
HAL Id: hal-01021667
https://enac.hal.science/hal-01021667

Submitted on 31 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the error probability and stopping time of
the MAPAS procedure

Christophe Macabiau, Abdelahad Benhallam

To cite this version:
Christophe Macabiau, Abdelahad Benhallam. Analysis of the error probability and stopping time of
the MAPAS procedure. ION GPS 1996, 9th International Technical Meeting of the Satellite Division
of The Institute of Navigation, Sep 1996, Kansas City, United States. pp 925 - 934. �hal-01021667�

https://enac.hal.science/hal-01021667
https://hal.archives-ouvertes.fr


Analysis of the Error Probability and Stopping
Time of the MAPAS Procedure

Christophe Macabiau and Abdelahad Benhallam
Laboratoire de Traitement du Signal et des Télécommunications (LTST) of the ENAC

BIOGRAPHY

Christophe Macabiau was born in 1968 in Moissac,
France. He graduated in 1992 as an electronics engineer
at the Ecole Nationale de l’Aviation Civile (ENAC) in
Toulouse, France. He is specialized in signal process-
ing and in radionavigation electronics. After working in
1993 for the MLS Project Office in Ottawa, Canada, he
became a Ph.D. candidate at the Laboratoire de Traite-
ment du Signal et des Télécommunications of the ENAC
in 1994. He is working on the application of precise GPS
positioning techniques to aeronautics.

Abdelahad Benhallam obtained his Ph.D. in com-
munications from the Institut National Polytechnique of
Toulouse in 1988. His areas of research include satellite
communications, radionavigation and nonstationary sig-
nal processing. He is currently responsible of the Labo-
ratoire de Traitement du Signal et des Télécommunica-
tions (LTST) activities, at the Ecole Nationale de l’Avi-
ation Civile (ENAC).

ABSTRACT

Ambiguity resolution ’on-the-fly’ procedures are de-
signed to deliver in real time the integer biases that give
full access to the accurate pseudorange information con-
tained within the GPS carrier phase measurements. The
key performance parameters of these procedures are their
time of convergence and error rate, usually estimated
from experience but rarely analytically determined. Us-
ing results derived for a multiple hypotheses sequential
test called the M-ary Sequential Probability Ratio Test
(MSPRT), this paper presents a theoretical analysis of
the performance parameters of the Maximum A Pos-
teriori Ambiguity Search (MAPAS) procedure. In par-
ticular, expressions of bounds and asymptotic values of
the expected stopping time and error probability of MA-
PAS are determined as functions of the decision thresh-
old, thus providing a means to control the performances.
This study shows the influence of the number of satel-
lites as well as the importance of the mode of selection of
the primary satellites. The figures obtained are checked

against observed values, showing the validity of the de-
termined bounds and the consistency of the asymptotic
values, although they lack accuracy when the number of
satellites is low.

1. INTRODUCTION

A high level of positioning accuracy can be obtained
through the use of the pseudorange information contained
within the GPS signal carrier phase measurements. How-
ever, this pseudorange information is biased because of
the ambiguous nature of the carrier phase measurements.
Full access to the accurate value of the pseudorange re-
quires the resolution of that bias, called the phase mea-
surement ambiguity.

This can be done using one of the numerous ’on-
the-fly’ ambiguity resolution procedures developed over
these past 10 years, either performing an ambiguity search
like the Ambiguity Function Method (AFM), described
by Remondi (Remondi, 1991) and Mader (Mader, 1992),
the Least Squares Ambiguity Search (LSAST), presented
by Hatch (Hatch, 1991) and Lachapelle et al. (Lachapelle
et al., 1992), the Maximum A Posteriori Ambiguity Search
(MAPAS) method, presented by Macabiau (Macabiau,
1995), or an integer ambiguity estimation like the Fast
Ambiguity Resolution Approach (FARA) described by
Frei and Beutler (Frei and Beutler, 1990), the Fast Am-
biguity Search Filter (FASF) described by Chen (Chen,
1993), the optimized Cholesky decomposition method,
described by Landau and Euler (Landau and Euler, 1992),
the ambiguity transform method presented by Teunis-
sen (Teunissen, 1994) and the Direct Integer Ambiguity
Search (DIAS), presented by Ming and Schwarz (Ming
and Schwarz, 1995).

They all can solve ambiguities in seconds in average
operating conditions, although they are likely to fail rais-
ing the ambiguities in due time, or may even provide the
user with incorrect ambiguities. Thus, in order to deter-
mine the suitability of such a procedure for a particular
application, it is desirable to know its time of conver-
gence and failure rate, which are directly related to its
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availability and integrity. This paper is intended to give
theoretical expressions of bounds and asymptotic values
of the average stopping time and error probability of the
MAPAS procedure.

The paper first recalls the theoretical principles of
the MAPAS procedure, then presents the MAPAS method
as a particular application of a more general test called
the MSPRT, allowing us to determine theoretical expres-
sions of bounds and asymptotic values of its time of con-
vergence and error probability, and to check their com-
puted value against observed ones.

2. THE MAPAS METHOD

The carrier phase measurements delivered to an am-
biguity resolution procedure are affected by all kinds
of errors such as satellite clock dither through Selec-
tive Availability, atmospheric propagation perturbations,
satellite and receiver clock offsets, multipath and ther-
mal noise. The use of data collected by a receiver of
known location and of all the available satellite observ-
ables enables the elimination of common errors such
as clock errors and atmospheric perturbations if the re-
ceivers are not too far away. Thus, double differences of
phase are usually formed between the moving receiver
and a reference station, using a selected base satellite.
These double differences can be linearized around a po-
sition estimateX̂(k) provided by the use of DGPS for
example. If the receivers are located less than approxi-
mately 20 km apart, a first order model of the linearized
double differences of phase at epochk is as follows:

�(k) = �C(k)�X(k)�N +B(k) (1)

where

� �(k) is the(nk � 1) � 1 vector of the linearized
double differences of phase,nk being the number
of visible satellites

� �X(k) is the3�1 vector of the position estimation
error:�X(k) = X̂(k)�X(k)

� N is the(nk � 1)� 1 vector of the double differ-
enced ambiguities,N 2 Znk�1

� C(k) is the(nk � 1) � 3 vector of the difference
between the direction cosines of the base satellite
and the other satellites at̂X(k), normalized by the
wavelength

� B(k) is the(nk � 1)� 1 vector of the phase mea-
surement noise

The double differenced measurement noiseB(k) is
composed of the original phase measurement noisebi(k),
of the multipath error"multi(k) and of all the residual
noises arising from the formation of the single and dou-
ble differences. The phase measurement noisebi(k) is
assumed to be a discrete white gaussian noise, having

zero mean and variance�2. The carrier phase tracking
error"multi(k) induced by multipath can cause loss of
lock and may confuse the ambiguity resolution proce-
dure, as this error is usually left unmodeled.

In the following developments, it is assumed that
"multi(k) = 0.

The determination of the position is conditioned on
the resolution of the double differenced ambiguity vec-
torN . The principle of the MAPAS procedure is to test
for thousands of possible values ofN , as described in
(Macabiau, 1995). More precisely, as only three of the
double differenced ambiguities are independent in the
noise-free model derived from (1), it looks for the best
three-integer combination, in a search setN (k) of Mk

elements, to be affected to the double differenced phase
ambiguities of four particular satellites, called the pri-
mary satellites. MAPAS works on the same principle as
LSAST, as presented in (Macabiau, 1996).

Once the primary satellites are selected and the search
set defined, the model (1) can be split into 2 systems of
equations:

�P (k) = �CP (k)�X(k)�NP +BP (k) (2)

�S(k) = �CS(k)�X(k)�NS +BS(k) (3)

where the first system is the system of the primary satel-
lites, and the other system is the system of the non pri-
mary satellites, called secondary satellites.

Thus, for each candidateNPabc = [a b c]> in the set,
a position estimate is computed:

X̂Pabc(k) = SP (k)�P (k) + SP (k)NPabc (4)

whereSP (k) is the pseudo-inverse of the primary sys-
tem (2).

Then, the corresponding secondary ambiguities are
estimated as follows:

N̂Sabci
(k) = Round

2
4k�1X
j=ki

~NSabci
(j)

3
5 (5)

whereki is the first epoch of lock on the signal transmit-
ted by satellitei and

~NSabc(k) = ��S(k)� CS(k)�X̂Pabc (k) (6)

This enables the calculation of a predicted double
differenced observation:

�̂Sabc(k) = �CS(k)�X̂Pabc (k)� N̂Sabc(k)

Then, the a posteriori probability of this candidate
is computed conditionally on the associated prediction
errorzSabc(k) = �̂S(k)��Sabc(k) using Bayes’ rule:

P
�
NP = NPabc j zSabc

k
1

�
=

f(zSabc
k

1
jNP=NPabc)X

abc2Nk

f
�
zSabc

k
1 j NP = NPabc

� (7)
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where

f (zSabc(k) j NP = NPabc) =
1

2�
nk�4

2

p
det(�(k))

�exp
�
� 1

2
z>Sabc(k)�

�1zSabc(k)
�

and

�(k) = CS(k)SP (k)�PP (k)SP (k)
>CS(k)

>

+�SS(k)� CS(k)SP (k)�PS(k)

��PS(k)
>SP (k)

>CS(k)
>

�PP (k) and�SS(k) are the covariance matrices of the
primary and the secondary observations.

If this probability is lower than a predefined accep-
tance thresholdPmin, then the candidate is eliminated
from the search set. If it is larger than a predefined up-
per thresholdP0, then this combination is elected as the
true one.

3. THE MAPAS METHOD AS AN MSPRT

The MAPAS method is a multiple hypotheses test
that sorts between thousands hypotheses represented by
their associated three-integer vector:

Habc = f[a b c]T : Np = [a b c]T g (8)

The decision is taken using the data

�n
1 = [�(1) : : :�(n)] (9)

The test is a mappingg that associates to the observation
data�n

1 a particular hypothesisHabc :

g (�n
1 ) = Habc

The decision is taken at the epochn when a preset de-
cision condition is satisfied. Thus the size of the sample
�n
1 is not known before the test is performed, and a com-

promise must be made between the delay in making the
decision and the accuracy of that decision by specify-
ing the decision condition. This kind of test is called a
sequential test.

The important sets of parameters used to assess the
quality of a sequential test are the set of the error prob-
abilities and the set of the Average Sample Numbers
(ASNs).

The set of the error probabilities is the set of the
conditional probabilities

�abc = P [g (�n
0 ) 6= Habc j Habc true]

We can build the total weighted error probability as

� =
X

abc2N

P [Habc true]�abc (10)

The set of the ASNs is the set of the conditional expec-
tations :

ASNabc = E [n j Habc true]

further denotedEfabc [n].

The MSPRT (M-ary Sequential Probability Ratio Test)
is a more general multiple hypotheses sequential test de-
signed by Baum and Veeravalli (Baum and Veeravalli,
1994) that they formulated in the following way.

LetX1; X2; : : : ; Xn be an infinite sequence of ran-
dom variables, independent and identically distributed
(i.i.d.) with densityf , and letHj be the hypothesis that
f = fj for j = 0; 1; : : : ;M � 1. Assume that the prior
probabilities of the hypotheses are known, and let�j de-
note the prior probability of hypothesisHj for eachj.
The stopping time of the MSPRT is

Na = first n � 1 such thatpkn >
1

1 +Ak

(11)

for at least onek, and the final decision is� such that

� = Hm , wherem = arg max
j

p
j
Na

wherepkn = P [H = Hj j X1; X2; : : : ; Xn] is the poste-
rior probability ofHj .

The MSPRT is a generalization of the SPRT (Se-
quential Probability Ratio Test). Although the SPRT
is optimal in the sense that it provides a minimal stop-
ping time for a given error probabilities set, the MSPRT
is an approximation of the Bayesian optimal solution.
However, Baum and Veeravalli showed in (Baum and
Veeravalli, 1995) that the MSPRT is asymptotically ef-
ficient as, for a given error probabilities set, it becomes
the fastest decision making test when the threshold com-
ponentsAk decrease towards 0.

Several theoretical results concerning this test are
presented by Baum and Veeravalli (Baum and Veeravalli,
1994). In particular, expressions are given for bounds
and asymptotic values of the ASN and error probability.

The MAPAS method can be viewed as a particular
application of the MSPRT to the observation sequence
formed by the secondary phase prediction errors. How-
ever, comparing (7) with (11) shows that the observa-
tion sequenceszSabc(k) used by MAPAS depends on
the tested hypotthesis[a b c]T , which is not true for the
MSPRT. This problem can be solved by noting that the
a posteriori probability of a candidate is independent of
the three-integer vector used to compute the prediction
error. To show this, we can write

zSabc(k)=

�CS(k)SP (k)[NPabc(k)�NP+BP (k)]

+NS � N̂Sabc(k)�BS(k) (12)

thus

E
�
zSabc(k) j Np = [� � 
]T

�
=

�CS(k)SP (k)
�
NPabc(k)�NP��
 (k)

�
+NS��
 (k)� N̂Sabc(k)3
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and the argument of the exponential in the gaussian prob-
ability density function is

zSabc(k)�E
�
zSabc(k) j Np = [� � 
]T

�
=

�CS(k)SP (k)
�
NP��
 (k)�NP

�
+NS �NS��
 (k)

which is independent on[a b c]>. Thus, we can write

f (zSabc(k) j NPabc) = f
�
zS��
 (k) j NPabc

�
allowing us to reformulate MAPAS using the decision
criterion

P
�
NP = NPabc j zS��


k

1

�
=

f
�
zS��


k

1
jNP=NPabc

�
X

abc2Nk

f
�
zS��


k

1
j NP = NPabc

�

which is identical to the decision criterion (11) used by
the MSPRT, considering that the prior probabilities of
each hypothesis are equal. Here,[�� 
]T can be any
fixed three-integer vector.

Several hypotheses have to be made for the MAPAS
method to be called an MSPRT:

1. We must assume that the direction cosines of the
satellites from the moving receiver’s point of view
are constant during the whole resolution process.
This is necessary if we want to consider that the
residualszS��
 (k) are identically distributed over
time. This hypothesis is a pessimistic assumption,
as the evolution of the satellite geometry, although
slow for vehicles of classical dynamics, enhances
the selectivity of the procedure.

2. We must suppose that the phase measurement noise
Bi(k) is an independent sequence over time. This
is a quite strong assumption, as usually the double
differenced noise has slowly varying components
which are mainly due to the carrier phase track-
ing error induced by multipath. This hypothesis
limits the range of the theoretical developments
presented in this paper to the applications using
measurements unaffected by low-frequency noise.

3. We need to consider that the rejection process of
the MAPAS method, performed through the com-
parison of the posterior probabilities with the thresh-
old Pmin, has no influence on the structure of the
test. That is, we must consider that the influence
of the rejected combinations would have been neg-
ligible in the selection process if they had been
kept in. Thus, we assume that all theM0 hypothe-
ses are considered at each measurement epoch.
This hypothesis is optimistic for the error prob-
ability and pessimistic for the expected stopping
time.

In the MAPAS case, all theAk values are identi-
cal, and there is no need to distinguish between them.

Also, this threshold component will be simply denoted
A. Furthermore, we can note that

P0 =
1

1 +A
andA =

1� P0

P0

which means thatP0 � 1�A whenA is small.

4. BOUNDS ON THE STOPPING TIME

AND ERROR PROBABILITY

Baum and Veeravalli have determined bounds on
the expected stopping time and error probability of the
MSPRT. They can be applied to the MAPAS method as
shown in this section.

LetNa denote the stopping time, and� the decision
taken at timeNa. It can be proven that the ASN of the
MAPAS method is finite by showing first that it is expo-
nentially bounded, as the probability thatt exceeds any
Na decreases exponentially withn. The demonstration,
given for a general case in (Baum and Veeravalli, 1994),
results for the MAPAS method in

P [Na > n j Habc true] �
(M0 � 1)

3

2

p
A

max
[ijk]6=[abc]

(�ijk)
n

where�ijk = Efabc

�r
f(zS��
 jNP=NPijk )
f(zS��
 jNP=NPabc)

�
.

By the Cauchy-Schwartz inequality, it can be shown
that

�ijk < 1 for [ijk] 6= [abc]

Consequently, for an assumed correct ambiguity value
the correspondingstopping time is exponentially bounded.
Then,Na is necessarily finite.

Let P
�
NP = [a b c]T j [i j k]T

�
be the probability

that the candidate[a b c]T is accepted assuming[i j k]T

is the correct ambiguity. Then,P
�
NP =[a b c]T j [a b c]T

�
is the probability to retain the correct ambiguity. If� de-
notes the total error probability introduced in (10), then
we have

�=1�
X

[ijk]2N

P
�
NP =[i j k]T

�
P
�
NP =[i j k]T j [i j k]T

�

and

P
�
NP = [a b c]T j [a b c]T

�
=

NaX
n=0

P
�
NP = [a b c]T j [a b c]T ; Na = n

�

Due to the MSPRT formulation, this probability is shown
to be bounded in (Baum and Veeravalli, 1994), as fol-
lows:

P
�
NP = [a b c]T j [a b c]T

�
�

1
1+A

X
[ijk]

P
�
NP = [a b c]T j [i j k]T

�
4
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A summation over the vectors[a; b; c]T leads to

1� � �
1

1 +A

that is

� �
A

1 +A
(13)

The deduced upper bound of� depends only on the de-
cision parameterA. Furthermore, it can be shown that

� � A (14)

which is equivalent to (13) for small values ofA.

Thus, it can already be determined that, if the de-
sired error probability is approximately10�10, like for
aircraft landing for example, then by settingA = 10�10,
which isP0 = 1�10�10, this objective can theoretically
be fulfilled.

5. EXPRESSION OF THE ASYMPTOTIC

VALUES OF THE EXPECTED

STOPPING TIME AND ERROR

PROBABILITY

When the decision criterionP0 is close to 1, that is
whenA is small, an expression of the value of the ASN
and of the error probability is given by Baum and Veer-
avalli.

These asymptotic expressions all depend on the qual-
ity of the discrimination that can be made between the
different hypotheses by observing the data. The level of
separation is quantified by a parameter called the Kullback-
Leibler information that represents the distance between
two hypotheses among the erratic values of the random
variable, characterized by its covariance matrix.

Denoting the Kullback-Leibler information between
probability density functionsfabc andfijk as

D(fabc; fijk) = Efabc

�
ln
fabc(ZS��
 )

fijk(ZS��
 )

�
(15)

it can be shown that

Efabc [Na]!
� ln(A)

min
[ijk]6=[abc]

D(fabc; fijk)
asA! 0 (16)

Thus, as the separation between the hypotheses decreases,
the number of measurements needed to identify clearly
a combination increases. The vector[i j k]T minimiz-
ing D(fabc; fijk) is the integer combination for which
one the secondary phase residuals are the most similar
to those of the true hypothesis[a b c]T .

This result can be applied to the MAPAS procedure
by calculating min

[ijk]6=[abc]
D(fabc; fijk).

The Kullback-Leibler information between the two
multivariate normal distributions of the residualszS��

representing hypotheses[a b c]T and[i j k]T is

D(fabc;fijk)=
1

2

�
Efabc [zS��
 ]�Efijk [zS��
 ]

�T
��1

�
Efabc [zS��
 ]�Efijk [zS��
 ]

�
(17)

As we can see from (17), the Kullback-Leibler informa-
tion can be interpreted as a signal-to-noise ratio repre-
senting the degree of distinction between the two proba-
bility density functions, as illustrated in figure 1.

θ
0

θ
1

σ

- θθ
1 0

D=
1

2

(   -   )

σ

2

2

θ
1

θ
0

Figure 1: Representation of the Kullback-Leibler in-

formation between two hypotheses in the scalar case.

We can reformulate (12) using the following approx-
imate expression of̂NS��
 (k) under low noise condi-
tions:

N̂S��
 (k)=Round
h
��S(k)�CS(k)�X̂P��
 (k)

i
(18)

Developing (6) using (12), (2) and (3) leads to

N̂S��
 (k) = NS+ (19)

Round
�
�CSSP

�
NP��
�NP

�
�CSSPBP �BS

�
Thus, (12) can be rewritten as follows

zS��
 = �CSSP
�
NP��
 �NP +BP

�
�BS (20)

�Round
�
�CSSP

�
NP��
�NP +BP

�
�BS

�
and we have

Efabc

�
zS��


�
= �CSSP

�
NP��
 �NP

�
(21)

�Round
�
�CSSP

�
NP��
 �NP

��
under the same low noise assumptions as previously.

Developing (17) for the multivariate normal distri-
bution of the residualszS��
 leads to

D(fabc; fijk)=
1

2
(CSSP �N�Round [CSSP �N ])

T

��1 (CSSP �N�Round [CSSP �N ]) (22)

where�N = [a b c]T � [i j k]T .
The optimum�N value represents the ambiguity

combination[i j k]T for which one the lines of constant
5
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Figure 2: Average minimum Kullback-Leibler dis-

tance between hypotheses (primary satellites with

minimum PDOP). Mean = 0.20, std = 0.24, min

= 1:4�10�3, max = 1.93.

phase intersect the most similarly as in[a b c]T .

Simulations have been run to compute the minimum
value ofD(fabc; fijk) for �N 2 Z3�f0g such that
[i j k]T 2 N . It is useful to note that this minimum value
is apparently independent of[a b c]T , except for the fact
that we must have[i j k]T 2 N . Thus, a rigorous de-
termination of this optimum value requires the search
of the combination[i j k]T yielding the minimum value
of (22) for each combination[a b c]T . This is a very
heavy calculation requiring a high computation power
that we could not perform in all the cases. To simplify
this problem, the optimization was done using an exten-
sive search algorithm making no distinction between the
different [a b c]T in the set, assuming that the resulting
combination[i j k]T is in N . This hypothesis has the
tendancy to lower the minimum Kullback-Leibler dis-
tance, and represents a worst case assumption for the
performances of the procedure.

Similarly, an expression of the asymptotic value of
the error probability can be derived from (Baum and
Veeravalli, 1994), as they showed that

�! A
 whenA! 0 (23)

where
 is a coefficient such as0 < 
 < 1, calculated
following (Woodroofe, 1982) depending on the mini-
mum Kullback-Leibler information computed previously.
This asymptotic value provides a closer approximation
to the error probability than equation (13).
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Figure 3: Evolution of 
 over 24h (primary satellites

with minimum PDOP). Mean = 0.7, std = 0.12,

min = 0.33, max = 1.
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Figure 4: Total number of visible satellites during

the 24h.

6. COMPARISON BETWEEN

THEORETICAL AND OBSERVED

VALUES

The theoretical expressions (16) and (23) were used to
compute the predicted values of the expected stopping
time and error probability for a point located at the be-
ginning of the landing path over Toulouse-Blagnac air-
port. The values were calculated each second over 24h,
representing the predicted performance of the MAPAS
procedure that would be initiated at the corresponding
time. These values were computed with various con-
figurations of the MAPAS procedure. Then, we com-
pared these figures against the observed values obtained
for simulations of the whole landing procedure at the
same date and time. All the computations and simu-
lations were performed assuming a phase measurement

6
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noise with standard deviation� = 1 cm.

The calculation of the asymptotic values of the per-
formance parameters of the MAPAS procedure is based
on the determination of the minimum Kullback-Leibler
distance between hypotheses, as well as on the compu-
tation of 
. This requires the selection of the primary
satellites used by MAPAS. The primary satellites are se-
lected according to their elevation angle and PDOP fac-
tor. The values of the Kullback-Leibler distance and of

 were computed for primary satellites with a minimum
elevation angle of10o and for a minimum ideal PDOP,
as well as for an objective PDOP of 7.5.

We first determined the value of this minimum
Kullback-Leibler distance over 24 hours for a fixed point
in the approach path over Toulouse-Blagnac airport. The
calculation was done using the simplification described
in the previous section. The evolution of this distance is
shown in figure 2.

Similarly, the evolution of
 over 24h is plotted in
figure 3.

The influence of the number of visible satellites is
obvious from the comparison of figure 4 with figures 2
and 3. This comes from the fact that the separation be-
tween the hypotheses is easier when more observed data
per epoch is used to check their consistency. Thus, the
Kullback-Leibler distance increases with the number of
satellites.

These computed values correspond to the expected
stopping times plotted in figure 5, forA = 10�10. The
corresponding asymptotic value of the error probability
is plotted in figure 6.
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Figure 5: Asymptotic value of the expected stopping

time for primary satellites with minimum PDOP.

Mean = 594, std = 1687, min = 11.9, max = 1:6�
104.

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−10 Asymptotic value of the error probability (A=1e−10)

Time in s

E
rr

or
 p

ro
ba

bi
lit

y

Figure 6: Asymptotic value of the error probability

for primary satellites with minimal PDOP. Mean =

7:4�10�11, std = 1:2�10�11, min = 3:3�10�11, max

= 1:0�10�10.
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Figure 7: PDOP of the primary satellites (�rst

case).

The influence of the PDOP of the primary satellites,
plotted in figure 7 for this first case, can be emphasized
by the comparison of the figures 2, 5 and 6 with figures
9, 10 and 11, when the PDOP is now as in figure 8.
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Figure 8: PDOP of the primary satellites (second

case).
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Figure 9: Average minimum distance between 2 hy-

potheses over 24h (primary satellites with PDOP

close to 7.5). Mean = 0.09, std = 0.13, min =

5:0�10�4, max = 1.52.
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Figure 10: Asymptotic value of the expected stopping

time over 24h (primary satellites with PDOP close

to 7.5). Mean = 1674, std = 5:3�103, min = 15.2,

max = 4:6�104.
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Figure 11: Asymptotic value of the error probability

for A = 10�10 (primary satellites with PDOP close

to 7.5). Mean = 8:2�10�11, std = 9:6�10�12, min

= 3:7�10�11, max = 1:0�10�10.

To determine the accuracy of the asymptotic values,
we ran the calculation of the minimum Kullback-Leibler
distance at four distinct GPS times and compared the
obtained results against observed ones. This was done
for both primary satellites selection modes, as shown in
tables 1 and 2. In order to obtain observable values of
error probabilities, the threshold componentA has been
set to the relatively high value of10�2.

As we can see from tables 1 and 2, the observed er-
ror probability appears to be lower than the asymptotic
one, and in every case the lower bound (13) is satisfied.
This major result enables to determine the value of the
design thresholdP0, using the desired error probability.
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Furthermore, the accuracy of the computed asymp-
totic values improves with the number of visible satel-
lites, as the computed distance seems to be more stable.

7. CONCLUSION

The MAPAS procedure has been modeled as an M-
ary Sequential Probability Ratio Test (MSPRT), so that
general MSPRT results are applicable. Thus, the time of
convergence of the MAPAS procedure has been shown
to be finite, and an upper bound of the error probabil-
ity has been given as a function of the decision thresh-
old. Furthermore, asymptotic values of these two per-
formance parameters have been given.

Comparison of the theoretical and observed values
shows that the upper bound of the error probability seems
to be satisfied in every case.

The relative evolution of the asymptotic values of
the error probabilities and expected stopping time shows
the influence of the number of visible satellites and of
the PDOP of the primary satellites. Although these the-
oretical values are not very accurate when there are few
visible satellites, a good prediction of the performances
of the procedure can be obtained when the number of
satellites is larger than 7.
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GPS time 194800 202800 172800 175750

PDOP of

primaries
3.3 2.3 2.4 3.0

# sat. 6 7 8 11

Asymptotic

E[Na]
1690 74.4 9.3 2.5

Asymptotic

�
9:6�10�3 8:1�10�3 5:6�10�3 3:4�10�3

Observed

E[Na]
172.4 104.2 51.9 11.1

Observed

�
7:7�10�5 1:2�10�4 2:3�10�4 2:1�10�4

# trials 13000 13000 13000 13000

Table 1: Comparison between computed asymptotic and observed values when the primary satellites are the ones

with the lowest PDOP.

GPS time 194800 202800 172800 175750

PDOP of

primaries
8.1 7.5 7.6 7.5

# sat. 6 7 8 11

Asymptotic

E[Na]
6514 303 35.6 3.1

Asymptotic

�
9:8�10�3 9:0�10�3 7:4�10�3 3:7�10�3

Observed

E[Na]
171.2 103.0 51.9 14.0

Observed

�
5:5�10�4 4:1�10�3 6:2�10�4 2:9�10�4

# trials 23000 23000 23000 23000

Table 2: Comparison between computed asymptotic and observed values when the primary satellites have the

closest PDOP to 7.5.
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