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ABSTRACT

The use of the pseudorange information contained with-
in the GPS carrier phase observables enables to achieve
a high level of positioningaccuracy, but requires the res-
olution of the intrinsic cycle ambiguities of the phase
measurements. Several methods have been proposed
that can solve the ambiguities without static initializa-
tion by performing a search of the most coherent values
of the double difference ambiguities of four particular
satellites. They belong to the class of the multiple hy-
potheses sequential tests, that check each envisaged hy-
pothesis against a decision criterion. A new method of
ambiguity resolution on-the-fly, designed to make an op-
timal use of all the available measurements, is proposed
in this paper. The decision criterion used by this method
is the a posteriori probability of each potential solution.
The mathematical developments involved in the design
of the method are exposed, and the first simulation re-
sults obtained are presented, showing the validity of the
concept proposed in this paper.

1. INTRODUCTION

The GPS phase measurements delivered by a re-
ceiver are related to the geometrical distance between
the transmitting satellite and the receiver. These mea-
surements constitute a potential source for a very precise
determination of position, as they can be achieved with
an accuracy of the order of one centimeter. However, the
full access to that accurate geometrical information re-
quires the resolution of the intrinsic integer ambiguities
of the measurements. Since fifteen years, several spe-
cialized techniques have been developed to achieve this

resolution. Some of them assume the receiver is static
during the determination, while the others can be carried
out even when the receiver is moving. When the reso-
lution is performed without static initialization, the res-
olution is said to be madeon-the-fly. These positioning
techniques are very useful tools for static applications,
like static baselines surveying, and for mobile position-
ing in dynamic applications like satellite altimetry, aerial
photogrammetry, airborne gravimetry or aircraft landing.

This paper describes a new method for ambiguity
resolution on-the-fly of GPS phase measurements, called
the Maximum A Posteriori Ambiguity Search (MAPAS)
method. In section 2, a model of the GPS signal carrier
phase measurements is presented and the problem of am-
biguity resolution is introduced. Then, the Least Squares
Ambiguity Searching Technique is described, followed
by a discussion on the statistical aspect of the ambiguity
searching techniques. In section 3, the principles of the
MAPAS method are exposed, then a presentation of the
input data used by the method is made, enabling us to de-
rive the theoretical expressions of the decision criterion,
and to build the algorithm. In section 4, the simulat-
ed data is described and the results obtained using the
MAPAS method are presented and discussed.

2. AMBIGUITY RESOLUTION

TheL1 carrier phase measurements delivered by a
suitably equipped civilian GPS receiver are the measure-
ments of the phase of the low frequency signal generated
by mixing the receivedL1 satellite signal with the output
of an oscillator tuned at the nominal carrier frequency.
As described by Rocken (Rocken, 1988), a first order
model of this beat phase measurement, for satellitei, at
epochk is :

�i(k) = f(�tR ��tSi)�
Di(k)

�
� Ni

+f�ion � f�trop + bi(k) + "mult(k) (1)

where

� f is theL1 frequency and� is the corresponding
wavelength.

� �tR and�tSi are respectively the receiver and
satellite time equivalent phase offset with respect
to GPS time.
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� Di(k) is the geometrical distance between the satel-
lite i and the receiver.

� Ni is the initial ambiguity value of the measure-
ment.

� �ion and�trop are the ionospheric and tropospheric
propagation delays.

� "mult(k) is the carrier phase multipath term.

� bi(k) is the phase measurement noise. In the fol-
lowing, we assume thatbi(k) is a discrete white
gaussian noise, having zero mean and variance�2.

As long as the lock on the signal is held, the phase
measurement device can keep track of all the detected
whole-cycle phase revolutions, and all the phase mea-
surements delivered are biased by the same phaseam-
biguity Ni. When acycle slip occurs, that is when a
loss of lock on the signal is experienced, the phase mea-
surements can not be performed any more. Once the
signal is re-acquired, the integer number of whole-cycle
revolutions has been lost, and the initial ambiguity has a
different value.

The multipath propagation of the signal can be re-
sponsible for a loss of phase lock. It may also cause
the ambiguities to be resolved to incorrect values. The
effect of multipath on the performance of the method
presented in this paper will not be investigated here. In
consequence, the term"mult(k) will be neglected.

Assume now that two receivers, denoted with the
subscripts 1 and 2, make the carrier beat phase measure-
ments of the signal transmitted by the satellitei at the
same epochs. The receivers are supposed to be close
to each other, so that the tropospheric and ionospheric
propagation delays affecting their measurements can be
considered as identical. This approximationwill be valid
as long as the distance between them is less than 20 km.

In order to eliminate the satellite clock offset, we
can form the single differences of phase

��i(k) = �1i(k)��2i(k)

= f�tR12 �
�Di(k)

�
��Ni +�bi(k)

where

� �tR12 = �tR1 ��tR2

� �Di(k) = D1i(k) �D2i(k)

� �Ni = N1i � N2i

� �bi(k) = b1i(k) � b2i(k)

Further on, to remove the receiver clock offset, we
can form the double differences of phase, as shown in
the following. This is achieved by choosing a reference
satellite. For demonstration purposes, satellite 1 will
be chosen as the reference satellite. IfN satellites are

being tracked at epochk, we can formN � 1 double
differences with theN � 1 remaining satellites:

r��1i(k) = ��1(k)���i(k)

= �r�D1i(k)
�

�r�N1i+r�b1i(k) (2)

where

� r�D1i(k) = �D1(k)��Di(k)

� r�N1i = �N1 ��Ni

� r�b1i(k) = �b1(k) ��bi(k)

The model (2) for the double differences depends
on the known coordinates of satellite 1 and satellitei,
and on the coordinates of the two receivers. Thus, once
the double difference ambiguitiesr�N1i are solved, we
may be able to reach the desired positioning information
contained within the double differences of phase.

Assume now that the coordinates of one receiver, say
receiver 1, are well known. In the case where receiver 2
keeps a constant positionduring the ambiguity resolution
procedure, then the number of unknowns in the system of
the double differenced equations at any epoch is 3+N�
1 = N + 2, while the number of observations isN � 1.
Then, the system can be solved using the observations
gathered over two epochs if 2(N � 1) � N + 2, that
is if N � 4. The resolution yields an estimate of the
double differences ambiguities as well as an estimate of
the position of receiver 2.

The double difference model (2) is linearized and
solved using an iterative procedure, as described by Re-
mondi (Remondi, 1984), Rocken (Rocken, 1988), Ble-
witt (Blewitt, 1989), Leick (Leick, 1990) or Hofman et
al. (Hofman et al., 1993) for example.

When the position of receiver 2 cannot be modelled
as a constant, the system cannot be directly solved, as the
number of unknowns increases over time. Performing an
active search of the correct solution at each epoch is an
adequate strategy for the resolution of the ambiguities.
This search is carried out over a physical or a mathemat-
ical domain centered around an estimate of the solution.
These methods require a great calculation power from
the executing processor.

The Ambiguity Function Method, described by Re-
mondi (Remondi, 1984) and by Mader (Mader, 1992) in
the dynamic case, searches for the most coherent posi-
tion in a physical volume, considering the phase mea-
surements. The other searching techniques search for
the most coherent combination of the double difference
ambiguities in a mathematical set of probable discrete
combinations. Numerous methods have been proposed
so far. Among them, are the Least Squares Ambiguity
Search Technique (LSAST) described by Hatch (Hatch,
1991) or Lachapelle et al. (Lachapelle et al., 1992),
the Fast Ambiguity Resolution Approach (FARA) de-
scribed by Frei and Beutler (Frei and Beutler, 1990),
the Fast Ambiguity Search Filter (FASF) described by
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Chen (Chen, 1993), the optimized Cholesky decompo-
sition method described by Landau and Euler (Landau
and Euler, 1992), or the integrated ’on-the-fly’ technique
described by H.Abiddin (Abidin, 1991) which achieves
an integration of several techniques.

We will now have a closer look to the methods
searching for the ambiguities related to only four par-
ticular satellites, like the method described by Hatch
(Hatch, 1991) or Lachapelle et al. (Lachapelle et al.,
1992). Let us denoteNk as the number of tracked satel-
lites at epochk. We can split the system of theNk � 1
equations (2) in two parts :

� the system of the 3 double difference equations cor-
responding to four particular satellites. These satel-
lites are called theprimary satellites

� the system of theNk � 4 remaining double differ-
ence equations corresponding to the other satellites.
These satellites are in turn called thesecondary
satellites.

All the quantities related to the primary satellites
(resp. the secondary satellites), like the observations, the
ambiguities and the phase noise values will be qualified
as primary (resp. secondary) quantities.

If the primary ambiguities are known, then the po-
sition of the moving receiver can be determined, and
the secondary ambiguities can be known. Thus it is not
necessary to search for the entire set of the unknown
ambiguities, and some computation effort can be saved.

For example, the method described by Lachapelle et
al. (Lachapelle et al., 1992) searches for the primary am-
biguities that are associated, through the primary system
of equations, with a physical position contained within a
search cube built around a carrier-phase-smoothed code
solution. At each measurement epochk, for each poten-
tial three-integer combination, the difference between
the actual secondary phase observations and some com-
puted observations is formed. This secondaryprediction
error, calledz(k), together with the secondary observa-
tions covariance matrix�SS(k) can be used to form the
local variance factor

�̂2
0(k) =

z(k)>�SS(k)
�1z(k)

Nk � 4

A global variance factor can also be built using all of the
local variance factors. A candidate yielding too high a
local or global variance factor is rejected from the search
set, and thus will not be tested for during the next search
epoch. After several rejection epochs, the best combi-
nation can be isolated in the set.

Considering the statistical aspect of these methods,
we see that the ambiguity searching procedures can be
included in the large group of themultiple hypotheses
sequential tests. The set of the potential three-integer
vectors constitutes the set of the unknown parameters

of the probability density function of the primary and
secondary observations. Let us call this setN . Thus,
the procedure is built to decide between the hypotheses :

Habc = f[a b c] :

[r�N12 r�N13 r�N14] = [a b c]g

for each three-integer vector[a b c] 2 N . In this dis-
cussion, satellites 1,2,3,4 are considered as being the 4
primary satellites.

The decision is taken using the raw data

r��n
1 =

[r��11(1) . . .r��1N1(1) . . .

r��11(n) . . .r��1Nn
(n)]

The test is a mappingg that associates to the observation
datar��n

1 a particular hypothesisHabc :

g
�
r��n

1

�
= Habc

The decision is taken at the epochn when a preset deci-
sion condition is satisfied. Thus the size of the sample
r��n

1 is not known before the test is performed, and a
compromise must be struck between the delay in making
the decision and the accuracy of that decision by speci-
fying the decision condition. This kind of test is called
a sequential test. The important sets of parameters used
to assess the quality of a sequential test are the set of
theerror probabilities and the set of theAverage Sample
Numbers (ASNs).

The set of the error probabilities is the set of the
conditional probabilities

�abc = P
�
g
�
r��n

0

�
6= Habc j Habc true

�

We can build the weighted error probability as

��(g) =
X

abc2N

P [Habc true] �abc

The set of the ASNs is the set of the conditional expec-
tations :

ASNabc = E
�
n j Habc true

�

A sequential test is usually built by specifying values for
the error probabilities. These values are inserted into
the theoretical expressions of the decision thresholds to
design the test. The ASNs are also determined using
their own theoretical expressions.

In the case of the ambiguity searching algorithms,
like in the case of most multiple hypotheses sequential
tests, these theoretical expressions are hard to derive,
and the design is made with empirical threshold values.
These values are set so that the measured error prob-
abilities and ASNs are as low as required. The error
probabilities and the ASNs thus become estimated crite-
ria used to assess the performance of the test.
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Several decision criteria can be chosen. The LSAST
method uses the weighted least squares sum of the pre-
diction errors for each hypothesis. The MAPAS method
uses the a posteriori probability of each hypothesis know-
ing the prediction errors.

3. THE MAPAS METHOD

The Maximum A Posteriori Ambiguity Search (MA-
PAS) method is based on the same basic principles as the
LSAST method described by Hatch (Hatch, 1991). The
main difference resides in the decision criterion used
by the test : the MAPAS method uses thea posterior-
i probability of each potential solution knowing all the
past secondary prediction errors. Thus the criterion is
a naturally global parameter, and all the measurements
acquired up to the current epoch are considered when a
decision is taken.

The principle of this method is inspired from the
method described by Brown and Hwang (Brown and
Hwang, 1983), where the ambiguities are estimated as
unknown parameters of an observation model using a
Kalman filter.

Satellite i

of receiver 2)

Up

East

A

Receiver 1
(reference station)

B

Receiver 2
(true position)

B’

North

Satellite 1

(position estimate

Figure 1: Illustration of the situation of the receivers in
a local coordinate system.

The MAPAS method assumes that the measurements
made by two receivers, located as described in figure 1,
are available at each measurement epoch. Receiver 1
is called the reference station. Its position, denoted A,
must be well known, and its code and phase measure-
ments must be known by receiver 2. In the following
discussions, we will consider that receiver 2 is located
in B’. The ground distance between A and B’ should be
less than 20 km, and their altitude should not differ by
more than 1.5 km. Thus the ionospheric and tropospher-
ic propagation delays will be considered as identical for
both receivers. At each measurement epoch, a good es-
timate of the position of receiver 2, called B, must be
available. This estimation can be made using pseudo-
range corrections delivered by the reference station, or

using a carrier-phase-smoothed code technique. The s-
tandard deviation of the estimate should be less than 1m
on either axis in order to restrict the number of ambigu-
ities candidates.

The main steps of the MAPAS method are as fol-
lows. The procedure is initialized at epoch 0 by the
selection of four particular satellites among the tracked
satellites, and by the construction of the set of the can-
didate primary ambiguities. Then, at each measurement
epoch, for each potential solution, a prediction of the
secondary phase measurements is made, and subtracted
from the actual secondary phase measurements. The a
posteriori probability of each potential solution in the set
is then computed from thea priori probability of each
prediction error. That potential solution is rejected from
the set if its a posteriori probability is lower than a preset
acceptance threshold. If the largest a posteriori probabil-
ity of the set is higher than a predefined threshold, then
the combination related to that best value is elected as
the correct solution.

The primary satellites are selected according to their
PDOP factor, among the tracked satellites whose ele-
vation is greater than 7:5 deg, in order to ensure their
visibility during the whole resolution procedure.

The PDOP of the primary satellites is an important
selection criterion, as it seriously affects the performance
parameters of the test. If the primary satellites are the
satellites meeting the elevation angle requirement with
the lowest PDOP factor, then the number of initial po-
tential solutions is at its maximum. Many observation
epochs, as well as many computer operations are then
required to isolate the correct ambiguities. A minimum
PDOP of 5 is usually required. On the other hand, when
the PDOP of the primary satellites is too high, the poste-
rior probability of the true solution may be accidentally
lowered because of inaccurate intermediate position es-
timates, as it will be pointed out further. In this case, a
reasonable upper bound of 10 is set.

Thus the PDOP of the primary satellites has an op-
posite influence on the duration of the test and on its
error probability, and an ideal mean value has to be se-
lected. In the case of the MAPAS algorithm, the primary
satellites are chosen as the satellites of elevation angle
greater than 7:5 deg having the PDOP factor which is the
closest to the arbitrary value of 7:5.

The double difference model (2) is linearized around
the position estimate B. The phase data used by the pro-
cedure at each measurement epoch are the double dif-
ferences of phase that can be formed using the actual
phase measurements made by the moving receiver, and
the computed phase measurements that could be made
by receiver 1 if it was located in point B, corresponding
to the position estimate. The computed measurements
are denoted�3i(k). Considering equation (1), we have:
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�1i(k) � �3i(k) = �D1i(k)�D3i(k)
�

�3i(k) ��2i(k) = (3)

f�tR12 �
D3i(k)�D2i(k)

�
��Ni +�bi(k)

Therefore, we can use the single differences of phase
���i(k) = �3i(k)� �2i(k), where�3i(k) is generated
using ().

���i(k) has the same ambiguity and noise values as
��i(k).

As point B is very close to point B’, we can lin-
earize the model (3), assuming that the direction cosines
(Cx(k); Cy(k); Cz(k)) of the satellites are identical for
both receivers. This approximation is justified because
the distance between B and B’ is of the order of a few
meters. We have

D3i(k)�D2i(k) = Cxi(k)
�
xB(k) �xB0 (k)

�

+Cyi(k)
�
yB(k)�yB0 (k)

�

+Czi(k)
�
zB(k)�zB0 (k)

�

and if we note

�R(k) = [xB(k) �xB0 (k)
yB(k)�yB0 (k) zB(k)�zB0 (k)]>

and

Ci(k) =
1
�

�
Cxi(k) Cyi(k) Czi(k)

�

then we have

���i(k) =

f�tR12 � Ci(k)�R(k)��Ni(k) + �bi(k)

For theNk tracked satellites, we can form the following
linearized models of the double differences of phase :

r���1i(k) = (4)

�C1i(k)�R(k)�r�N1i +r�b1i(k)

whereC1i(k) = C1(k) �Ci(k).
We can stack theNk � 1 valuesr���1i(k) ob-

tained in (4) into two separate vectors�P (k) and�S(k).
�P (k) contains the 3 values related to the 4 primary
satellites, and�S(k) contains theNk � 4 values related
to the secondary satellites. Thus, we get the following
primary and secondary systems of equations, using vec-
tors and matrices denoted with the respective subscripts
P andS :

�P (k) = �CP (k)�R(k)� NP + bP (k) (5)

�S(k) = �CS(k)�R(k)� NS + bS(k) (6)

The set of the acceptable three-integer solution vectors
can be built using the primary system (5) at the initial
epoch 0. The physical search volume can be chosen
as anellipsoid centered on the estimated position B.

The semi-axes of the ellipsoid are set to three times the
corresponding values of the standard deviations of the
position estimate. The first step of the elaboration of the
initial setN can be the calculation of the ambiguities
corresponding to the eight corners of the cube englobing
the ellipsoid using (5). Then we can build the set of
ambiguities delimited by these eight values. Eventual-
ly, the setN is formed by rejecting those ambiguities
associated with a position located outside the ellipsoid.

At each epochk, the position associated with a par-
ticular combinationNPabc = [a b c] can be estimated
using the primary phase observations. For example, us-
ing least squares estimation theory, we get :

�R̂abc(k) = �S(k)�P (k) � S(k)NPabc (7)

whereS(k) is

S(k) =
�
CP (k)

>��1
PP (k)CP (k)

��1
CP (k)

>��1
PP (k)

and�PP (k) is the covariance matrix of the prima-
ry observations. Using (2) and the assumptions on the
phase measurement noise process made in (1), the ex-
pression of this matrix can be shown to be

�PP (k) = �2

2
4

4 2 2
2 4 2
2 2 4

3
5 (8)

A prediction of the secondary phase measurements at
the epochk can be elaborated if we inspire from the
linear measurement model (6). Assume a prediction of
the secondary ambiguitieŝNSabc (k) is available for each
combination[a b c] in N .

We can then form the prediction

�̂Sabc (k) = �CS(k)�R̂abc(k)� N̂Sabc (k) (9)

The predictionN̂Sabc (k) can be made using all the
past secondary observations obtained from the satellites
present in�S(k).

For example, considering the fact that for the true
hypothesis the prediction of the secondary ambiguities
should be a vector of constant integers, we can choose
to use the prediction

N̂Sabc (k) = [Round(
1

k�ki

k�1X
j=ki

[�C1i(j)�R̂abc(j)

�r���1i(j)])]i2f5;...;Nkg (10)

whereki is the first epoch of lock on the signal trans-
mitted by satellitei. A predicted value of secondary
ambiguity concerning satellitei is then computed for the
first time at epochki + 1.

We need now to introduce the a posteriori probability
of each potential value[a b c], conditionally on the
value of the prediction errors. That probability is the
conditional probability for the true value of the primary

5
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ambiguities[p q r] to be equal to[a b c], given the values
of the prediction errors obtained for that hypothesis[abc]

up to the current epoch.
The actual secondary observations depend on the

true primary ambiguitiesNPpqr = [p q r]. The true
position can be expressed as :

�Rpqr(k) = (11)

�S(k)�Ppqr (k)� S(k)NPpqr + S(k)bP (k)

so that

�Spqr(k) = �CS(k)�Rpqr(k)�NSpqr + bS(k) (12)

Thus, for each candidateNPabc , the prediction error
can be written as :

zabc(k) = �Spqr (k) � �̂Sabc (k) (13)

Using Bayes’ rule, we can write the a posteriori prob-
ability of a particular three-integer combination[a b c]
as :

P
�
NP = [a b c] j zabck1

�
= (14)

f
�
zabc

k
1 jNP=[a b c]

�
P [NP=[a b c]]P

[a b c]2N
f(zabck1 jNP=[a b c])P [NP=[a b c]]

wherezabck1 =
�
zabc(1) . . .zabc(k)

�
andN is the set

containing all the[a b c] candidates.

f
�
zabc

k
1 j NP = [a b c]

�
(15)

is the value of the a priori probabilitydensity function of
the innovations at the pointzabck1. We assume that each
three-integer combination inN is equally probable, so
that (14) can be reduced to

P
�
NP = [a b c] j zabck1

�
= (16)

f
�
zabc

k
1 jNP=[a b c]

�
P

[a b c]2N
f(zabck1 jNP=[a b c])

Thus, at each epochk, the a posteriori probability of
each potential solution in the set can be computed once
the current value of (15) is determined for every hypoth-
esis.

The nature of the a priori law of probability of the
recorded prediction errorszabck1, as well as the value of
their conditional mean and covariance matrix has to be
determined in order to perform the calculation of (15).

From (13), if we insert (7) into (9), and (11) into
(12), we can derive the expression of the conditional
prediction error for a candidate solution[a b c]:

zabc(k) j NP = [p q r] =[a b c] (17)

= N̂Sabc (k)� NSpqr � CS(k)S(k)bP (k) + bS(k)

Moreover, assumingNP = [p q r] =[a b c], we have

N̂Sabc (k) = NSpqr (18)

If no precaution is taken when using the predictions
elaborated with (10), this assumption may not be verified
for the true combination[a b c], especially in the first
stages of the procedure, when few measurements have
been used to compute the average. A way to counter
that is to allow the prediction several averaging epochs
to get stabilized to the correct value before using it for
statistical selection. However, it is very essential that
the algorithm uses all the information available to feed
its selection routines within the shortest delay, and the
predictions elaborated should be used by the test as early
as possible. Moreover, this prediction is not very noise
sensitive, and it has proven to be highly accurate during
all the trials performed.

Hence, the MAPAS algorithm releases the sec-
ondary ambiguity predictions concerning a given satel-
lite only if there exists at least one[a b c] candidate for
which one that prediction has been constant for 2 epochs.

Note that is is important for the validity of assump-
tion (18) that the primary satellites do not have too high
a PDOP factor. Indeed, if the estimate (7) is not accurate
enough for the true solution, the ambiguity prediction
(10) may be biased by a value of one full cycle. In that
case, the error prediction will be accidentally large, and
the a posteriori probability of the true solution will be
abnormally low.

As assumption (18) is made, (17) becomes :

zabc(k) j NP = [a b c] (19)

= �CS(k)S(k)bP (k) + bS(k)

Since the additive phase noise measurement as-
sumed in (1) is a white noise process, expres-
sion (19) shows that the successive random vectors
zabc(k) j NP = [a b c] are independent over time. Thus
zabc

k
1 is composed ofk independent vectors. The val-

ue of the a priori probability density function (15) can
therefore be computed as

f
�
zabc

k
1 j NP = [a b c]

�

=
Qk

i=1 f
�
zabc(i) j NP = [a b c]

�
(20)

Still using (19), as the phase measurement noise process
is assumed to be a white gaussian noise with zero mean,
we see thatzabc(k) j NP = [a b c] is a gaussian vector
with zero mean. Its covariance matrix is

�(k) = Cov(zabc(k) j NP =[a b c]))

= CS(k)S(k)�PP (k)S(k)
>CS(k)

>

+�SS(k)� CS(k)S(k)�PS (k)

��PS (k)
>S(k)>CS(k)

>

where

� �PP (k) is the covariance matrix of the primary
observations. Its expression is given in (8).

� �SS(k) is the covariance matrix of the secondary
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observations. Its expression is :

�SS(k) = �2

2
66666664

4 2 . . . . . . 2

2 4 2 . . .
...

... 2
... 2

...
... . . . 2 4

...
2 . . . . . . 2 4

3
77777775

� �PS(k) = �SP (k)
> is the cross-covariance ma-

trix between the primary observations and the sec-
ondary observations. Its expression is :

�SP (k) = �2

2
64

2 2 2
...

...
...

2 2 2

3
75

Thus, f
�
zabc

k
1 j NP = [a b c]

�
can be recursively

computed by multiplying each of the successive values

f
�
zabc(k) jNP =[a b c]

�
(21)

= 1

2�
Nk�4

2
p

det�(k)
� exp�

1
2
zabc(k)

>�(k)�1zabc(k)

The normalization factor 1

2�
Nk�4

2
p

det�(k)
does not

need to be computed, as the value given in (21) is only
used to update (15) through (20), which is in turn used
to calculate the a posteriori probability (16), where it
cancels.

The algorithm of the procedure is shown in figure
2. The symbolP (k) is used to designate the a posteriori
probabilityof a candidate at epochk, f(k) designates the
corresponding value of the a priori probability density
function, ands(k) is the sum of the prior probabilities
of all the candidates in the set.P0 is the upper decision
threshold andPmin is the rejection threshold.

The algorithm shown in figure 2 evaluatesf(k) for
the current epochk, andP (k�1) for the previous epoch
k � 1 using the sums(k � 1). This is done to avoid a
second scan of the set to calculateP (k) with the sum of
the currentf(k) in the bigwhile loop. This causes a non-
sensitive delay of one epoch in the instant of decision.

If a cycle slip is experienced on the signal received
from any primary satellite, the procedure must be restart-
ed.

4. SIMULATION RESULTS

The raw phase data used for the simulations is the
double differenced phase data that could have been
formed using two receivers in the city of Valence, on
October 7th, 1994.

In these simulations, one reference station is consid-
ered, and the moving receiver is assumed to be moving
along a certain simulated trajectory.

The simulations were run using the satellite constel-
lation visible from 0:00 a.m. till 12:00 a.m. on October

selection of primary satellites

read data

construction of N
while best P (k) < P0

read data

compute �(k)

for each NP = [a b c] 2 N (k)

if f(k � 1) is available then
compute P (k � 1)
reject NP if P (k � 1) < Pmin

end if

if NP 2 N (k) then

update best P (k � 1)
compute N̂ (k)

compute zabc(k)

compute f(k)

update s(k) = �f(k)

end if

end for

end while

Figure 2:Main steps of the MAPAS algorithm.

7th, 1994. The procedure ignored the satellites of ele-
vation less than 5 deg. Thus, the number of considered
satellites during the various ambiguity resolution trials
ranged from 6 to 11.

Phase measurements for these satellites were gen-
erated every second. The measurements were consid-
ered as affected by the same tropospheric and ionospher-
ic propagation terms, and by a discrete white gaussian
noise. The standard deviation of this noise was set to
� = 1mm.

The ambiguity resolution trials were performed one
after the other over the 24 hours. For each trial, the
number of measurement epochs and the computation
time required for the algorithm to be able to make a
decision, as well as the truthfulness of the value of the
ambiguities selected were recorded. The size of the
search ellipsoid was set with the following values of
semi-axes :(ax = 2m; ay = 2m; az = 2:5m).

The design parameters of the procedure are the re-
jection criterionPmin and the upper decision threshold
P0.

The values assigned to these parameters affect the
error probability, the Average Sample Number (ASN),
and the computation time of the procedure. The value
of the true primary ambiguities does not influence the
performance of the procedure, as long it is included in
the initial set. Thus only one estimated ASN and one
estimated error probability will be given.

A subtile tradeoff must be achieved when specifying
the two thresholdsPmin andP0. Both of them must be
adjusted so that false solutions are quickly rejected from
the set, while the correct combination is kept. Assign-
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Figure 3: Average duration of the trials in epochs as a
function of the number of tracked satellites.

ing a high value toPmin will make the algorithm reject
quickly the false solutions. However, it will increase the
chances for the true combination to be accidentally elim-
inated as well, and the error probability will be larger. If
that value is set too low, then the ASN will be slightly
higher, and a prohibitive number of operations will have
to be performed by the processor. Similarly, settingP0

with too low a value may enable a false solution to be
elected, and the error probability will increase. On the
other hand, setting it with a high value will increase the
ASN.

It appears that for reasonable values ofP0 andPmin,
P0 has a strong influence on the ASN whilePmin directly
affects the error probability.

The influence ofPmin is illustrated in table (4). As
the abnormal transient values of posterior probability
are mostly observed during the first ten epochs, when all
the candidates share the unit probability, it happens very
often that the a posteriori probability of the true solution
reaches a low value. But it is very rare to see a false
solution pass the upper acceptance thresholdP0 when
the true solution is still in the set.

Thus, if a low error probability is to be reached, it
is important that the rejection thresholdPmin be set to a
very low value. However, as the quantity of operations
depends strongly on the number of candidates handled
by the procedure, specifying too low a value forPmin

may prevent the use of the algorithm for real time appli-
cations.

The adjustment of these different parameters re-
quired a lot of simulations, and only the first satisfying
results obtained are presented here. The results of 2493
trials are presented in figures 3, 5, 6, 7 and 8. For these
trials, the rejection criterion was set toPmin = 10�5

and the decision threshold was set toP0 = 0:9999. The
observed global success rate for all the simulation runs

Pmin
Error rate

in %

Average
computation

time in s
ASN

10�5 99:12 34:17 63:3
10�6 99:34 36:25 63:4
10�8 99:56 41:51 63:5

Figure 4:Evolution of the performance parameters when
Pmin decreases, for P0 = 0:9999.
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Figure 5:Percentage of successful trials as a function of
the number of tracked satellites.

is 0.9912. The ASN is 63.
These performance parameters were estimated for

the different numbers of tracked satellites, and are pre-
sented in figures 3, 5 and 8.

As the rate of acquisition of the information increas-
es, that is as the number of satellites increases, both the
rejection and the selection procedures are more efficient
and this results in an improvement of the ASN, as it is
shown in figure 3.

As seen in figure 6 and 7, the values selected for the
design parameters enable the correct combination to be
kept inside the search set despite its erratic initial path,
and to be eventually isolated.

The average computation times required to perform
the search on an HP 712/80 workstation are shown on
figure 8. These durations represent the whole execution
time of the entire resolution. The times presented here
are to be used as rough indications only, as no partic-
ular effort was made to speed up the execution of the
procedure so far. The simulation software was only de-
signed to study the validity of the concept of the MAPAS
method. However, the trend of the evolution of these fig-
ures with the number of satellites can be analysed. As
seen in figure 8, the benefit of a larger number of ob-
servations per epoch offered by additional satellites is
important only when 10 satellites are used. Before that,
the gain in the ASN is not big enough to compensate the
heavy volume of data processed by the computer.
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Figure 6: Example of the evolution of the a posteriori
probabilities over time. The solid line corresponds to
the correct combination. The dashed and the dotted
lines correspond to two wrong solutions that are rejected
sooner or later.
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Figure 7: Example of the evolution of the number of
potential solutions in the set. The set contains 1541
initial potential solutions.
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Figure 8:Average execution time of the simulation soft-
ware as a function of the number of tracked satellites.

5. CONCLUSION

The MAPAS method makes an optimal use of all
the current and past code and phase data available to the
receiver, as the final decision is taken considering all the
acquired data.

This method also provides a means to quantify the
confidence that can be made in each potential solution.
At each step of the resolution, the a posteriori probabil-
ity of a particular combination can be delivered by the
procedure.

As seen from the first simulation results presented
here, over all the possible satellite configurations, the
MAPAS method raised the correct ambiguities with a
success rate of 99.1 %, and an average number of epochs
of 63. This encouraging result demonstrates the validity
of the concept of an ambiguity searching procedure based
on the a posteriori probability.

Ongoing investigations aim to achieve a better ad-
justment of the design thresholds as well as an optimiza-
tion of the algorithm, so that the real time performances
of the method can be improved.
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