INS information will be mixed in our hybridization
scheme. Several instants and delays involved in this scheme
under the hypotheses of a failure are defined below.

Traiture instant of the failure

Tpesection © instant of the detection of the failure

TDetection - delay for detection

Tsodasion- instant of the isolation of the faulty satellite

Tisolation © delay for isolation

TE yovaion :  instant of the calibration of INS with delayed
GPS position and velocity before the failure

TEH, won:  instant of the calibration of INS with delayed
GPS position and velocity after the failure

Tins: instant when INS solution errors would
become too large for being used for the
current phase of flight.
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Al Tyolesm : Re-configuraion (Bxclusion of the faulty sateliite)

Y= Least Square Residues
G= Direction cosine matrix

-

GPS FALLT DETECTION
and AND EXCLUSION
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figure (1):  hybridization scheme

Let us suppose that a failure occurs at time Ty, and is
detected at time Tpeeon If the failure is also isolated ie.
Tpesection = Tisoiamion, there is no need to disable the calibration
since GPS has already been reconfigured. If not, INS
calibration will be disabled at time 7p.pi. until the faulty
satellite is isolated at time Ty, Then, in order to be sure
that a new failure will not appear, the next calibration can
only be made after the necessary delay %aismion-

E 3

g .. Containment Li "“‘06"“’/
% 7 Detection T T cutibration P i
% TCalibration ij——— Joolation ’.*—!'4/ :
c X ' H + i
E o a e
3 P b i i

2 PG C R

B P e e
i];,;imesmuon T}Jalatlon :
‘ Tins i

INS error position in case of a failure

figure (2):
1. Temporal considerations
1. Inordertoavoid contamination of the INS solution, the

GPS delayed solution used at time T2, ..., to calibrate the
INS must be taken before the instant failure. This gives the

condition: T&,,.,,,,,,,,,, = T catisration < Traiture (1)

2. At the instant of detection Tpeecion , INS calibration
must be disabled until the faulty satellite is isolated. Then,
after the necessary delay - upmion » @ New calibration can

take place: T peection — AT < TCkalibmlinn < Tpesection (2)

k+l
Taisration = Tisotation + Tcatibration (3)



3. INS solution errors increase with time, so we shall
ensure that a new calibration happens before INS would
become unusable for the current phase of flight. This gives

the condition: T3 huion < Tivs (4)
4. There are some obvious relations between the different
instants and delays:
Tpetection = Tratture + T petection
T sotation = Trature T tsotation
Testoration = Thotasion *+ T Catbration &)
= Tratture & T1solation + Tcatibration
Tins = Tetioration = Fcaiibration + ins

Using equations (2), (3) and (5), we can show that, to satisfy
inequalities (1) and (4), it is sufficient to have the following
inequalities verified:

Tatibration > T Detection (0)

27 catipration + ATe + T psotation — T petection < Tans (1)

AS Thueion 1S Necessarily positive, we can bound it by zero.
Hence, to satisfy (7) it is sufficient to have:

2% casisration + AT¢ + Tisotation < Tins (8)
2.  Statistical consideration

Let us now suppose that Zpeecion AN Ty  are gaussian
variables with means and variances:

€

E(T perection) = T petection { E(T sosaiion) = T tsotation
Var(t peecion) = ©. szma'on Var(% i) = © lz.valalian

Then, in accordance with the normal distribution, if we want
to satisfy (8) with a given probability p1;, we shall choose:

s > Ao +2Tp0ion +2€(P01)O Desection a3)

+ Tisotation + A(P13)-0 1eotaiion

Tcatibration = { T:P(TDelection Zt)=1—-p” } (10)

= Tpesection + C(P11)-C Detection

a(p)=4a: eldx=1-p
where (p) { J«/er } (11

=2 xerf72p-1
For RNP 0.3, integrity must be equal to 1-10° /h or
equivalently 1-2,78x10° /s, so p;; should be fixed to this
value. This gives the value oup,;) =543 .
ONCe Tabraion 1S fixed, inequality (13) still must be verified
with a given probability p3. Therefore, the performance of

the INS must be good enough to have the following
inequality verified:

Tins > 2% Calibrasion + AT + { T: P (lewaou = T)= Pui }

> 2% catibration + AT¢ + Trsotaion + A(P13)-0 tsotation

(12)

By replacing aibraion With T peseciion + @ (P11)-O petection WE
obtain the following requirement for 7y :
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So as to ensure integrity of the GPS solution, p,; should also
be fixed to 1-10° /h.

3.  Geometrical consideration:

Delays for detection and isolation strongly vary depending
on the geometry of the GPS constellation and on which
satellite is faulty. So, at a each instant, we must consider the
satellite failure which gives the greater mean detection
delays for detection and isolation. Let us introduce these
values:

T, . worst case mean detection delay for a given
geometry (at a given instant)

F:___: worst case mean isolation delay for a given
geometry

o : worst case standard deviation of the detection delay
for a given geometry

o : worst case standard deviation of the isolation delay
for a given geometry.

So, finally, we can define a minimum allowable value for
s (Tons > Tonia):

Tain = ATe + 2 pesecion + 20(P1 )0 Deection

+ Treation + E(P13)O togiton

It shall be noticed that the period of calibration AT, is
flexible and can be adjusted with the geometry.

(14)

4.  Final requirement for INS performances

The aim of this paper is to define the minimal INS
performances needed to always satisfy the inequality

Tins > Tumim - 1Then, as GPS constellation has a 24 hours-
periodicity, this hybridization scheme will function only if

o is larger than 7, = sup{z,. ()}
24h

Of course, 75 Wwill strongly depend on the accuracy and on
the desired integrity of the GPS position and velocity that are
used for calibration. This will result on a compromise :

e On one hand, the less the minimum detectable failure
magnitude is, the more accurate will be the solution, and as a

consequence the larger will be 7y . Indeed, the accuracy of
the INS depends on its initial state, namely the GPS solution
used for calibration.

o On the other hand, the less the minimum detectable

magnitude failure is, the greater will be ., . Indeed, the
detection and isolation delays are all the more larger that the
magnitude of the failure is small.




B. Hypothesis for GPS
1.  GPS regression model

The GPS navigation system follows the regression model
with additive changes in case of failure :

W’ = PRytred ~ PRevimaed = GF X, +b +T7

15)
W = PRR\uurea — PRRgy, =GV, +b +T

where if ¢ is the current time and n the number of visible
satellites, .X,” is the user’s position and clock bias, ¥, is
the user’s velocity and clock drift, PRyeaured a0d PRegimcted
are the nx1 vectors of the pseudo-range measurements and

estimates at time t, PRR) tared AMd PRREyimgeq are the nx1
vector of the pseudo-range rate measurements and estimates

attime t, GF and G are nx4 direction-cosine matrices for
position and velocity, 57 and b, are signal perturbations
and finally, I’/ and T are additive changes corresponding
to failure modes.

The least square residuals ¥,” and Y,” are obtained by:

HP =1-GP (G 6Py G’
YP =H?w*
4 ‘ r ; (16)

H' =I1-G(G!'G))'G,

Y =H/w
The fanlt detection and the fault detection and exclusion
algorithms will test Y” to verify integrity of the GPS
position and Y" to verify integrity of the GPS velocity.

2.  GPS error model

GPS without Selective Availability or Wide Area DGPS
(WAAS or EGNOS):

In this model, the GPS range and range-rate measurements
are normally distributed:

Var(b?) = o‘”zI,,
Var(p!)=0"1,

E®?)=0=(6 .. 6,),
E(btv) =0,

with o? = 4m, @, ranging uniformly from —Im to Im
[NAV8S], and &” = 0.01m/s [ION89].

As is described in [RTCA/DO-229), the following model is
applied to simulate Selective Availability:

b? =gm! +0
= (gm,"(l) gm,"(n))’ +(9, 0,,)T an
btv = gm’v

—(gm@) . em()

where (gm," @) gm (l)) is a second order Gauss-Markov
process with an auto-correlation time of 118 seconds and
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standard deviations of o P = 23m for ranges and o v =
0.28m/s for range-rates. & is a random constant normally
distributed with a mean of zero and a standard deviation of
23 m.

C. Hypotheses for INS

Following [ARINC 704-6], the INS have a specification of
2NM/h (2dRMS); but, in this scheme, we are more
interested in the short term accuracy of the INS delivered
position. Figure (3) shows the growth of the 95% and the
99.9% integrity limits for a generic inertial system. These
curves are best case and only take account of velocity error.
Furthermore, the curves start from zero whereas in practice,
they will inherit the precision (and the integrity) of the last
GPS calibration. '

Inertial Integrity Limits Growth

4-———t 99.9% Emor Growth
foemee 95% Emmor Growth

25

RNP 1 CL: 4.5 minutes

=
o

Nautic Miles

RNP 0.3 GL: 16j:7u
05

NP 0i3: 138 secos

/ RNP 1: 75 minutes
hds

0 100 200 300 400 500 600
Seconds
figure (3):  Inertial Integrity Limits Growth

Actually, all we need to know in this hybridization scheme is
s Which is a function of the RNP. Let us consider the
curve representing the 99.9 % error growth. Within the first
5 minutes, this curves is almost linear and have a rate of
6.8m/s. Obviously, the GPS should give relatively accurate
position and velocity with very high integrity. For example,
if we want to limit the influence of the errors of the GPS
solution used for calibration to 2 % for position , this give a
maximum allowable horizontal position error of 22m and a
maximum allowable velocity error of 0.13m/s; this lead to a
value of 155 seconds for gy . Then the Fault Detection and
Exclusion module will have to detect and isolate within 155
seconds any failure that will cause such position or velocity
errors. In regards to the two GPS models (with and without
S.A.) and to their variance, it is likely that GPS needs to be
free of S.A. to allow the loosely coupled GPS/INS to
function. We shall note also that, because pf the error level
affecting range measurements, a failure affecting a range
measurement will be much harder to detect and isolate than
one affecting a range-rate measurement. So, focus is on the
detection and isolation of small bias affecting range
measurements (called range bias in §II-E).



D. Fault Detection and Exclusion Module
1. CUSUM presentation

It is well known that sequential algorithms show high
performances in detection of statistical characteristic
changes of non-stationary [BN93]. Based on hypothesis test
theory, these algorithms would make up the insufficiency of
the existing snapshot methods used in GPS integrity
monitoring. Indeed, the sequential approach has two
advantages over the snapshot approach: the small detection
delay for a given false alarm rate in the case of faults with a
small magnitude-to-noise ratio and the essentially higher
efficiency in the fault isolation step.

For a known failure magnitude without a priori assumption
on the direction of the failure, the CuSum algorithm will test
each possible direction of the failure [IEEE9S, JGCD96]. If
there are n visible satellites, there will be 2xn possible
directions because the change could be either positive or
negative for each satellite. Hence, there are a total of 2xn+1
hypotheses:

hypothesis 0 : No failure
hypothesis 2xi —1 : Negative failure of satellite i
hypothesis 2xi:  Positive failure of satellite i

For a given time of failure Tru,. and a given failure
magnitude v on satellite k, the log-likelihood ratio between
hypotheses p and g is:

S, (P, ‘I) =5, (p’o)_Sl (q,O)
560- 3 [(—l)‘”VY,(i)_ 7

(18)
- 2
J=TFaiture o’ JHJ @9 20 p=2xi-1or Ixi

where p and g are elements of {1,...2xn+1}, Y, is either
Y? or Y7, H, iseither H? or H/ (depending on whether
we test position or velocity) and ¥ =|v|x m is the
normalized magnitude.

Intuitively, one might say that at least one log-likelihood

.....

hypothesis p is correct if all of the log-likelihood ratio

S, (p,q]w between hypotheses p and g are positive. In the
case of a negative failure (p=2xk), S, (2 x k’q],,*;,, will
obviously increase with time.

A recursive implementation of this notion is describe here:

So(l”o) =0 | p,...2n

S,(p,0)= {s, (p,0)+

PTG }
T~ 02
GZJH,(U) 20 p=2xi-1or 2xd

p=l,...2n

The stopping time for detection and isolation are defined as:
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TDetecIian = n;l>lon {t : pgll,?.)gn [SI (p,O)] > hDeleclim}

0 sﬂqigu [Sl (P’ q )] > hDeleclion}

where {x}' =max[x,0] and ¥, Ap,

funing parameters.

Theoretical results [IEEE9S, JGCDY6]:

o It shall be noticed here that y have a theoretical lower
bound: y < e & by, .. > In(y) (20)

o The mean delay for detection of a failure of magnitude
v on satellite k has an asymptotic value:

19)
Tlmlalian = n}:g {t :

and Aypumion are

FDekcﬁan N ~ ’é&k'?,'g‘
G
v:H (k,k
puthy=22500
So the asymptotic worst case mean detection delay is:
1—.‘A ~ thction
Detection ~ *
Pu (22)

pra =min{o. (k)

o  The mean delay for isolation has an asymptotic value:

T ~ hlsolallon
Isolation

Pimsee > p(k)
p(k) = min(p,, k), p, (k) 23)

H,(i,k)
JH,G).H,(k,k)

So the asymptotic worst case mean isolation delay is:

~2
v .
prk)= ?lsrgilgnmm[l +

ffﬁwm ot h’”lacﬂm
P (249
P’ =min(p(k)
Parameter settings:

The threshold for detection Ap.eqin Will be set to get a given
level y of false alarm. $0O Apep should be set to In(y) . In
Civil Aviation a?plicaﬁon, a required level of false alarm is
0.002 /h=5.10""/ s, then Apeseciian is Set to 14.4.

Unfortunately, there is not simple theoretical result
concerning the threshold for detection /i - This tuning
parameter should be chosen in regards to practical results.
We have made simulation with A Set to 14.4, and we
didn’t notice any false isolation among 10000 trials.

For an a priori known failure magnitude v on satellite
number k, this algorithm is optimal only if parameter v is

equal to |v|x,,Hj(k,k). So, because of the regression

model, the optimal value for ¥ will vary from satellite to
satellite and should be fixed in consequence. But in general
case, the magnitude failure v is also unknown. To solve this
problem, an attempt could be made to use many CUSUM in
parallel in order to cover a large range of magnitude

[7,.»¥un ] So, the fault detection algorithm will be
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composed of L parallel CUSUM with parameter ¥,,¥,,...V,
ranging from ¥,

win t0 Vo, .The choice of L and parameters
¥, can be made so as to minimize the asymptotic delay of

detection:

-1
L2 m”m—""{m -c—“-}

Vi c-1
_ (c + 1)‘
V; = vmin C(C _ 1),-_] (25)
c=(1- e)- 2

where e is defined as the asymptotic efficiency of the
CUSUM (the more e is close to 1, the greater L will be).

Extensive 24h-simulations for failure magnitude v ranging
from 3o to 8ohave shown that optimal value for parameter
v ranges from 0.8 to 16 in regard to the mean detection
delay. For computational reason, we decided to limit the
number of paralle]l CUSUM to five, the resulting parameters
are: Viin=0.8, V=16, € = 0.9, L = §,

v, =1.052; 2.028; 3.9, 5.712, 14.456

E. Simulations results

The GPS pseudo-ranges used in these simulations are
generated by a GPS constellation simulator based on an
almanac file (GPS week 856). At this time, 25 satellites were
available. It shall be noticed that no reduced constellation
have been considered but only the one given by the GPS
simulator. So, results presented here are just for illustration
purpose of the theory developed in this article.

1. GPS alone with S.A.

The CUSUM algorithm is only optimal for detection of
change in gaussian variable with a priori known variance. So
because of the time-correlated noise, the CUSUM algorithm
is not well adapted to the model of GPS with S.A. because
slowly varying noise can be interpreted as bias. But
simulations shows that if we artificially presume a larger
standard deviation than the actual one (50m rather than
33m), the CUSUM shows to be robust enough to detect
failure that snapshot could not detect. As a consequence, by
using sequential algorithm, the availability of the detection
function can be brought to 100% (compared to 97% for
snapshot RAIM). But because of the emor level of this
model and of the limitation of the INS, GPS must be free of
S.A. before it can be used in this model (see I1-C).

2.  GPS alone without S.A.

In the following simulation results, the GPS model without
SA is assumed. When a curve is plotted as a function of the
time of failure Ty, this one ranges from 1997-06-29 0h00
to 1997-06-30 0h00 with a 2 minutes step. A Failure is
modeled as a bias introduced on the generated pseudoranges.
In many figures the term "trial” refer to a statistical
consideration (a new noise b, is used at each trial).
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Distribution l1aw of 7o

Figure (4) shows the evolution of the worst case mean
detection 7. and the asymptotic worst case mean
detection 7% ~ as functions of Truu. for failure
magnitudes v= 12 m.

mean detection delay for a range bias of 12 m

- — e S,
& 100}
id
&
3
% 80
3
401
E
20}
(
0 N s L i
o] 5 10 15 20
time of failure (hours)
figure (4):  Practical and asymptotical worst case mean

detection delay for a range bias of 20 m

As one can see in this figure, the two curves are very close
(same curves are optained for v = 16m, 20m, 24m, 28m and
32m). We can conclude that the asymptotic worst case mean
detection delay is a good criteria conceming the ability of the
CUSUM algorithm to detect a failure with a given
magnitude.

It shall be noted here that the pic-value at time 11h40 is
common to all magnitude failure and corresponds to
"constellation hole” as is shown in figure (5):

Number of isible satellites
11 v .

101

Number of sateliites
3

~

5 5 0 %
time (hour)
figure (5):  Number of visible satellites upon 24h

In paragraph II-A-2, we made the assumption that the
variables Thewcion A Tspion Were normally distributed. In
practice, this is "half true" because these variables are
bounded by zeros. So, as we are more interested on the
greater values of Ty, the calculation of Opygcnon is based



on the upper part of the histogram (7,..cion = T Deection )
Figure (6) shows an empirical Probability Density Function
(PDF) of the worst case values of Zpeguam Obtained at time
Traitwe = 11h40 and for a failure magnitude v=12m. This
curves is to be compared to the theoretical PDF of a
normally distributed variable with same mean and variance

C T pesection > & bescction)- DESPite the fact that the theoretical is a
little bit shifted because of the asymmetric distribution of
Thewciion » the two curves are quite close and confirm the
assumption that Tpeecinr is normally distributed.

Pmbablllty Density Function of the detection delay (v=12m, Ti=11h40)
0.014

T ——  PDF of the detection delay (10000 trials)
. PDF of a nommally distributed eriable

0.012f

0.01}

§

Density of probability
©
8

§

g

50 100 98 200 250 800 30
Detection delay (seconds)
Empirical and theoretical PDF of the worst
case detection delay at time 11h40

figure (6):

Distribution law of Zeuion

Figure (7) shows the evolution of the worst case mean
isolation 7., and the asymptotic worst case mean
isolation 7,.%,, as functions of T for failure
magnitudes v=32m.

worst case mean isolation delay for a range bias of 32 m

simulated value (100 trials)
e theoretical asymptotic value

300

¥

g

g

worst case mean isolation delay (seconds)
8

2

1] 5 10 15 20
time of failure {(howrs)

figure (7):  Practical and asymptotical worst case mean
isolation delay for a range bias of 32 m

Here again the empirical and the asymptotical curves are
very close (delay larger than 300s are not plotied). So, the
asymptotic worst case mean detection delay is a good
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criteria concemning the ability of the CUSUM algorithm to
isolate a failure with a given magnitude. Simulations show

that Zymew has, as for Zpewwom an asymmetric normal
distribution.

An important conclusion of these curves is that, even if the
worst case failure can always be detected, there are periods
when it can not be isolated even for a failure magnitude as
large as 32m. It shall be noted here that the asymptotic curve
does reflect well this phenomena.

3.  GPS with geostationary satellites

By using GPS alone the detection function is always
available (more or less quickly), but there are periods when
the isolation function is-not available. To increase this
availability we can use one or more geostationary satellites.
Satellite Inmarsat AOR-E already deliver the ranging
function for Euridis system (preliminary version of Egnos),
and satellite Inmarsat IOR will come soon.

The following figures show that a minimum of two
additional geostationary satellites is needed to obtain a
100% availability of the detection function:

worst case asymptotic mean isolation delay for a range bias of 12m (with 1 geo)
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figure (8):  Asymptotical worst case mean isolation delay

for a range bias of 12 m and one geostationary satellite

worst case asymptotic mean isolation delay for a range bias of 12m (with 2 geo)
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figure (9):  Asymptotical worst case mean isolation delay

for a range bias of 12 m and two geostationary satellites



4.  Choice of the delay of calibration

It has been shown that the delay of calibration Zaismuion
should be greaterthan fDﬂminn + a(Pll)-abemtim (Cf- §H'A'
2) where alpy;) = 5.43 if p; =1 — 10° /h. The following
figures give the minimum allowable value for 7 mim as a
function of the time with and without additional
geostationary satellites.

Delay of calibration for a range bias of 24m
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e GPS + AOR-E + IOR
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0 5 0 i5 20
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figure (10): 24 hours evolution of the delay of calibration.

5. Minimum allowable value for 7yg
Following §II-A-4, the delay before INS become unusable
must be larger than 7, .

If we fix p;; and p;; to 1 — 10°/h and we suppose that AT, is
equal to zero (continuous calibration), we have:

Figure (8) and (9) in §II-E-2 show that a minimum of two
additional geostationary satellites are needed in order to have
reasonable value for the worst case isolation delay. Then,
assuming that p;; and p;; correspond to 1 — 10° /h and that
AT, is equal to zero (continuous calibration), figure (11)
gives the minimum allowable value for 7y for failure
magnitudes ranging from 12m to 32m.

minimum allowable value for ToINS

ol T IE e ™
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figure (11): minimum allowable value for zs
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In paragraph II-C, it has been shown that 155 seconds was a
reasonable value for 7ys assuming an horizontal position
accuracy of 27 m. Then, if GPS solution is calculated every
seconds (1Hz data rate) and if we fix AT, to 30 seconds, the
hybridization scheme will function with a minimum
detectable failure magnitude of 24 meters if two additional
geostationnary satellites or with a minimum detectable
failure magnitude of 20 meters if three additional
geotationnary satellites are available. In both case, as HDOP
is always close to one, the resulting horizontal position error
is alway smalier than 27 meters.

F. Conclusion for Loosely Coupled GPS/INS

IIL. Tightly Coupled GPS /INS :
A. Hybridization Scheme

The second strategy of integrity monitoring is based on the
tightly coupled GPS and INS. This means that a global
Kalman filter is used to process all the measurements from
GPS and INS together as what is done in AIME [AIME97]
(see figure (12)). But unlike AIME, the measurements of
GPS and INS are treated continuously together, hence, we
can expect a very efficient integrity monitoring and the
AIME is a very good application of this principle. But in this
scheme, rather than  Unfortunately, there are some
difficulties in this case. First of all, we explain in brief these
difficuities.

accelerometers
JE—— INS
Gyros:___. Kalman Fault
Baroaltimeter petec}non
Beaad filter |—1 isolation
rql_. and
——— INS/GPS exclusion
—p—] O

figure (12):  Tightly coupled GPS/INS
B. State-space models

It is well known that the coupled GPS/INS navigation
system can be reduced to the state-space model. We consider
the state-space model with additive changes:

{XH, =O(+1L,0)X, +¢ 26)

Y, = HOX, +v, +T(t,1,)

where & and v, are two independent zero mean Gaussian
white noises with covariance matrices Q(t) = 0 and W(t) > 0
respectively. The initial state X; is a Gaussian zero mean
vector with a covariance matrix P, > 0. The matrices &, H,
0, W, P, are known. The faults are modeled as the additional
pseudo-range biases

ift<t,
iftxt,

r@,t,) = {0 27

l—‘("'to)

in the measurement equation where f, is the time of failure.
The likelihood function of this state-space model can be



computed by using the innovation sequence of the Kalman
filter. Hence, first, we have to transform the initial data (¥)),»
, into the innovation sequence (&), » 1 based upon the
nominal (without fault) state-space model (26) :

{el =Y - H(’)/{,m—l

- (28)
X =0 +1L0)X,, , + O +1,0K,¢,

where K, is the Kalman gain, and, next, we have to
detect/isolate a change in the innovation sequence (g),» . It
can be shown that the log-likelihood ratio between two
hypotheses / and j may be expressed as below:

pI(Yk""’Yl) = ln Pl(gk""’gl) (29)
Py l)  Py(ErsnE)

It shall be noted here that hypothesis / corresponds to a
failure on satellite / ( / = 2xi or I = 2xi +1, see §II-D-1 for
details).

Let us assume now that the model (26) is time-invariant, that

the Kalman filter corresponding to this model is stable and,
moreover, that the steady-state has been reached:

limR, =R, imK, =K (30)

Si(,)=1n

where R, is a covariance matrix of the innovation of the
Kalman filter. The innovation sequence can be modeled as a
normal variable with different means before and after the
failure:

P’ {N(O’R') Ti<h oy

© N(r;,(t,to),R,) iftzt,

where 7,(1,t,) is the dynamic profile of the innovation
sequence after fault number /. Since the innovation before
and after a fault in model (3) is a Gaussian independent
sequence, the theory developed in [3,4] can be applied in this
case with some modifications: we have to compute all
dynamic profiles for 1 < #, < at every stage ¢. Unfortunately,
this leads to a number of arithmetical operations at time ¢
which grows to infinity with #. The second difficulty of this
approach is the fact that the dynamic profiles 7,(z,,) are
functions of the unknown vectors I;(2,f,) . Unlike in the
first hybridization scheme which uses a regression model for
GPS (c.f. §II), the dynamic profiles 7,(t,¢,) should here be
known exactly. Therefore, it is too optimistic to recommend
a direct implementation of the algorithms developed in
[IEEE95, ACC95, JGCD96).To solve the problem we
propose the following heuristic solution. First, we split the
measurement processing in several parallel Kalman filters
(see Figure (11)). Hence, in every channel we process one
pseudo-range of GPS (or DGPS) and the measurement of
the INS together. If we have » visible satellites at the
moment then the detection/isolation/exclusion scheme
includes n parallel channels (see figure (13)).

Presented at ION GPS-97, Kansas City, 1997 517

Sensors INS Kalman
filter
Satellte 1 INS/
1L satellite 1
i Fault
detection
° isolation
and
. exclusion
Kalman
.
filter
Satellite n INS/ N
/ o satellite n
figure (13): Multi channel measurement GPS/INS

integrity monitoring.
C. Simplified model
Let us consider the following simplified error model of the
vertical channel of the GPS/INS navigation system. The
vertical channel of the GPS/INS is based on the following
sensors/channels : an accelerometer, a baro-altimeter, and n

GPS channels. The plant equation in the continuous time is
given by:

dz dv, db, ds
— -—:a)a’ —_—=

-V = vZ » z? s
dt dt at dt

and the measurement equation is :

h ,=z+a,
R, o1=-U,2+Cs+o, +v,,(,1)

Ryan="U,;z+Cs+w, +v,, @)

where k., = h(baro) — h(acc), R, ,; = R(GPS) - R(acc),
R; is the pseudorange from the ith satellite to the user (/ =
1,...,n), s is a user clock bias, C=3.10* m/s, Uy; = sin(gy), @;
is the elevation angle of the ith satellite, ®, , 0}, ©,, @, are
white noises such that o, = 100m, o, = 4m,
ol =2x(107)%/3600 (m/s*)* x m/s , ;= 107 sec.

We assume that there are two types of faulf for each of the n
sensors/channel, namely:

step: v,,(t,t,) = const fortz 1
ramp: v, (t,4,) =const(t—1t,) fortz24
D. Discrete time model

The discrete time error model of the vertical channel of the
GPS/INS is represented by the following equations:



X =0X, +V,
Y=HX, +W, +I(t,4,,0)

where X,=(z v, b, 5)',®=(+ALF),

Yt = (hb—a Rpr-a,l Rpr—a,n )T H
0100 1 00C
0010 -U, 00 C

F= STH= .7 . .
0 000 : oo
0000 ~U,, 0 0 C

and V,, W, are Gaussian vector sequences:

00 0 0
00 0 0
V)=
v=lo 0 a2 0
00 0 Ao
o’ 0 0 0
0 o> 0 0
cov(W) = ¢
#) 0 0 o O
0 0 0 o}
where At =1s .
CONCLUSION

It has been shown that, at the location of the simulation
(Toulouse, France) and for the current GPS constellation (25
satellites), this hybridization scheme could fulfill the RNP
0.3 with the help of two additional geostationary satellites
(Inmarsat AOR-E and IOR). This is very promising because
this approach does not need much hardware and could be
quite easily adapted to existing equipment.

Of course, these simulations have been made on the
assumption that a wide area differential GPS like EGNOS or
WAAS is present. But, although these systems are planned
in a near future to deliver the Integrity function, they will not
be immunized against terrestrial jamming or spoofing.
Furthermore, they will not be able to detect local degradation
like strong multipath. The fact that INS is by nature
immunized against extemal events and that sequential
algorithm can detect and isolate small failure make this
hybridization scheme worth developing.

Unlike the loosely coupled GPS-INS, the tightly coupled
GPS/INS does not require a minimum of six satellites with
good geometry to perform hence giving a much more higher
availability. The promising performances of the
hybridization scheme are still to be evaluated and this is the
aim of a future study.
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