N
N

N

HAL

open science

Skeleton-based edge bundling for graph visualization

Ozan Ersoy, Christophe Hurter, Fernando V Paulovich, Gabriel Cantareira,
Alexandru C Telea

» To cite this version:

Ozan Ersoy, Christophe Hurter, Fernando V Paulovich, Gabriel Cantareira, Alexandru C Telea.
Skeleton-based edge bundling for graph visualization. IEEE Transactions on Visualization and Com-

puter Graphics, 2011, 17 (12), pp 2364-2373. 10.1109/TVCG.2011.233 . hal-01021607

HAL Id: hal-01021607
https://enac.hal.science/hal-01021607

Submitted on 21 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://enac.hal.science/hal-01021607
https://hal.archives-ouvertes.fr

Skeleton-based edge bundling for graph visualization

O. Ersoy, C. Hurter, F. Paulovich, G. Cantareira, A. Telea

Abstract— In this paper, we present a novel approach for constructing bundled layouts of general graphs. As layout cues for
bundles, we use medial axes, or skeletons, of edges which are similar in terms of position information. We combine edge clustering,
distance fields, and 2D skeletonization to construct progressively bundled layouts for general graphs by iteratively attracting edges
towards the centerlines of level sets of their distance fields. Apart from clustering, our entire pipeline is image-based with an efficient
implementation in graphics hardware. Besides speed and implementation simplicity, our method allows explicit control of the emphasis
on structure of the bundled layout, i.e. the creation of strongly branching (organic-like) or smooth bundles. We demonstrate our method
on several large real-world graphs.

Index Terms—Graph layouts, edge bundles, image-based information visualization

<+

Graphs are among the most important data structures in informi@eal hierarchy of traffic connections in a road or airline network, or
tion visualization, and are present in many application domains iientifying the number and size of branches in a software structure.
cluding software comprehension, geovisualization, analysis of traf- The structure of this paper is as follows. In Section 1, we review
fic networks, and social network exploration. Classical visualizatiarlated work on edge bundles. Section 2 presents our bundling algo-
metaphors for general graphs include node-link diagrams [16]pmatrithm. Section 3 details implementation. Section 4 presents appli-
plots [33], and graph splatting [34]. For specific types of graphdj sucations on large real-world graphs. Section 5 discusses our method.
as hierarchies (trees), additional methods exist such as treemaps. Section 6 concludes the paper and outlines future work directions.

As the number of nodes and edges of a graph increases, node-link
graph visualizations become challengeddbytter, i.e. unorganized 1 RELATED WORK

groups of nodes and edges onto small screen areas. To reduce gixteq work in reducing clutter in large graph visualizations can be
ter, and also address use-cases which focus on simplified depiciipRanized as follows.

of large graphs with an emphasis on graph structure, several metho raph simplificationtechniques reduce clutter by simplifying the

have emerged. Specificallpundling methods are an interesting al- ra ; ;

; ! - .) ph prior to layoug.g. by grouping strongly connected nodes and
ternative for classical ”Ode"'r!". metaphors. Bund"f!g typlc_ally star ges into so-called metanodes, followed by using classical node-
with a glver:j set of nolde p03|t||ons_,heltheErdpresefnt |r:jthet;npult daﬁ?’lk layouts for visualization. Several simplification methods exist,
or computed using a layout algorithm. Edges found to be close éng.[l, 2]. Graph simplification is attractive as it reuses existing node-
terms of graph structure, geometric position of their endpoints, data gy |5y outs out of the box, but can be sensitive to simplification pa-
tributes, or combinations thereof, are drawn as tightly bundled cunvgsmeters, which further depend on the type of graph being processed.
This trades clutter for overdraw, and produces images which are eagigy o5 not allow a continuous treatment of the graph: the simplifica-
to understand and/or better emphasize the graph structure. Edge R’fﬂé\ events yield a set of discrete graphs rather than a smooth explo-
dles can be rendered using various effects such as blending or shags, scale [21]. Also, simplification typically changes node positions
ing [14, 21, 31]. Edge bundling algorithms exist for both compoungiy|anse to metanodes), which can be undesiralglavhen positions
(hierarchy-and-association) [13] and general graphs [14, 213, encode information. '

In this paper, we present a novel approach for constructing edgegqge hundlingechniques trade clutter for overdraw, by routing ge-
bundles for general graphs. We adapt a recent result which deBpy,metrically and semantically related edges along similar paths. Fur-
centerlines, or skeletons, of groups of edges [31] and use the skelgs, getaiis on clutter causes and reduction strategies in information

ton for actual edge bundling rather than shading only. In detail, Wgs jization is given in [10]. Bundling can be seen as condensing

combine edge clustering, distance fields, and 2D skeletonizationif eqges’ angle distribution along a reduced set of directions and also
construct bundled layouts by iteratively attracting edges towards

. e - > BRarpening the local edge spatial density, by making it high at bun-
centerlines of level sets of their distance fields. Apart from clusteringjs |ocations and low elsewhere. This improves readability in terms
our pipeline works image-based, which allows an efficient implemeg; finding groups of nodes related to each other by groups of edges

tation in graphics hardware. Besides speed, our method allows usergt@ pyndies). Bundling increases the amount of white space between
explicitly control the emphasis on bundle structure, create strongly pndles. which makes their visual separation easier.

branching, organic-like, or smooth, bundles, and guarantees that bunp;rersonet al. merge edges by reducing non-planar graphs to
dles always have a tree structure. This type of control can be helpfifl -+ ones [9]. Holten pioneered edge bundling under this name for
in applications where one is interested to see how several edges ’j Bmpound (hierarchy-and-association) graphs by routing edgeg alon
together into, or split from, main structures, for example when explofsg higrarchy layout using B-splines [13]. Gansner and Koren bundle
ing the structure of a network. Examples hereof are examining {8 qes in a circular node layout similar to [13] using area optimiza-
tion metrics [12]. Dwyeret al. use curved edges in force-directed
layouts to minimize crossings, which implicitly creates bundle-like

e O. Ersoy and A. Telea are with the University of Groningee, th shapes. Force-directed edge bundling (FDEB) creates bundles by at-
Netherlands, E.mail: 0.ersoy@rug.nl, a.c.telea@rug.nl. tracting control points on edges close to each other [14]. FDEB can
e C. Hurter is with DGAC-DSNA, France, E.mail: be significantly optimized using multilevel clustering techniques such
christophe-hurter@aviation-civile.gouv.fr. as the MINGLE method [11]. Flow maps produce a binary clustering
e F. Paulovich and G. Cantareira are with the University of Sauilo, of nodes in a directed graph representing flows to route curved edges
Brazil, E-mail: paulovic@icmc.usp.br, cantareira@icmuep.br. along [23]. Control meshes are used by several authors to rowteccur
Manuscript received 31 March 2011; accepted 1 August 20adtqni online ~ €dges.e.g.[25, 35]; a Delaunay-based extension called geometric-
23 October 2011; mailed on 14 October 2011. based edge bundling (GBEB) [7]; and 'winding roads’ (WR) which
For information on obtaining reprints of this article, plsa send use boundaries of Voronoi diagrams for 2D [21] and 3D [20] layouts
email to: tveg@computer.org. Several techniques exist for rendering bundled layaeitg, color

interpolation along edges for edge directions [13, 7]; transparency or

hue for local edge density,e. the importance of a bundle, or for 2.2 Shape construction

edge lengths [21]. Whole bundles can be drawn as compact shaggssiering delivers sets of spatially close edges, the bundling
whose structure is emphasized by shaded cushions [31]. Graph Sfﬂﬁﬁdidates. Given such a clus@r= {g}, we consider its draw-

ting visualizes node-link diagrams as continuous scalar fields usn% A(C) C R, e.g. the set of polylines corresponding to its edges
color andfor height maps [34, 15]. g if we use the default linear edge interpolation. We construct a
2 ALGORITHM compact 2D shap@ c R? suzrroundingA(C), as follows (see also
The inspiration behind our method relates to a well-known fact 'El'lg 2.)|.?2G|ven any shap® C R”, we first define its distance transform
S . . »:R°— Ry as
shape analysis: given a 2D shape, its skeleton is a curve locally cen-
tered with respect to the shape’s boundary [6]. Skeleton branches ca
ture well the topology of elongated shapes [19, 28]. Hence, if we could
create such shapes from sets of edges in a graph, their skeletons could
be suitable locations for bundling. To this end, we propose a skeleton-

based edge bundling method, as follows (see Fig. 1):

DTo(x € R?) = min|jx—vy/| 2)
yed

1. weclusteredges into group€; which have strong geometrical
and optionally attribute-based similarity;

2. for each cluste€, we compute a thin shap® surrounding its
edges using a distance-based method;

3. for each shap®, we compute its skeleto®, and feature trans-
form of the skeletorfr Tg;

4. for each cluste€, we attract its edges towar&g usingFTs;

5. we repeat the process from step 1 or step 2 until the desired
bundling level is reached;

6. we perform a final smoothing and next render the graph using a
cushion-like technique to help understanding bundle overlaps.

We start with an unbundled grapgh = (V,E) with nodesV and
edge<sE. We assume that we have node positigns R2, either from
input data, or from laying ouB with any existing methoe.g. spring
embedders [16]. Edges< E are sampled as a set of points connected
by linear interpolation; other schemes such as splines work equally
well. The start and end points of an edge, denefednde’ respec-
tively, are the positions of the nodes the edge connects. Edge points
may come from input data.g. when we bundle a graph which has_.
explicit edge geometry. If no edge positions are available, we initiq,'fe-'gmf'(552?505025;3‘2'?01' dae)ta?lg and § b) DTs; ¢) FTs; d) bundiing
ize the edge points by uniformly sampling the line segmégtse®) e
with some small step. Our bundling algorithm iteratively updates theseGiven a distance value@, we next define our shagie as
edge points. Its output is a bundled layout®ivhich keeps node po-
sitions intact and adjusts the edge points to represent bundled edges. Q={xe RZ\DTA(Q (x) < w} (3)
The six steps of our method are explained next.

whereDTy ¢ is the distance transform of the drawidgC) of C’s

21 Clysterlng . . edc?es. The shape’s bound@® is the level set of valuey of DTy c)
To obtain elongated 2D shapes, needed for our bundling (descrltz(gfe Fig. 2 a). This is equivalent to inflatindC) with a distanceo in
next in Sec. 2.3), we first cluster edges using a similarity metr :)

which groups same-direction, spatially close, edges, using the cl
tering method described in [31]. We have tested several clustering
gorithms: hierarchical bottom-up agglomerative (HBA) clustering u
ing full, centroid, single, and average linkage, &atheans clustering, 2.3 Shape creation

both with Euclidean and statistical correlation (Pearson, Spearm@s han® ted f d luster drawi tlined
rank, Kendallsr) distances. HBA with full linkage and Euclidean dis- - vc' @ Shap&2 computed from an ecge cluster drawing as outline
tance given by above, we next compute its skelet&n defined as

dll directions. In practice, we set to a small fraction €.g. 0.05) of
mg bounding box o6. Efficient computation of distance transforms
IS detailed further in Sec. 3.

N So={x€Q[Fy,zc9Qy#z|x—-2z| =[y—2| =DTyo(x)} (4)
die.ej) = | > llew—el? ® o _ _ _
k=1 i.e. the set of points i which admit at least two different so-called

ature points 0@ Q, at distance equal to the distance transforid@f

whereeijyjel’—N are uniformly spaced sample points along the edgeziig 2 a)

with N € [50,100, gives the best resultge. clusters with geomet- * Gjyens we now compute its so-called one-point feature transform
rically close edges which naturally follow the graph structure. Usmg-,—s: R2 _s R2, defined as

the sameN for all edges removes edge length bias. HBA delivers a

dendrogramD = {C;} with the edge seE as leaves and similarity FTs(x) = {y € SDTs(x) =[x —y||} (5)
(linkage) valuesd(C), equal to the full linkage of clusté based on

the distance metric in Eqn. 1, increasing from root to leaves. We seléet one of the feature points a&f Figure 2 b,c show thBTgandF Tg of
a’cut’in D, or partition,P = {C; € D|d(C;) < } of E based on a sim- a skeleton. Gray values in Fig. 2 b indicate D& value (low=black,
ilarity value 4, set by our algorithm as explained further in Secs. 2.Bigh=white). Colors in Fig. 2 c indicate the identity of different feature
and 3. If desiredd in Eqn. 1 can be easily adapted to incorporate edgmints - same-color regions correspond roughly to the Voronoi region
data attributes, as outlined in [31]. of the skeleton branches [32]. The skeleton is the identity sEfTef

[iterations

y0 o Shape construction Edge bundling you.p Postprocessing
clustering iﬁ;i?gfm skeletonization Ire:r::;srm tip detection Egmputation attraction ;ﬂiﬁ:?nng& rendering
T o T T T Yolr T T
[[[[[
input cluster set shapes Q skeletons Sq, image data skeleton tips skeleton paths bundled edges | smooth bundles final
graph end user image

Fig. 1. Skeleton-based edge bundling pipeline. End user parameters are marked in green. System preset parameters are in red

i.e. ¥x € SFTs(x) = x. Note that, in Egn. 5, we use the distancesmoothly edges twist, or curve, from their nodes to reach their bundled
transformDTs of the skeletor§, and not the distance transfoldT;g location. HigherK values produce more twists, and Id values
of the shape. Also, note that the one-point feature transform is simpfgoduce smoother twists. Valueskfe [3, 6] give very similar results

than the so-called full feature transform to known bundling methods.g.[13, 14, 21]. Also, for any € S
ful . FTs(x) =X (Sec. 2.3), so for such points we hat#"= x (Eqgn. 7),i.e.
FTg™ (x) = argmin|x—y/| (6) points which have reached the skeleton, the extreme bundling location,
yes do not move any longer.

which recordsall feature points ok [6]. Equation 7 is equivalent to advecting edge poits the gradi-

; h . t field —ODTs. Distance transforms of any shape except a straight
In practice, we compute distance transforms, one-point feat g . . .
transforms, and skeletons in discrete image (screen) space. Thi;ﬁgﬁ have diviIDTs 7 0 [27]. Hence, our attraction typically shortens

lows efficient implementation (see Sec. 3) and also further process% dllic:: ;Itciaonr?t(;egsned?es\,/es?g; ttf:?h%eéém;negﬂ;l)ég%vgdnaft7er one
of the skeleton for edge bundling, as described next. : an. 7. mp g€ pom n Eqn.
by uniformly sampling edges in arc-length space with a distance equal

2.4 Edge attraction to a small fixed fraction (0.05) of the layout’s bounding box. This
removes points where the edge contracts (ddTs < 0) and inserts

oints where the edge dilates (diDTs > 0) as needed, thus ensuring
‘uniform edge sampling density.

Using the skeletosand its feature transforifATs, we now bundle the
edgesg € C by attracting a discrete representation of each edge
wardsS. This idea is based on the following observations. First, given
the way we combine clustering and edge bundling, a cluster contains . . -

only edges having close trajectories; the reasons for this are detaffe®l Attraction singularities

in Sec. 2.5. By construction, the skelet®of a cluster is locally cen- As explained, Eqn. 7 is equivalent to advectinip the field—ODTs.
tered with respect to the (similar) edges in that cluster, a good This field is smooth everywhere iR? except on pointx where
candidate for the position to bundle towards. Seconlig(x) — X ||FTSf””(x)H > 1,i.e. points located on the skeleton of the skeleton’s

. . 2 . - _ -
gives, for each point € R4, the direction vector from to the closest complement, or Vorono diagram & S= Sge\s, Intuitively, Scorre-

skeleton point t, i.e. the direction to bundle towards. We use thesé - . LT e)
observatigns to bundie as follows Sponds in Fig. 2 to color discontinuities. Although this singularity set

First, we compute all branch termination pointstips, T = {t;} 'S small,i.e. a set of curves in 2D, we need special treatment for such

of S Given thatSis represented in image space, we use a simple aﬁl(ljuatlons. If we were to directly advect a curve using Eqn. 7 with no

efficient 3x 3 pixel template-based method [18] to locate Next turther precaution, singularities would appear where the curve crosses

we compute all skeleton pattis = {75 C S} between any two tips S sincelDTs has a high absolute divergenée,. changes direction
ti andtj. The paths are represented as pixel chains and are fo idly, in suc_h areas [27]. Such singularities appear as sharp kinks in
using depth-first search from eaton the skeleton pixel-adjacency- "¢ curlve, v;/thlcr;'defte}]atsb?ur pgrp_osg_of greattlng s(;notcr)]th Ybur;]dles.d For
graph. We next use these paths to robustly attract the edges tow ple, altracting the biue edgen Ig. S a towards the Y-shape
the skeleton. ske eton yields th(_e red line which shows two kinks, wheoeossesS
For eachg ¢ C with start and end pointsf ande® respectively, we (dotted line) at pointa andb. The problem is made only more com-
select a skeleton pathi(g) € M so that{FTs(e5), FTs(e®)} (), plexlby thg ftact tthal we use a sampled edge representatiocnmsy
i.e. a path passing through the feature points of both edge end poillﬁg.c 0se, but no 0“_5) o o
If there are several such pathsfih we pick any one of them, the Ve Solve such situations by an implicggularizationof the ad-
particular choice having no influence on the algorithm. vection field determined bl Ts. First, we enforce the constraint that
We now user(g) to bundle along the skeleton, as follows. Con-POiNtsx € e can only be advected to points on the edge’s pa).
sider a pointx € g located at arc-length distandgx) from e5. We This ensures that, during advection, parteannot be attracted to-
movex towardsF Ts(x) with a distance which is large i¢is far away ~Wards other skeleton branches than the setaftiguousbranches
from FTs(x) and/or close to the middle of the edge: which form 7. Intuitively, Eqn. 7 should not pulée towards non-
connected skeleton branches. We achieve this constraint as follows
new A(X) A(X) (see Fig. 3 b). For eache e, we evaluate it& Tg(x). If FTg(x) € i(e),
X = {1* ag (ﬁe,e)ﬂ X+ag ()\ (e|e)> FTs(x) (7) we attract the 'regular’ point using Eqn. 7, else we markas special

case. Special points alorg(yellow in Fig. 3 b) form compact sets
. i H start
Here,a < [0,1] controls the tightness of bundling: Large values briné’—"n‘g’h":h are preceded and followed ety regular points;™" and
the edge closer to the skeleton, whereas small values bundle less. Fhé respectively, whose feature points belongri@) by construc-

function: [0,1] — [0, 1] defined as tion. We next map each special poiato a corresponding point™2P
on ri(e) using arc-length interpolation along boti and their corre-
@(t) = [2 min(t,1—t)]¥ (8) sponding path fragmentE Ts(o32"), FTs(02"%)] C S (dark green in

Fig. 3 b), and us&™aPin Eqn. 7 instead oF Tg(x). This ensures that
modulates the motion amount so that the edge’s end pefraade® both special and regular points are attracted to the samepejband
do not move at all, points close to these end points move less, dhds, sincet(e) is a compact curve, that the motioneis smooth.
points around the middle of the edge move most. This produces theHowever, the above regularization does not eliminallesharp
curved edge profile we require for bundling, and also keeps edge éicks in the advection of an edge: Consecutive points of the edge can
points fixed to their node locations. The paramé€econtrols how ’see’ points on the same skeleton pattand still be separated by a sin-

skeleton § ——

undesired result

skeleton S

) I B

! curve to bundle

skeleton S——__,
path fragment [FTg(0*"),FT5(0°"%)]
FTs(e;0)

desired result

number of iterations is reached. More iterations yield tighter bun-
dled edges. This process is strictly monotonie, edges can only get
closer to their clusters’ skeletons (hence to each other) by construction,
as explained below (see also Fig. 4).

First, let us explain why clustering needs to be repeated during the
iterative process. For the first clustering, we use a high similarity
thresholdd in order to guarantee elongated, thin, clusters regardless
of the edge spatial distribution in the input graph (Sec. 2.1). This
is essential for getting the initial bundling under way. Indeed, if we
had weakly coherent clusters, these would contain edges that inter-
sect each other at large angles, hence the shapes surrounding them,

skaleton S and their skeletons, would be meaningless as bundling cues. For sub-
sequent iterations, we decreaSeand recluster the graph each few
(3tob) iterations. This produces fewer, increasingly larger, clusters,
bl . which allows fine-scale bundles to group into coarse-scale ones. How-
/ : ever, these large clusters doeally elongated, since they contain al-
/ curve to bundle ready partially bundled edges. Hence, coarsening the clustering will
special points o not group unrelated edges. The overall effect is bottom-up bundling:
skeletonS gl e result First, the closest edges get bundled, yielding fine-scale local bundles,
FTs(e) followed by increasingly coarser-scale bundle merging.
g skeleton § Similarly, we decrease during the iterative process. Initial large
a values yield strongly coherent initial bundles, needed for cluster-
ing stability as explained above. Subsequent relaxedlues allow
edges in more complex, larger, bundles to adjust themselves. Concrete
values ford anda are given in Sec. 3.2.

b)

[I ettt i

,l curve to bundle
FTslen) ‘ 2.6 Postprocessing

skeleton S
desired result 2.6.1 Relaxation and smoothing

skeleton $ The output of our bundling algorithm has a strong branch-like structure
(seee.g. Fig. 5 f). This is the inherent effect of using skeletons as
bundling cues. Indeed, skeleton branches asymptotically meet at large
angles [24]. This visual signature of our bundles may be desirable for
! use-cases where one is interested to see the branching structure of a
=~ curve to bundle graph. However, often the fact that two bundles join at some point
in a thicker bundle is irrelevant, and should not be over-emphasized.
. We offer this possibility by performing a final postprocessing on the
Fig. 3. Attraction singularities. Naive solution (a,c) and corresponding b ndled layout. Here, two variations are proposed. First, we apply
solutions Wi_th regularization (b,d). Final bundled_ curve is shown in red. a simple Laplacian smoothing filter along the edgesimes, much
Voronoi regions of the branches of Sare shown in different hues like [14]. This removes sharp bundle turns, which by construction
appear precisely, and only, where skeleton branches meet. Irateed,
gularity (see pointin Fig. 3 c). As explained, advecting such pointsknown from medial axis theory, a skeleton branch is always a smooth
a using Eqn. 7 would produce undesirable bends. Since the featutarve; the only curvature discontinuities along a skeleton appear at
point ofais located on the same pattfe) as those of's neighbors on branch junctions [24]. A second postprocessing we found useful is to
the edge, we cannot firusing the path-based detection criterion outinterpolate linearly with a valug € [0, 1] between the bundled graph
lined above. We solve this problem by using an angle-based criteri@md its initial layout. This relaxes the bundling, which is desirable
Given our discrete edge representation {X; }, we test if the feature when users want to see the individual edges within a bundle and/or
vectorsF Tg(xi) — x; andF Tg(Xi+1) — Xi+1 Of consecutive edge samplewhere these come from in the initial layout. The effect is similar to the
pointsx; andx;;1 form a large angl¢3. If B exceeds a user-definedspline tightness parameter in [13].
valueBmax, We markx; as a special point and treat it as explained ear- Figure 5 a,b show the effect of smoothing on a graph whose nodes
lier for the path-based detection criterion. In practf@gax= 17/4 has use a radial layout. Smoothing (b) removes the strong branching ef-
given good results for all graphs we tested. The overall effect is thgtt visible in (a) at the locations indicated by arrows. The result is
sharp edge angles are eliminated and edges are advected smoothlyery similar to the HEB layout [13]. However, it is important to stress
wards the skeleton (Fig. 3 d). As a more complex example of otliat we obtain our bundling with no grapierarchyinformation. Fig-
regularization, Fig. 2 d shows the bundling of a set of edges (greamgs 5 e,f show the effect of smoothing and relaxation on the well-
close to the skeleton in Fig. 2 a. known US airlines graph, whose bundled layout is shown in Fig. 7 j.
Our angle criterion is a one-dimensional version of the divergenc8moothing removes the 'skeleton effect’ from the bundles, while re-
based Hamilton-Jacobi skeleton detector of [27]. It subsumes the pdtixation makes these thicker with less effect on their curvature. As
based criterion. In theory, it would be sufficient to use the angle cguch, the two effects serve complementary goals.
terion to achieve smooth motion. However, the path-based criterion is)
more numerically robust as it involves no angle estimation or thresk-6.2 Rendering
olding. Since its application is equally fast (we need paths anyway fghally, we propose a simple but effective rendering technique for eas
regularize the attraction in both cases), we use it when applicablei¢@ visual following of the rendered bundles (Fig. 5 c,d). The principle
reduce any chance for numerical instabilities. follows [31]: We render each bundle in back-to-front order, desre
) . ingly sorted by skeleton pixel cout], as if they were covered by a
2.5 lterative algorithm 3D cushion profile bright at the bundle’s center and dark at its periph-
For a given graph layout, one application of the clustering, shape camy. This helps following a given bundle, especially in regions where
struction, and edge attraction steps outlined above yields a new layseweral bundles cross. In contrast to [31], we use a much simpler tec
whose edges are closer to their respective cluster skeletons. Toexchigégue (see Fig. 6). Edges are rendered as alpha-blended polyliees. W
full bundling, we repeat this process iteratively until a user-specifieadodulate the saturatiof and brightnes® of each polyline poink

FTs(ej0)

FTs(ejn)

iteration 10 iteration 12

Fig. 4. Iterative bundling of the US migrations graph. Colors indicate edge clusters (see Sec. 2.5)

based on its distance to the skeleth{n) = DTs(x), which is already B S
computed for the attraction phase (Sec. 2.3). For this, we use

Sd) = 1-d/ds (9)

Bd) = 1-Vd/& (10) _
This yields thin, specular-like, white highlights in the middle of the bl o eron S
bundles (where the skeleton is located) and darkens the edges as they dp DTy 85<dy DT | ‘

get further from the skeleton. The paramedgris the local thick-

ness of the bundle. For an edge poirg Q, dg(X) = DTs(FTyq (X)), g ; ;

i.e. the distance of the closest point on the shape boung@rjo the Fig. 6. Cushion shading for bundles (Sec. 2.6.2)

shape’s skeleton. This does not require any extra computations, since

we anyway comput& Ty andDTs as part of the shape constructionplicit representation of edge clusters allows us to easily brush or select
(Sec. 2.2, see also Sec. 3 for implementation details). The parameg@ups of edges showing up as bundles or branches thereof. Three
Js < 0g controls the highlight thickness and is set to a small fractiotypes of selection were found useful, as follows (see also Fig. 8 e-g
(e.g.0.2) of 3. This technique has several differences as comparedand example discussed in Sec. 4). Given the mouse positive first
splatting-based shading techniques for bundles [31, 21]. First, nur reelect all bundled edges within a disc of small radiusentered ak
dering does not change the screen-space thickness of a bundll, whiccomputing the feature transform of thendlededges and then se-

is determined by the bundling layout — thin bundles stay thin. In cofecting all edges which contain feature points in the disc. This query
trast, splatting technigues tend to make thin bundles relatively thickisuseful for basic edge brushing and for building the next two queries.
which consumes screen space and increases occlusion chances. S&condly, we want to select all edges in the most prominent bundle,
ondly, if we relax the bundling as described earlier, individual edges bundle branch, passing through the disc. We repeat the basic se-
become visible but still show up as a coherent whole due to the cudbetion, count the number of selected edges having the same cluster
ion shading. Figure 5 d shows this. To better illustrate the effect, vigs and retain the ones having the cluster id for which the most edges
decreased here the overall opacity of the edges. The inset shows have found. This selects the thickest bundle branch close to the mouse,
bundles appear as shaded profiles even though they are not, techinise edges within any bundle branch always have the same cluster ids,
cally speaking, compact surfaces. Thirdly, although we could usébg construction. Finally, to select an entire cluster, we do the basic se-
physically correct shading model (like [21]), we found our pseuddection and return all edges in the cluster whose id is the one for which
illumination adequate in terms of our goal of understanding overlatiie most edges were found.

ping bundles.

2.6.3 Interaction 3 IMPLEMENTATION

We have experimented with several types of interactive explorati@everal implementation details are crucial to the efficiency and robust-
atop of our method. In particular, our image-based pipeline and exess of our method, as follows.

e) smoothing - f) relaxation

Fig. 5. Layout postprocessing. Edge smoothing (a vs b, Fig. 7 j vs e). Edge relaxation (Fig. 7 j vs f). Cushion shading (c), half-transparent detail (d)

3.1 Image-based operations Graph Tips |Points |Inflation [Holes [Skel. |Paths |Attraction
(I=5) (ms) | (ms) |[(ms) |(ms.) (ms)
We compute shapes, skeletons, skeleton tips, and distance and featuré;s ines 22 | 8388 77 1 120 | 314 | 98 20
transforms in an image-based setting. First, we render all edges UsGgmigrations | 28 | 9780 78 | 134 | 339 | 170 77
ing standard OpenGL polylines. Next, we use a Nvidia CUDA 1.1 Mradia 14 21580 80 | 96 | 357 | 45 17
based implementation of exact Euclidean distance-and-feature trans-Frrance air 34 123759 81 | 148 | 374 | 222 388
forms [4]. We extended this technique to compute robust skeletons poker 28 | 2385 64 | 117 | 238 | 146 13
based on the augmented fast marching method (AFMM) in [32]. In [CUDA implem. | [2] 8] 212] 3

brief, we arc-length parameterize the shape boundérnand detect

S, as pixels whose neighbors’ feature points subtend an a@dn tapie 2. SBEB performance. Figures are averages for all clusters at it-
larger than a given value. The valuep indicates the minimal detail eration | =5 for different graphs. First rows show CPU timings. Last row
size ondQ which creates a skeleton point. Sin2@ is a level-set of a shows CUDA-based timings (which are uniform for the tested graphs).
distance transform at value of a set of smooth curves (edges), it only

contains 'sharp’ details at the curve end points. Hence, sgitia@r, |ine with [32]). For a graph with 200 clusters (Fig. 7 a-b), this yields
i.e. half the perimeter of a circle of radius, guarantees that skele- 8o secondsiteration. The AFMM B(3|C| log(3|C|)) where|C] is
ton tips correspond to edge end points. The skeletonization methe number of pixels on all edges in a clus&rsince the AFMM
choice is essential: the AFMM guarantees that no spurious branck@gputes within a band of thicknegsaround its input shapé,e.
appear due to boundary perturbations, which in turn guarantees stabJe— O(5|C|). In contrast, our CUDA implementation takes 4 mil-
bundling cues. However, even if all skeletips correspond to edge |iseconds per distance, feature transform, and skeletonization for the
end points, this does not mean that all edgel pointscorrespond to same image on a Nvidia GT 330M GT card, in line with performance
skeleton tips. Short edges within a large cluster do not produce skeigported in [4],i.e. 0.8 seconds per iteration for the graph in Fig. 7 a-
ton tips. This is another reason for using the displacement fungtion, * Graphs with fewer clusters require proportionally less time, since
(Ean. 8) to guarantee that no edge end points move during bundlingne speed of the CUDA method B(N) for an image ofN pixels,
thus image-size-bounded. Overall, the CUDA solution is roughly 100

Graph Nodes | Edges Clusters/iteration Total (GPU) times faster than the CPU-based AFMM.
I=1]1=5]1=10 (sec) The complexity of the skeleton path computations (Sec. 2.4) is
US airlines 235 | 2099 90 15 9 6.3 discussed next. Following earlier comments on the distance-level-
US migrations | 1715 | 9780 57 14 7 4.1 set nature ofdQ, the number of skeleton tipsl'| for a shape is
Radial 1024 | 4021 94 30 24 7.4 0O(|0Q]/(mw)). Since we setv to a fixed fraction of the image size
France air 34550 | 17275 | 207 40 26 29.2 (0.05, see Sec. 2.2), we get on the average a few tens of tips per ske
Poker 859 | 2127 | 86 28 23 5.2 ton, regardless of the number of edges in a cluster (Tab. 1 (Tips)).
o o AFMM guarantees 1-pixel-thin skeletons [32], so all nodes in the
Table 1. Graph statistics for datasets used in this paper skeleton pixel-adjacency-graph are of degree 2, except skeleton junc

tions which areO(|T|) in number. The length of the skeleton of a

The original CPU-based AFMM [32] is too slow for our task. TashapedQ is O(|dQ|). Hence, the depth-first-search finding of skele-
ble 2 show the inflation (Eqn. 2) and skeletonization times (Eqn. 4pn paths between tips (Sec. 2.4)3¢|T|2|0Q|) using a brute-force
the latter also including the skeleton feature transform, on a 2.8 GHethod. Table 2 (Paths) shows the costs for the graphs in this paper
quad-core Windows PC (Sec. 4) for several graphs at an imagefsizeising quad-core multithreading with one depth-first-search per thread.
1024. Table 1 gives statistics on these graphs, including the (decre@ibe same implementation on CUDA reduces the costs to 12 millisec-
ing) number of clusters at several iterations. On the average, the tioras (or less for skeletons with fewer tips) as more cores are avail-
needed by the AFMM to process a cluster sums up to 0.4 secondsdbie. This cost could be reduced further, if desired, by using the same

depth-first search on the much simpler graph whose nodes are skelétow much edges approach the skeleton at one iteration. This implic-
tips and skeleton branch junctions and edge weights given by skeletibyr controls the bundling convergence speed. Too high values yield
branch lengths, or faster all-pairs shortest path algorithms at the &ght bundles and convergence after the first few iterations, which
pense of a more complex implementation [17]. is fine for graphs which already have relatively grouped edges, but
The attraction step is linear in the number of edge discretizatidimits the freedom in decluttering complex graphs. Too low values
points,i.e. tens of thousands for large graphs (Tab. 1 (Points)). Edgakliow the iterative process to adapt itself better to newly discovered
are attracted independently to their cluster skeleton, so CUDA parelusters as the edges approach each other, but convergencesequir
lelization of this step is immediate. more iterations. In practice, we setas a linearly decreasing function
Inflating edges can produce shapes of genu i.e. with holes. of the iteration number frorr(0) = 0.9 toa(l) =0.2.
Technically, this is not a problem, as skeletonization, path computa-
tion, and attraction can handle this. However, we noticed that sublumber of iterations: In practice, aftel € [10,15 iterations, we
holes are rarely meaningful. Holes create loops in the skeleton apletain tight bundles of a few pixels in width for all graphs we worked
thus loops in asinglebundle, which is supposed to be a tight objectwith. This is expectable, given thdl — a)' becomes very small
To remove this, we fill all holes in our shapes prior to skeletonizatidior a < 1,1 > 10. In practice, we always sét= 15 and then use
using an efficient CUDA-based scan fill method, as follows: Givengmoothing and relaxation to interactively adjust the result as desired.
background seed pixel outside the imdg@ee.qg. the pixel(0,0), we
mark it with a special valug. Next, we fill horizontal scan line seg- Smoothing: The smoothing amoung € N describes the number of
ments of background value from eaetvalued pixel in parallel, one Laplacian smoothing steps executed on the bundled layout (Sec. 2.6).
scan line per thread. We repeat alternating horizontal with verticeéhluesos € [3,10] give an optimal amount of smoothing which keeps
scan line passes until no pixel is filled any more. Checking the sttipe structured aspect of the layout but eliminates the skeleton-like
condition requires only non-synchronized writing to a global boolednok. Larger values make our layout look similar to the force-directed
variable, set to false before each pass. This parallelizes more effiethod of [14]. In practice, we noticed that the smoothing amount
ciently than classical scan line or flood fill. Marking all nampixels strongly depends on the task at hand: In some cases, users attach
as foreground fills all holes i@. The entire fill takes under 20 scansemantics to the branching structure, want to clearly see which
iterations for all images we examined. CUDA filling adds around §roups of edges get merged together, so no smoothing is needed. In
milliseconds/image of 1024pixels in comparison with around 0.15the general case, however, the exact bundle merging events are not
seconds/image for classical CPU flood fill (Tab. 2 (Holes)) up to r@levant, so we use by defayif= 5.
total of roughly 25 milliseconds per cluster per iteration. Note that,
due to filling, all skeletons, and thus the created bundles, become trBefaxation: The relaxation amoung; € [0,1] controls the interpo-
rather than graphs. Although we do not use this property now, it mégtion between the fully bundled layout and original one (Sec. 2.6).
enable future interaction work such as user manipulation of the laydeé&laxation is most conveniently applied interactively, after a bundled
by means of bundle handles. layout has been computed. Values [0,0.2] give a good trade-off
Clustering using HBA is fast. The CPU implementation in [8] conbetween bundling and overdraw.
structs the complete dendrogram of a graph of 10 to 20K edges in 0.1
seconds on our considered machine. We next added the GPU-baBedrall, the entire method is not sensitive to precise parameter set-
clustering in [5], which is roughly 10 to 15 times faster. Note that onltings. For the graphs in this paper and other ones we investigated,
a few clustering passes are needed for a complete layout (Sec. 2:8.have obtained largely identical bundled layouts with different pa-
Also, we do not need to construct the entire dendrogram, but only tremeter settings in the ranges indicated above. We explain this by the
bottom-most part thereof, until we reach the cut valugSec. 2.1) at stability of the inflated shape skeletons to small local variations of the
which we extract the clusters to bundle further. positions of edges, and the smoothing effect of the entire iterative pro-
Finally, postprocessing (Sec. 2.6) poses no performance probleesss on the layout. As such, the only two parameters we expose to
so we implement it in real-time using standard OpenGL polylingsers ares and y, the others being set to predefined values as ex-
rendering and CPU-based smoothing and relaxation. All in all, th@ained above.
CUDA-based bundling takes 5 to 30 seconds for producing a final lay-
out for the graphs we tested (Tab. 1, right colunir®, 25 millisec- 4 APPLICATIONS

onds per cluster times the total number of clusters processed duffjg now demonstrate our skeleton-based edge bundling (SBEB)

thel = 10 iterations plus the clustering time. In terms of memory, O4pethod for several large, real-world, graphs. Statistics on thesbgrap
method is scalable: we only need a few 192#ages (distance and are shown in Tab. 1.

feature transforms and skeletons) and discard these once a cluster Sigure 7 illustrates the SBEB and compares it with several exist-
processed; all paths_between skeleton tips for the current c_Iuster; bundling methods. Note that in all images here generated with our
the graph edge polylines. For all graphs presented here, this amo

q | licati . h hod, we used simple additive edge blending only, as our focus here
to under 100 MB total application memory requirements per graph.ig the |ayout, not the rendering. Images (a,b) show an air traffic graph

(nodes are city locations, edges are interconnecting flights). Images
(c,d) show a graph of poker players from a social network. Edges in-
Our entire method has a few parameters: the clustering similarifjcate pairs of players that played against each other. The node layout
thresholdd, edge advection factar, total number of iterationk, and is done with the spring embedder provided by the Tulip framework [3].
smoothing and relaxation amourysandy:. These parameters allow Given the average node degree and node layout algorithm usedgrelate
covering a number of different scenarios, as follows. nodes tend to form relatively equal-size cliques. Bundling further sim-
plifies this structure; here, bundles can be used to find sets of players
Clustering similarity threshold o: This parameter specifies thewhich played against each other.
granularity level at which we cut the cluster dendrogram to obtain Images (e-h) show the US migrations graph bundled with the WR,
sets of edges to bundle at the current iteration (Sec. 2.1). Weaet GBEB, FDEB, and our method (SBEB) respectively. Overall, SBEB
a linearly decreasing function on the iteration number[1,1] from produces stronger bundling, due to the large number of iterations
6(0) =0.95 to &(1) = 0.7. This yields strongly coherent clusters inl = 15 being used), and emphasizes the structure of connections be-
the first iteration, regardless of the initial edge position distributiotween groups of close cities (due to the skeleton layout cues). If less
and alsdocally strongly coherent clusters in the subsequent iteratiobsindling is desired, fewer iterations can be used (Fig. 4). Adjusting
(Sec. 2.5). the postprocessing smoothing and relaxation parameters, SBEB can
create bundling styles similar to either GBEB (higher bundle curva-
Edge advection factor a: The advection valuer € (0,1) controls tures, more emphasis on the graph structure) or FDEB (smoother bun-

3.2 Parameter setting

Fig. 7. Air traffic graph (a: original, b: bundled). Poker graph (c: original, d: bundled). US migrations graph (e: FDEB, f: GBEB, g: WR, h: SBEB).
US airlines graph (i: FDEB, j: SBEB). Colors in (a-d,h,j) indicate clusters (displayed for method illustration only)

dles). Finally, images (i,j) show the US airlines graph bundled with Figure 8 e-g show a citations graph (433 nodes, 1446 edges). Nodes
the FDEB and SBEB respectively. SBEB generates stronger bundlimg InfoVis papers, laid out according to content similarity: close
(more overdraw) but arguably less clutter. Note also that SBEB gamdes indicate papers within the same, or strongly related, topics.
erates tree-like bundle structures which is useful when the exploratidhe layout algorithm used for the nodes is multidimensional scaling
task at hand has an inherent (local) hierarchical narige,see how with least-square projection [22]. Paper similarity is measured using
traffic connections merge into and/or split from main traffic routes. cosine-based distance between term feature vectors [26]. Topies wer
added as annotations to the image to help explanation. Bundling ex-

Figure 8 shows further examples. The images (a,b) show flighbses a structure of the citations between topics. We use the bundle-
paths within France, as recorded by the air traffic authorities [1%ased selection (Sec. 2.6.3) to highlight one of the bundles, which
Edge endpoints indicate start and end locations of flight records. Thécomes now dark blue (Fig. 8 f). It appears that this bundle con-
original edges are not straight lines, but actual flight paths (polylinesjects papers related to the Graph drawing and Treemap topics. The
Note that this dataset is not a graph in the strict sense, since only venection of edges is indicated by node label colors: citing papers are
few edge endpoints are exactly identical within the dataset. This hgx@en, cited papers are blue. Green and blue labels are mixed within
to do with the fact that flight monitoring systems record flights (trailsthis bundle, which is expected, since papers in these two topics typ-
However, edge endpoints are spatially grouped since flights typicajlially cross-reference each other. Figure 8 g shows a selection of all
start and end in geographically concentrated locations such as airpastiges which end at nodes within the ball centered at the mouse cur-
Given this, our method is able to create a bundled layout of this dataget. Concretely, we highlighted here all papers citing papers in the
with the same ease as for actual graphs. Bundling puts close flightaph drawing topic. Note that this selection is a purely node-based
paths naturally into the same cluster. The bundled version emphasigag, i.e. it does not use bundles for choosing the edges. However,
the connection pattern between concentrated take-off and landing logandles have now another use: they alloighlighting specific edges
tions, which are naturally the airports. The zoom-in details (Fig. 8 ¢, the graph without increasing clutter, since these edges follow the al-
show the organic effect achieved by bundling.

]

¢) detail of (a) d) detail of (b)

virtual worlds world wide web

spreadsheets _

volume J
rendering D Ul design

JUCR N /

fisheye views } X3

A L~
). graph 4 f
_drawing) LK sl

graph £
g ArAWING A drawing

ki treemaps

N itreemaps
automated design .} L

; \'Ealgorithr;"'
e) ..}, animation f) bundle selection g) topic selection

Fig. 8. Bundling of airline trails (a,b) and details (c,d). Bundling of citations graph (e). Selected bundle (in dark blue) shows citations involving two
topics (f). Citations to a selected topic (g). In (f,g), node labels indicate edge direction (citing papers=green,cited papers=blue)

ready computed bundles. Also, note that for this type of node layout,

our clustering-based bundling makes sense: edges will be groupedjiged and simplicity: Due to the CUDA implementation of its core
the same bundle if they have similar positions, meaning start/end frgmage-based operations, our method is considerably faster than [14]
similar topics; if the node layout effectively groups nodes into relateghd slightly faster than [21]. However, we should note that it is not
topics, then bundles have a good chance to show inter-topic relati@isar if the timings reported in [21] include also the cost of comput-

in a simplified manner. ing the Voronoi diagram underlying the grid graph. The only faster
bundled method we are aware of is the MINGLE method [11], which

5 DiscussioN takes 1 second for the US migrations graph and 0.1 seconds for the

In comparison to existing bundling techniques, our method has thé airlines graph, in contrast to our 4.1 seconds and 6.3 seconds re-

following advantages and limitations: spectively. MINGLE and SBEB share some resemblance in bottom-up

aggregation of edges, but also have some differences. MINGLE com

Generality: Our method can treat directed or undirected graphs. res edges essentially based on end point positions, whereas we use
default, we assume the graph is directed, so edges running betwtnentire edge trajectory (which may allow us to bundle graphs with
the same sets of nodes in opposite directions will belong to differefirved edges better). The complexity of MINGLEJ$|E|log|E|) for
clusters, hence create different bundles. For undirected graghs, &draph withE edges, whereas SBEB is essenti@jC|) whereC is
only need to symmetrize the edge similarity function (Eqn. 1). the average cluster size. By using a better cluster selection than our
current iso-linkage cut in the cluster tree (Sec. 2.1), it is possible to
Structured look control: Users can control the structured look’ of r*educeiC| and thus make SBEB faster.
a bundled layout, ranging between smoothly merging bundles andApart from this, our method works entirely image-based, rather
bundles meeting at sharp angles, by manipulating a single paramét@n manipulating a combination of hierarchical mesh-based and
(smoothingys, Sec. 2.6). This implicitly allows removing sharpimage-based data structures. The CUDA-based image processing code
ramifications when these are meaningless. Other methods, with t&ed by our method is available at [30].
exception of HEB, do not allow explicit control of this aspect, since Apart from the above, there are several other differences between
there is no explicit hierarchy aspect in the bundles. In our cassyr method and recent edge bundling techniques. In contrast to
hierarchy is modeled by the cluster skeletons (at fine level) and by teece-directed bundling [14] which bundles pairs of edges iteratively,
progressively simplified cluster structures (at coarse level). in a point-by-point manner, we bundle increasingly larger groups
of edges (our clusters) along their common center in one single
Robustness: Our method operates robustly on all graphs we estep, using skeletons. In the limit, our method can behave like the
perimented on,i.e. yields a set of stable skeletons and bundleforce-directed bundlingi.e. if we were to treat, at each iteration,
progressively converging towards an equilibrium state. This @nly the most cohesive leaf cluster. However, this is practically not
explained by the regularization of the feature transform (Sec. 2.4) aimtkeresting, as it would artificially increase the computational cost
the inherent robustness of the skeletonization method used (Sec. 2:hout any foreseeable benefits. Further, while Lambedl. [21]
Briefly put, adding or removing a small number of nodes or edges wilse shortest paths in a node-based grid graph to route edges, in our
not change the bundling since the distance-based shapes are robustetiiiod edges bundle themselves using only edge information. As
small changes in the input graph and so are their skeletons too. such, there is no relation between the Voronoi diagrams used in [21]

and our skeletons (which, formally, can be seen as a Voronoi diagram GRAPH Symp. on Interactive 3D Graphics and Ganpegles 134-141,
in which inflated edges are the sites). Distance fields and skeletons 2010.

are also used in [31], but in different ways; first, an edge distanc] D. Chang, M. Kantardzic, and M. Ouyang. Hierarchicalstiring with
field is computed using a considerably less accurate quad-splat-based cuda/gpu. IrProc. ISCA pages 130-135, 2009.

method, whereas our distance transform is pixel-accurate. Secondi§] L. Costa and R. CesarShape analysis and classification: Theory and
skeletons are used abadingcues and not for layout, whereas we use : .
skeletons to actually compute edge layouts. In comparison to [23[7] W- Cui, H. Zhou, H. Qu, P. Wong, and X. Li. Geometry-baseged
where bundles split in exactly two sub-bundles, our bundle splits can
have in general any degree, as implied by the underlying skeletond]

Also, our method can handle general graphs.

El

Limitations: There is no fundamental reason why a skeleton-based
layout should be preferable to other bundling heuristics, apart from tn%]

intuition that a skeleton represents the local center of a shape. Hence

the quality of our layouts (or any other bundled layout) is still to be 1
judged subjectively. Moreover, any bundling inherently destroys in-

formation: edges are overdrawn, so cannot be identified separately;
and edge directions are distorted. Hence, bundling should be used[faf

those applications where one is interested in coarse-scale connectivity

patternsand when one cannot apply explicit graph simplificatienq.

(13]

due to the lack of suitable node clustering guidelines and metrics. If
desired, SBEB can be modified to incorporate additional bundling cdi4]
straintse.g.maximal deformation of certain edges - the skeletons pro-
vide only bundlingcuesbut the attraction phase can decide whethell5]
and how much, to bundle any given edge. In the longer run, it is in-

teresting to use shape perception results from computer vision [6,
to quantitatively reason about the quality of a bundled layout. He
our image-based approach may prove more amenable to quantit

&
g

analysis than other bundling heuristics which are harder to describe’i

terms of operators having well-known perceptual properties. Hawev

this is a challenging task and requires further in-depth study.

6 CONCLUSION

fie)

(19]

We have presented a new method for creating bundled layouts of gen-

eral graphs. We exploit the known property of 2D skeletons of b&0

ing locally centered within a shape to create elongated shapes from

a graph with given node positions, and use skeletons as guidelin
bundle similar edges. To guarantee the stability and smoothnes
the bundled layout, we regularize the feature transforms of 2D sk
tons to eliminate singularities. Using an iterative process, our lay
amounts to a sequence of edge clustering and image processing op-

s
g7l

erations. We present a CUDA-based implementation which achieves
comparable or higher performance than existing edge bundling mef)
ods, but keeps implementation simple. Finally, we present a simple
and efficient scheme to emphasize edge bundles using shaded cuspigns. pizer, K. Siddigi, G. Szekely, J. Damon, and S. ZucKdultiscale

techniques computed directly on the bundled edges.

We plan next to exploit additional properties of 2D shape skeleto{zs]
to generate a richer family of bundled layouts. First, by modifying
the Euclidean distance metric underlying the skeleton definition, viz6]
can generate constrained-angle skeletons which would directly lead
to layouts similar to cartographic diagrams [29]. Secondly, we pldA7]

to use bundle-to-bundle and bundle-to-node distance fields to glob- =1ons. > >])
28] K. Siddigi and S. Pizer.Medial Representations: Mathematics, Algo-

ally optimize the layout of different edge bundles in order to max
mize readability and allow for the introduction of spatial constrain
such as labels, bundle crossing minimization, and node-edge ove
reduction. In the long run, we plan to study the optimality criteri
of bundled layouts by using existing results from shape perception'i
computer vision which are directly applicable to our skeleton-bas

layout method.

REFERENCES

[1] J. Abello, F. van Ham, and N. Krishnan. AskGraphView: Agargraph
visualisation systemlEEE TVCG 12(5):669-676, 2006.

[2] D. Archambault, T. Munzner, and D. Auber. Grouse: Feahased and

i

0]

B8k

(32]

practice CRC Press, 2000.

clustering for graph visualizationEEE TVCG 14(6):1277-1284, 2008.
M. de Hoon, S. Imoto, J. Nolan, and S. Myiano. Open sourasteting
software.Bioinformatics 20(9):1453-1454, 2004.

M. Dickerson, D. Eppstein, M. Goodrich, and J. Meng. Coefit draw-
ings: Visualizing non-planar diagrams in a planar way.Pmoc. Graph
Drawing, pages 1-12, 2003.

G. Ellis and A. Dix. A taxonomy of clutter reduction forfrmation
visualisation.|IEEE TVCG 13(6):1216-1223, 2007.

E. Gansner, Y. Hu, S. North, and C. Scheidegger. Muktlegglomera-
tive edge bundling for visualizing large graphs.Aroc. PacificVis pages
187-194, 2010.

E. Gansner and Y. Koren. Improved circular layouts. Pioc. Graph
Drawing, pages 386—398, 2006.

D. Holten. Hierarchical edge bundles: Visualizatidnadjacency rela-
tions in hierarchical datdEEE TVCG 12(5):741-748, 2006.

D. Holten and J. J. van Wijk. Force-directed edge burgifior graph
visualization.Comp. Graph. Forun28(3):670-677, 2009.

C. Hurter, B. Tissoires, and S. Conversy. FromDaDy: Sgirg data
across views to support iterative exploration of aircnafjectories IEEE
TVCG 15(6):1017-1024, 2009.

I.Tollis, G. D. Battista, P. Eades, and R. Tamas$iaph drawing: Al-
gorithms for the visualization of graph®rentice Hall, 1999.

G. Katz and J. Kider. All-pairs shortest-paths for krgraphs on the
GPU. InProc. Graphics Hardwargpages 208-216, 2008.

R. Klette and A. RosenfeldDigital geometry: Geometric methods for
digital picture analysis Morgan Kaufmann, 2004.

I. Kovacs, A. Feher, and B. Julesz. Medial-point dgstiwn of shape: A
representation for action coding and its phychophysicaktates.Vision
research 38:2323-2333, 1998.

] A. Lambert, R. Bourqui, and D. Auber. 3D edge bundlingdeographi-

cal data visualization. IRroc. Information Visualisatiorpages 329-335,
2010.

A. Lambert, R. Bourqui, and D. Auber. Winding roads: Rogtedges
into bundles.Comp. Graph. Forum29(3):432-439, 2010.

F. Paulovich, L. Nonato, R. Minghim, and H. Levkowitz. dst square
projection: A fast high-precision multidimensional projeattechnique
and its application to document mappindeEE TVCG 14(3):564-575,
2008.

D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. WinogradowFimap

layout. InProc. InfoVis pages 219-224, 2005.

medial loci and their propertie$JCV, 55(2-3):155-179, 2003.

H. Qu, H. Zhou, and Y. Wu. Controllable and progressiggeclustering
for large networks. IfProc. Graph Drawing pages 399—-404, 2006.

G. Salton. Developments in automatic text retrievdtience 253:974—
980, 1991.

K. Siddiqgi, S. Bouix, A. Tannenbaum, and S. Zucker. Haomi{Jacobi
skeletonslJCV, 48(3):215-231, 2002.

rithms and ApplicationsSpringer, 1999.

R. Strzodka and A. Telea. Generalized distance tramsf@nd skeletons
in graphics hardware. IRroc. VisSympages 221-230, 2004.

A. Telea. CUDA skeletonization and image processingkigo2011.
www.cs.rug.nl/ ~ alext/ CUDASKEL .

A. Telea and O. Ersoy. Image-based edge bundles: Simplifeualiza-
tion of large graphsComp. Graph. Forum29(3):543-551, 2010.

A. Telea and J. J. van Wijk. An augmented fast marching metbhod
computing skeletons and centerlines. Aroc. VisSympages 251-259,
2002.

3] F.vam Ham. Using multilevel call matrices in large softevarojects. In

steerable graph hierarchy exploration. Rroc. EuroVis pages 67—-74, [34]

2007.

[3] D. Auber. Tulip visualization framework, 201 1ulip.labri.fr

[4] T. Cao, K. Tang, A. Mohamed, and T. Tan. Parallel bandirgpathm
to compute exact distance transform with the GPUPtac. ACM SIG-

(35]

Proc. InfoVis pages 227-232, 2003.

R. van Liere and W. de Leeuw. GraphSplatting: Visualizgraphs as
continuous fields|IEEE TVCG 9(2):206-212, 2003.

H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen. Energy-bakidarchi-
cal edge clustering of graphs. Rroc. PacificVis pages 55-62, 2008.

