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A Soft Dynamic Programming Approach for On-Line
Aircraft 4D Trajectory Optimization

Patrick Hagelauer * , Felix Mora-Caminot

LAAS du CNRS, 7, Avenue du Colonel Roche,
31077 Toulouse, France

Abstract

During the iast decade, Flight Management Systems have been introduced on-board modern aircrall to reduce operatienal costs and
flight profiles have been optimized in order to minimize fuel and time related costs. Today, the integration of next generation FMS's
in the future air traffic management environment requires the development of new capabilities and among them, 4D optimal trajectory

generation has become mandatory.

This paper presents a method based on Soft Dynamic Programming (SDP) to gencrate on-line optimal 4D trajectories in the
presence of multiple time constraints. Soft Computing techniques are introduced to improve the dynamic programming oriented
optimization process by on-line selection of the search space and by cutting down computation time in repetilive performance

evaluations.
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1. Introduction

In the future air (raffic management {ATM)
environment, precise time control of aircraft flight
trajectories is expected 10 provide significanl increase in
capacity while maintaining the present level of safety. This
requires (he development of new capabilities for next
generation Flight Management Systems (FMS) among
which 4D flyable trajectory generation, meeting Air Traffic
Control (ATC) constraints, will play an important role.
These constraints are typically allitude or speed constraints
at specific waypoints of the flight plan (figure 1).
Recently, time constraints have been introduced to inérease
capacity and reduce delays. More particularly, the efficiency
of the Hub and Spoke network structure, which has been
adopted by many airlines, is relfated to the ability to meet
tight arrival time constraints and significant savings can be
expected by generating on-line minimum cost 4D flight
trajectories.
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Figure 1 : Aircraft trajectory and constraints
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However the gencration of 4D optimal trajectories
within the airerafl performance limitations and satisfying
the different ATC consiraints is a very delicate problem.
Already 4D trajectories allowing the control of a unique
crossing time (AT-type lime constraints} at a particular
waypoint of the flight plan is available on-board modern
long range aircraft (Liden 1994). However, existing
solutions do not deal efficiently with this problem.
Fuarthermore, current systems are unable today to deal with
multiple lime constraints or with more sophisticated time
windows such as AT OR BEFORE or AT OR AFTER
constraints,

The general 4D trajectory oplimization problem can be
formulated as an optimal control problem. This approach
has been studicd extensively over the past twenty years
{Williams and Knox 1991). However, realistic path
constraints as imposed by ATC have not been considered
in these analysises which have remained far 100 theoretical.

More recently, mathematical programming approaches
have been considered and have proven (o be effective in
dealing with the different constraints (Hargraves and Paris
1987, Beuts and Cramer 1995), However, these algorithms
us¢ gradient information for the search of a local optimam.
As pointed out in most of these studics, the realistic model
ol an aerospace vehicle typically consists of tabulated
acrodynamic and propulsion data and smoothing techniques
need 10 be introduced. However, smoothing data without
changing thc physical mcaning remains a difficult
problem.

In this paper, a discrete formulation of the problem is
proposed and the corresponding optimal control problem is
solved in a (non-gradicnt) forward dynamic programming
framework. The global optimum is achieved and the
dilferent constraints are treated directly by scarch space
restriction. Heuristics based on aircraft pcrformancp
limitations and cxpert knowledge are introduced to limit
the size of the search space. Computation time is further
reduced by the use of neural networks to computc the COSIs
assoctaled (o each decision step in the scarch process. This




approach leads to the concept of Soft. Dynamic
Programming (SDP) that could be introduced, as a practical
solution, in future Flight Management Systems.

2. Mathematical Formulation of the Flight
Trajectory Optimization Problem

2.1 Flight Trajectory Optimization Problem
Aircraft Equations of Motion
Starting with a point-mass model, and assuming small

flight path angle and no vertical acceleration, motion in the
vertical plane is described by the following dynamics :

x=(V+Vycosy ¢}
B=Vsin7 @)
m=—f{T,h,V) 3)

where x is the range, h the altitude, V the airspeed, Vyy the
horizontal component of wind speed, m the mass, [ the
fuel flow rate, T the thrust and 7 the flight path angle.

The airplane model also involves the evaluation of drag
D(V.h,m), lift L(V,h,m) and thrust T(V,h,m) represented
on figure 2,
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Figure 2 : Force diagram

In steady flight conditions, these variables satisfy the
static aircraft equilibrinm equations :

L-mgcosy=0 )
T-D-mgsiny=0 (5)

Performance Index

The cost function considered in the optimization
problem represents the Direct Operating Cost (DOC). The
DOC is defined as the cost of the consumed fuel plus other
costs related to flight time and is written :

DOC = FUEL + CI * TIME

where FUEL and TIME represent fuel burn and flight time
over a given ground distance. CI, the so-called Cost Index,
is a fuel equivalent cost for time. It is a selectable
parameter which can be used by the airlines (o batance fucl
and time costs,

The performance index 1o be minimized is the cost of
flight for a given ground distance which can be written in
the integral form as ;

ty
J=_[b(f+c1) dt ©
However, since time is a space related constraint

variable (time constraints are dcfined at specific points of
the flight plan, see figure 1), while the distance to go is a

truc independent variable, this performance index can be
rewritlen as :
J’Rr - A{[+CD
1= —_—dx
% (V+Vy)cosy ™

where [(V + V) cos ¥} represents aircraft ground speed.

2.2 General Formulation

A standard formulation of this 4D (rajectory
optimization problem can be proposed as a constrained
optimal control problem :

minrr L{y(x),u(x),x] dx ®

u(x) Jfx;

under the following constraints :
Flight dynamics ;

d
Hi—= f[y(x),u(X),x] (9)

Range constraints on the state variable vector ;

yly(x]2 y00 S yuly(x)x] 10)
Range constraints on the control variable vector :

ug [y(x),x] < u(x) Sug[y(x),x] an

In addition, the solution must satisly diserete
constraints on the state variables as shown on figure 1

Nly(xpxil1=0 (12)
MLy (xj).xjl < 0 (13)

2.3 Cruise Phase OQOptimization

For long range aircrafl, the cruise phase constitutes the
main part of the flight and its optimization induces the
major parl of the potential cost savings. Current Flight
Management Systems compute an oplimum altitude based
on gross weight and speed schedule for a given aircraft. Ina
steady atmosphere, the optimum altitude increases
theorctically nearly lincarly with distance as lucl is burned

~off (Liden 1992a), In the presence of winds, however, the

optimal light level may suffer very large variations (Liden
1992b). Aircrafl cruise flight is usually restricted to

specific flight levels assigned by ATC and the prablem of

optimizing discrete shifts between [light levels during

cruise is economically worthwhile.

In the proposed approach, transitions from one flight
level 1o another are trealed as discrele events in the cruise
optimization problem. This assumption is justificd by the
fact that steps are generally in smalt numbers, typically 2
or 3 for long flights, and only represent a very small
portion of the total cruise phase. With (his assumption,
allitude evolutions arc restricted to level flight and the
altitude state variable can only take discrete values. When
time constraints are introduced in the cruise phase, the
FMS must compute a new speed profile which will, in
turn, have an effect on the optimal altitude shift points.

The 4D cruise optimization problem thercfore consists
in determining the optimal speed schedule and associated
step points satisfying aircraft limilations, operational
constrainis and the different time constraints.

Althongh aircraft flight dynamics are considcrably
simplified for cruise, the rcpresentation of the system




involves both continuous (speed) and discrete (altitude)
states which is typical of hybrid-state systems. Because of
the discontinuous nature of the hybrid-state system,
difficulties arise when classical optimization algorithms are
used (Lu et al. 1993). To overcome these difficulties, the
following section describes a Soft Dynamic Programming
approach which generates optimized 4D trajectories while
overcoming the limitations of previons approaches.

3. Dynamic Programming Approach

3.1 General Mathematica! Formulation

The basic approach for solving the optimal control
problem using dynamic programming (DP) consists in
discretizing the problem and applying the classical Bellman
principle of optimality.

The independent variable is written as

Tk =x0+k Ax ke [0,..Nxl (14
the state and control variable vectors are :
y{k) = y(xK)
u(k) = u(x)

the discretized state equations then become :

yk+1) = f [y(k).u(k),k] ke [0,...Ng-11 (15)

and the performance index ;
. N E3 -1

T= 2 Liy().u.x] (0)

k=0

The bounds on the state or control variables, as well as
the different constraints, are treated directly by state space
and control space restrictions at each decision step :

Y& € Y = {y1(0),..70y(K)) ke [0..Nx]  (17)

ufk) € Uk) = {m1(k),.. ¥k} k€ {0,....Nx-1] f(18)

At cach step k to k+1, and for every state y(k+13,
dynamic programming is performed by applying Bellman's
principle of optimality :

I'[y(k+1),k+1]=

¥ (lggrg’(k){l* (71 (k) KJ+ L [y (), mi (), k]] (19}
u; (k) e Uk}

where I*{yi(k),k] represents cost of the optimal path from
the initial state to state yj(k).

3.2 Application To Cruise Phase
Optimization

The discretized equations of motion for cruise flight can
be written as ;
tk+1) = (k) + Auk)
h(k+1) = h{k) + Ah(k) 20
m(k+1) = m(k) - FUEL [h(k),m(k),M(k)]

When time constraints are introduced (4D
optimization), the performance index can be simplified.
Flight time is a spacc refated constraint and can therefore
be eliminated [rom the performance index which reduces to

COST = FUEL

For 4D cruise phase optimization, the performance
index is therefore :
Ny -1
J= 3 FUEL[h(k),m(k),M(K)] @

k=0
where M(k) = Mach number at each siep

FUEL{h(k),m(k),M(k)] = fuel burn from step k 1o
step k+1 (which depends on altitude, aircraft weight
and Mach number over each step)
The dynamic programming approach for cruise
oplimization is presented on figure 3.

Figure 3 : Search space and restrictions (dashed arcas)
: for 4D dynamic programming

The dynamic programming formula becomes ¢
ek + 1), h{k +1), x4, 1=

min [I" (k)L Rk, %, |+
(13 k)i (R DYe T (k)X (k) {‘( »b;(k) “] 21
Ah(K),M(k)eU{k)

pUEL[h (k) my; (k) Msj(k)] ]

where H(k) and T(k) represent the allowable search spacc al
each siep and FUEL the foel burn from state
[ti(k)hjk).xi] Lo [1k+1),h(k+1), 30041,

Figure 3 shows a typical search space for a dynamic
programming solution to a 4D cruise oplimizalion
pioblem in which two time constraints Tcy and Tcg are
considered. Al the last swep, the costs of the different
solutions satisfying both time consiraints arc compared.
The flight profile with the lowest cost is then retained as
the optimal cruise profile and proposed 1o the pilot. Note
that, in this study, dynamic programming is performed in a
forward manner since the performance index is state
dependent and the final state is not known a priori (final
aircraft weight in particular).

4. Improvement of the DP Solution With Soft
Computing Techniques

Compuicr based FMS functions should have short time
responses o allow their use in real time conditions by the




pilot : no more than 20 to 30s for non critical functions on
existing FMS's and much less in the future. This is a
critical aspect of the problem even if on-board processing
power has largely increased over the last decade,

Dynamic programming solution approaches have not
been widely used in practice for time critical applications
due to the associated computational burden. In cases where
it has been used, heuristics have been introduced to reduce
the search space and the number of stale transitions.
However, with the fast evolution of processing
capabilities, several well known techniques have been
recently revisited for their possible application to real time
problems (Williams and Knox 1991). In the present
application, computation time is reduced by on-line
limitation of the dynamic programming search space and
the use, at each decision step, of neural networks for cost
evaluations,

4.1 Search Space Reduction

Several authors have focused on the design of
minimum cost path through a set of predefined nodes. The
most classical problem in this class is the travelling
salesman problem (TSP) which has been studied
extensively. Dumas et al. (1995) have introduced
elimination fests which greatly enhance the performance of
a dynamic programming approach and the application to
the minimization of the total cost for the travellin g
salesman problem with time windows (TSPTW). In this
work, the search space and the number of state fransitions
are reduced by introducing elimination tests both a priori
and during the execution of the algorithm. However, the
area of application of the present siundy enables the
introdunction of additional heuristics based on operational
considerations and the knowledge of aircraft performances
and limitations.

The search space is primarily defined by pilot enlered
parameters such as considered flight levels during cruise
phase, and by state and control variable upper and lower
bounds. The different ATC constraints are directly
accounted for by limiting the search space to the acceptable
states. These are defined by altitude, speed and time
constrainis along the flight. The time constraints are either
hard crossover time constraints or window type constrainis.

Known aircraft performances and limitations associated
with the aircraft flight envelope must also be taken into
consideration. But, since these limitations are aircraft statc
dependent, they can only be dynamically determined at each
step in the search process.

The combination of these different search space and
State transition reduction heuristics improves the
computation ime of the dynamic programining algorithm.
However, further improvements can be achicved by
including operational considerations and desi gh engincer or
piloL expert knowledge. Among these considerations, the
generally observed slowly varying nature of optimal speed
profiles is taken into account to significantly reduce the
scarch space by limiting speed cvolutions from one step 1o
another. The introduction of these elimination tests reduces
the computation time of the dynamic programming
solution by approximaltely 5.

4.2 Computation Time Reduction Using
Neural Nebworks

Computation of costs at the different dynamic
programming steps esscntially breaks down o aircraft fuel
burn cvaluations. Typically these are computed using
aircraft flight dynamics as well as aerodynamic and
performance look up tables. These repeated cvaluations
require an extensive computation effort and may tumn the
dynamic programming approach incompatible with on
board real time requirements. When using current fuel burn
modcls, 90% of total computation time of the DP
algorithm is spent on cost evaluations.

In a preliminary attempt of this study, polynomial
approximations of fuclt {low computation for lcvel flight
were introduced. However, the complex nature of the fuel
flow function and the required accuracy were found to be
incompatible with such an approach. Therefore, a different
approach, based on recent soft computing techniques, has
been considered. The proposed solation introduces a nearal
nciwork o perform fuel flow evaluations. It has been
shown in previous theorctical work that neural networks
can be trned into "universal approximators”, Cybenko
(1989) and Funahashi (1989) proved that any continuous
function can be approximated on a compact sel by a neural
network with one hidden layer. Furthermore, Hornick,
Stinchcombe and White (1989) showced that any
measurable function can be approached with such a
neiwork. These results, however, do not give any
information on the ways of building the network. The
general approach therefore consists in a trial and error
method which usually delivers acceptable solutions.

In this study, a two layer neural network has been
{found 1o be sufficient to provide good fucl flow
approximations. In order to reduce the computation time of
the simulated ncural network, the classical sigmoid
activation function has been replaced by a simpler rational
lanction :

x
[x]+1

{(x)=

22)

It has then been observed that the replacement of the
previous fuel burn computations by a neural nctwork
devides the total computation time of the dynamic
programming algorithm by approximately 8.5.

4.3 Comparison With Existing Solutions

Both the existing and the Soft Dynamic Programming
approaches for 4D cruisc optimization have been simulated
on a work station for time response comparisons. Since
the problem considercd here has extended objectives, it
should require much more processing lime. However, the
SDP solution contains this by the introduction of the
climination tesis and other soft computing techniques.

The different solutions have been compared for reduced
complexity problems involving a uniguc hard time
consLraint at a specific crossover point in the flight plan,
In the worst cascs, the SDP solution is found 10 require
three times more computation time than the cxisting
methods. Additional heuristics have been considered to
further improve the time response of the SDP solution. A
possible restriction of the search space around a constant
cruisc Mach solution leading to a local dynamic




programming solution is being evaluated, Resulls for this
approach are not yet available. )

5. Simulation Results

Computer simulations have been performed on several
case studics to evaluate the performance of the SDP
approach for cruise phase optimization. The irajectorics
were compared with those generated by the existing
optimization functions.

5.1 4D Cruise Optimization With a Unique
Time Constraint

Existing FMS profile optimization functions only deat
with a unique AT-type time constraint at a specilic
waypoint of the flight plan. The optimization algorithms
typically seek to adjust the Cost Index 1o salisfy the
required time constraint. The existing solutions define new
speed profiles on a frozen altitude profile, therefore they
will be referred to here as fixed altitude profile (FAP)
solutions. The SDP solution, on the other hand, gencrates
a cruise trajectory with a new optimal speed profile and a
new associated altitude profile. In addition, the speed
profiles generated by the SDP method are not restricted to
constant CT profiles, as they are in the FAP approach.

Case study description

In the following case study, the SDP solution is
compared to the classical FAP solution. In this example,
we consider a long range cruise {light with several possible
flight levels and a unique time constraint at the end of the
cruise phase. Both the FAP and SDP solutions have been
simulated on a work station to determine the altitude
profiles, speed profiles and associated fuel burn based on
the aerodynamic, engine and performance models of an
Airbus A340.

In this case study, we have considered a 6000 NM long
cruise flight with no wind at all flight levels. The other
data for this example are as follows and presented in fi gure
4,

Possible cruise flight levels : FL310, FL350 and FL390
Alrcraft weight at craise start: 250 tons
Before introduction of the time constraint, at a distance

of 6000 NM, the step points were determined on the
ground for no wind conditions and a Cost Index of 50

Te
FL390 :‘ ----------- 1 :
FL3sO k== e :
l
FL310 fodprdl — — e e a
1000 3600 6000 NM

Figure 4 : Case study description
Step point location
On figure 5, cruise distance is represented along the

horizontal axis while the possible values of the time
constraint are given along the vertical axis. The curves

represent, lor the different valucs of the ime constraint, the
location of the step points gencrated by the FAP and SDP
solutions,
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Figure 5 : Step point locations for different time
constraints

For the classical FAP algorithm, the step points are
frozen and correspond to the initial assumptions of no wind
flight conditions and a Cost Index value of 50. The step
point locations are represented on figure 5 by two vertical
bold lines. The achievable time constraints are determined
by using the range of possible Cost Index values [-
100,999] which determines minimum and maximum speed
scheduoles. With the FAP approach, time constraints
between 747 mn and 817 mn can be satisfied. This time

- window is defined by two horizontal dashed lines on figure

5.

The location of the step points generated by the SDP
solution arc also represented for all achicvable time
constraints. In the time window [757mn,800mn}, both
solutions define comparable step points. Qutside this time
window, the step points are located diffcrently. For a time
constraint of 747 mn, representing the lower range of the
FAP approach, the SDP solution defines a first step point
that 18 located about 1500 NM further. It also appcears that
the additional degrees of [reedom of the SDP approach
provides a much larger achievable time window as can be
seen on figure 5.

Fuel burn

Figure 6 illustrates the cruise fuel burn corresponding
to the solutions for the different achicvable time
constraints. In figure 6, time constraints are represented on
the horizontal axis and cruise fucl consumption on the
vertical axis,
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Figure 6 : Cruise fuel burn for the classical and SDP
solutions

In the time frame [757mn;800mn), where both
solutions define the same step points, the fuel burn is
similar. However, outside this time window, fuel
consumption performances can be very different : For a
time constraint of 747 mn for example, the fuel saving
associated with the shift of the step point locations is
approximately of 1800 kg which represents a total cruise
Tuel saving of 2%.

5.2 4D Cruise Optimization With Multiple
Time Constraints

The performed computer simulations have demonstrated
(the feasability of the SPD approach in dealing with 4D
cruise optimization problems with multiple time
constraints. The SDP approach is able to deal efficiently
with several time constraints of different types as long as
they are compatible, i.e. achievable within the flight
envelope of the aircraft.

The previous cruise flight is considered but two time
constraints (Tcy at 3000 NM and Ty at 6000 NM) are
now introduced :

Tep : AT OR BEFORE 395 mn
Tea @ AT 710 mn

(- 395 fon)
(=770 mn}

Figures 7 shows the Mach profile gencrated by the
existing FAP solution. Since the existing approach can
only deal with one constraint at a time (and only AT-type
time constraints), the solution is generated by applying the
FAP method twice in succession.

MACH Profile
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Figure 7 : FAP solution for multiple time constraint

problems

Figure 8 shows the Mach profile generated hy the SDP
approach.

MACH profile
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Figure 8 : SDP solution for multiple time constraint
problcms

The time constraints are such that the altitude profile is
unchanged for both solutions, and is therclore as presented
on figure 4. However, the SDP approach takes full taken
advaniage of the characleristics of the first time constraint
(AT OR BEFORE) and the predicted passing time at Tcy is
12 mn earlier than with the FAP solution,

The resulting fuel burn in both cases is:

FAP solution : 85 645 kg
SDP solution : 82 169 kg

The fuel saving of the global SDP approach, over the
classical FAP solution used twice in succession, is of
approximately 3.5 tons. This is considerable and could
Justify the implementation of the more complex SDP
solution in future Flight Management Systems as such
time constraints become more widely used by Air Traffic
Control,

6. Conclusions

In this study, the on-line cruise optimization problem
is solved using a Soft Dynamic Programming (SDP)
approach. The dynamic programming flormulation
significantly improves the oplimum trajectory generation
capabilities of existing Flight Management Systems. It
has been shown that relevant fuel savings can be obtained,
over existing FMS optimization functions, for 4D
optimization problems with a unique hard time constraint.
Furthermore, this new approach provides cxtended
capabilities for 4D trajectory generation : It performs 4D
cruise optimization for multiple time constraint problems
with the possibility of including "window type”
constraints.

Although dynamic programming is usually considered
as a time consuming technique, here processing times have
been cut down to acceptable levels by the use of
operational limitations and expert knowledge to reduce the
size of the search space and the number of statc transitions.
Furthermore, neural networks have been introduced for fuel
burn cajculations at each decision step which divides
computation time by about 8.5 over current fucl burn
evaluations. increased processing power in next gencration
Flight Management Computers should further divide
computation times by approximately 5. The SDP approach




therefore seems to provide a solution feor on-linc
optimization in next generation Flight Management
Systems,
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