
HAL Id: hal-01021587
https://enac.hal.science/hal-01021587

Submitted on 11 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Python for unified research in econometrics and
statistics

Roseline Bilina, Steve Lawford

To cite this version:
Roseline Bilina, Steve Lawford. Python for unified research in econometrics and statistics. Economet-
ric Reviews, 2012, 31 (5), pp 558-591. �10.1080/07474938.2011.553573�. �hal-01021587�

https://enac.hal.science/hal-01021587
https://hal.archives-ouvertes.fr

Python for Unified Research in Econometrics and Statistics∗

Roseline Bilina† Steve Lawford‡

Cornell University ENAC

July 27, 2010

Abstract

Python is a powerful high-level open source programming language, that is available for
multiple platforms. It supports object-oriented programming, and has recently become a
serious alternative to low-level compiled languages such as C++. It is easy to learn and use,
and is recognized for very fast development times, which makes it suitable for rapid software
prototyping as well as teaching purposes. We motivate the use of Python and its free extension
modules for high performance stand-alone applications in econometrics and statistics, and as a
tool for gluing different applications together. (It is in this sense that Python forms a ‘unified’
environment for statistical research). We give details on the core language features, which will
enable a user to immediately begin work, and then provide practical examples of advanced uses
of Python. Finally, we compare the run-time performance of extended Python against a number
of commonly-used statistical packages and programming environments.

∗JEL classification: C6 (Mathematical methods and programming), C87 (Econometric software), C88 (Other
computer software). Keywords: Object-Oriented Programming, Open Source Software, Programming Language,
Python, Rapid Prototyping.
†Roseline Bilina, School of Operations Research and Information Engineering, Cornell University, Ithaca, NY,

14853, USA. Email: rb537 (at) cornell.edu.
‡Corresponding author. Steve Lawford, Department of Economics and Econometrics (LH/ECO), ENAC, 7 avenue

Edouard Belin, BP 54005, 31055, Toulouse, Cedex 4, France. Email: steve lawford (at) yahoo.co.uk.

1

1 Introduction

“And now for something completely different.”

(catch phrase from Monty Python’s Flying Circus.)

Python is a powerful high-level programming language, with object-oriented capability, that

was designed in the early 1990s by Guido van Rossum, then a programmer at the Dutch National

Research Institute for Mathematics and Computer Science (CWI) in Amsterdam. The core Python

distribution is open source and is available for multiple platforms, including Windows, Linux/Unix

and Mac OS X. The default CPython implementation, as well as the standard libraries and

documentation, are available free of charge from www.python.org, and are managed by the Python

Software Foundation, a non-profit body.1 van Rossum still oversees the language development,

which has ensured a strong continuity of features, design, and philosophy. Python is easy to

learn and use, and is recognized for its very clear, concise, and logical syntax. This feature alone

makes it particularly suitable for rapid software prototyping, and greatly eases subsequent program

maintenance and debugging, and extension by the author or another user.

In software development, there is often a trade-off between computational efficiency and final

performance, and programming efficiency, productivity, and readability. For both applied and

theoretical econometricians and statisticians, this frequently leads to a choice between low-level

languages such as C++, and high-level languages or software such as PcGive, GAUSS, or Matlab

(e.g. [23] and [27]). A typical academic study might involve development of asymptotic theory

for a new procedure with use of symbolic manipulation software such as Mathematica, assessment

of the finite-sample properties through Monte Carlo simulation using C++ or Ox, treatment of a

very large microeconometric database in MySQL, preliminary data analysis in EViews or Stata,

production of high quality graphics in R, and finally creation of a written report using LATEX.

An industrial application will often add to this some degree of automation (of data treatment or

1For brevity, we will omit the prefix http:// from internet URL references throughout the paper.

2

updating, or of report generation), and frequently a user-friendly front-end, perhaps in Excel.

We will motivate the use of Python as a particularly appropriate language for high performance

stand-alone research applications in econometrics and statistics, as well as its more commonly

known purpose as a scripting language for gluing different applications together. In industry and

academia, Python has become an alternative to low-level compiled languages such as C++. Recent

examples in large-scale computational applications include [4], [16], [17], [19] and [20, who explicitly

refers to faster development times], and indicate comparable run times with C++ implementations

in some situations (although we would generally expect some overhead from using an interpreted

language). The Python Wiki lists Google, Industrial Light and Magic, and Yahoo! among major

organizations with applications written in Python.2 Furthermore, Python can be rapidly mastered,

which also makes it suitable for training purposes ([3] discusses physics teaching).

The paper is organized as follows. Section 2 explains how Python and various important

additional components can be installed on a Windows machine. Section 3 introduces the core

features of Python, which are straightforward, even for users with little programming experience.

While we do not attempt to replace the excellent book length introductions to Python such as

[2, a comprehensive treatment of standard modules], [8, with good case studies and exercises],

[11, with detailed examples], and [14, more oriented towards computational science], we provide

enough detail to enable a user to immediately start serious work. Shorter introductions to the core

language include the Python tutorial [32], which is regularly updated.3 Python comes into its own

as a general programming language when some of the many free external modules are imported.

In Section 4, we detail some more advanced uses of Python, and show how it can be extended with

scientific modules (in particular, NumPy and SciPy), and used to link different parts of a research

project. We illustrate practical issues such as data input and output, access to the graphical

capabilities of R (through the rpy module), automatic creation of a LATEX code (program segment)

2See wiki.python.org/moin/OrganizationsUsingPython.
3For additional documentation, see [25], and references in, e.g. [14] and www.python.org/doc/.

3

from within Python (with numerical results computed using scipy), object-oriented programming

in a rapid prototype of a copula estimation, incorporation of C++ code within a Python program,

and numerical optimization and plotting (using matplotlib). In Section 5, we compare the speed of

extended Python to a number of other scientific software packages and programming environments,

in a series of tests. We find comparable performance to languages such as Ox, for a variety of

mathematical operations. Section 6 concludes the paper, and mentions additional useful modules.

Supplementary material is contained in Appendix A.

2 Installation of packages

Here, we describe the procedure for installation of Python and some important additional packages,

on a Windows machine. We use Windows for illustration only, and discussion of installation for

other operating systems is found in [11] and [33], and is generally straightforward. We use Python

2.6.5 (March 2010), which is the most recent production version for which compatible versions of the

scientific packages NumPy and SciPy are available. Python 2.6.5 includes the core language and

standard libraries, and is installed automatically from www.python.org/download, by following

the download instructions.4 After installation, the Python Integrated Development Environment

(IDLE), or ‘shell window’ (interactive interpreter) becomes available (see Figure 1). The compatible

Pywin32 should also be installed. This provides extension modules for access to many Windows

API (Application Programming Interface) functions, and is available from sourceforge.net.

4The Windows Installer file for Python 2.6.5 is python-2.6.5.msi. The latest version of Python,
3.0, is less well-tested, and we do not use it in this paper. The Pywin32 file (build 210) is
pywin32-210.win32-py2.6.exe. The NumPy 1.4.1 file is numpy-1.4.1-win32-superpack-python2.6.exe. The SciPy
0.8.0 file is scipy-0.8.0rc2-win32-superpack-python2.6.exe. The R-2.9.1 file is R-2.9.1-win32.exe. The RPy
1.0.3 file is rpy-1.0.3-R-2.9.0-R-2.9.1-win32-py2.6.exe. The MDP file is MDP-2.6.win32.exe. The Matplotlib
1.0.0 file is matplotlib-1.0.0.win32-py2.6.exe. The automatic MinGW 5.1.6 installer file is MinGW-5.1.6.exe.
We have tested the installations on a 1.73GHz Celeron M machine with 2GB RAM running Windows Vista, and a
1.66MHz Centrino Duo machine with 1GB RAM running Windows XP. Further information on IDLE is available
at docs.python.org/library/idle.html, while some alternative environments are listed in [11, Table 1-1]; also see
IPython (ipython.scipy.org/moin/Documentation).

4

Figure 1: The Python 2.6.5 Integrated Development Environment (IDLE).

Two open source packages provide advanced functionality for scientific computing. The first of

these, NumPy (numpy.scipy.org), enables Matlab-like multidimensional arrays and array methods,

linear algebra, Fourier transforms, random number generation, and tools for integrating C++ and

Fortran code into Python programs (see [21] for a comprehensive manual, and [14, Chapter 4] for

applications). NumPy version 1.4.1 is stable with Python 2.6.5 and Pywin32 (build 210), and is

available from sourceforge.net (follow the link from numpy.scipy.org). The second package,

SciPy (www.scipy.org), which requires NumPy, provides further mathematical libraries, including

statistics, numerical integration and optimization, genetic algorithms, and special functions. SciPy

version 0.8.0 is stable with the above packages, and is available from sourceforge.net (follow the

link from www.scipy.org); see [29] for a reference. We use NumPy and SciPy extensively below.

5

For statistical computing and an excellent graphical interface, Python can be linked to the R

language (www.r-project.org) via the RPy interface (rpy.sourceforge.net). The strengths of

R are discussed at length in [6], [12], [26] and [34]. An R journal exists (journal.r-project.org).

Release R 2.9.1 (June 2009; follow the download links on rpy.sourceforge.net, and choose ‘full

installation’) and RPy 1.0.3, available from sourceforge.net, are stable with Python 2.6.5.

An additional third-party module that is useful for data-processing is MDP 2.6: Modular

Toolkit for Data Processing (see [35] for details). It contains a number of learning algorithms

and, in particular, user-friendly routines for principal components analysis. It is available from

mdp-toolkit.sourceforge.net. We also use Matplotlib 1.0.0, a comprehensive and Matlab-like

advanced plotting tool, available from sourceforge.net/projects/matplotlib. Documentation

([7]) and examples can be found at matplotlib.sourceforge.net. A C++ compiler is also needed

to run Python programs that contain C++ code segments, and a good free option is a full MinGW

5.1.6 (Minimalist GNU for Windows) installation. An automatic Windows installer is available

from www.mingw.org (which links to sourceforge.net), and contains the GCC (GNU Compiler

System), which supports C++. We refer to the above installation as ‘extended Python’, and use it

throughout the paper, and especially in Sections 4 and 5. We have installed the individual packages

for illustration, but bundled scientific distributions of Python and additional packages are available.

These include pythonxy for Windows (code.google.com/p/pythonxy/) and the Enthought Python

Distribution (www.enthought.com/products/epd.php), which is free for academic use.

Python is well supported by a dynamic community, with helpful online mailing lists, discussion

forums, and archives. A number of Python-related conferences are held annually. A general

discussion list is available at mail.python.org/mailman/listinfo/python-list, and the Python

forum is at www.python-forum.org/pythonforum/index.php. It is always advisable to check the

archives before posting new requests.5

5A full listing of mailing lists is available from mail.python.org/mailman/listinfo. The www.python.org

helpdesk can be contacted at help (at) python.org. SciPy and NumPy mailing lists are available at

6

2.1 Modular code and package import

The core Python 2.6.5 implementation is made much more powerful by standard ([31]) and third-

party modules (such as RPy and SciPy). A module is easily imported using the import command

(this does not automatically run the module code.). For clarity, this is usually performed at the

start of a program. For instance (see Example 0 below), import scipy (Python is case-sensitive)

loads the main scipy module and methods, which are then called by, e.g. scipy.pi (this gives

π). The available scipy packages (within the main module) can be viewed by help(scipy). If a

single scipy package is of interest, e.g. the stats package, then this can be imported by import

scipy.stats (in which case methods are accessed as, e.g. scipy.stats.kurtosis(), which gives

the excess kurtosis), or from scipy import stats (in which case methods are accessed by, e.g.

stats.kurtosis()). It is often preferable to use the former, since it leads to more readable

programs, while the latter will also overwrite any current packages called stats. Another way to

overcome this problem is to rename the packages upon import, e.g. from scipy import stats

as NewStatsPackage. If all scipy packages are of interest, then these can be imported by from

scipy import *, although this will also overwrite any existing packages with the same names.

Longer Python programs can be split into multiple short modules, for convenience and re-

usability. For instance, in Example 3 below, it is suggested that a user-defined LATEX table function

tex table be saved in a file tex functions.py (the module name is then tex functions). As

above, the function can be imported by import tex functions.tex table and then used directly

by tex functions.tex table(). In the examples, we will use both forms of import.6

mail.scipy.org/mailman/listinfo/scipy-user and mail.scipy.org/mailman/listinfo/numpy-discussion. An
RPy mailing list is at lists.sourceforge.net/lists/listinfo/rpy-list. Conference announcements are posted
at www.python.org/community/workshops.

6When a script is run that imports tex functions, a compiled Python file tex functions.pyc will usually be
created automatically in the same directory as tex functions.py. This serves to speed up subsequent start-up
(module load) times of the program, as long as the file tex functions.py is not modified. A list of all functions
defined within a module (and of all functions defined within all imported modules) is given by dir(), e.g. import

tex functions and dir(tex functions) would give a list including ‘tex table’.

7

3 Language basics

The IDLE can be used to test short commands in real-time (input is entered after the prompt

>>>). Groups of commands can be written in a new IDLE window, saved with a .py suffix, and

executed as a regular program in IDLE, or in a DOS window by double-clicking on the file. Single-

line comments are preceded by a hash #, and multi-line comments are enclosed within multiple

quotes """. Multiple commands can be included on one line if separated by a semi-colon, and long

commands can be enclosed within parentheses () and split over several lines (a back-slash can also

be used at the end of each line to be split). A general Python object a (e.g. a variable, function,

class instance) be used as a function argument f(a), or can have methods (functions) applied to

it, with dot syntax a.f(). There is no need to declare variables in Python since they are created

at the moment of initialization. Objects can be printed to the screen by entering the object name

at the prompt (i.e. >>> a) or from within a program with print a.

3.1 Basic types: numbers and strings

The operators +, -, * and / work for the three most commonly-used numeric types: integers, floats,

and complex numbers (a real and an imaginary float). Float division is x/y, which returns the

floor for integers. The modulus x%y returns the remainder of x divided by y, and powers xy are

given by x**y. Variable assignment is performed using =, and must take place before variable use.

Python is a dynamic language, and variable types are checked at run-time. It is also strongly-typed,

i.e. following variable initialization, a change in type must be explicitly requested.7

7Some care must be taken with variable assignment, which manipulates ‘references’, e.g. a=3; b=a does not
make a copy of a, and so setting a=2 will leave b=3 (the old reference is deleted by re-assignment). Some standard
mathematical functions are available in the scipy.math module. Note that variables may be assigned to functions,
e.g. b=math.cos is allowed, and b(0) gives 1.0. As for many other mathematical packages, Python also supports
long integer arithmetic, e.g. (2682440**4)+(15365639**4)+(18796760**4) and (20615673**4) both give the 30-digit
number 180630077292169281088848499041L (this verifies the counterexample in [9] to Euler’s (incorrect) conjectured
generalization of Fermat’s Last Theorem: here, that three fourth powers never sum to a fourth power.)

8

>>> x=y=2; z=(2+3j)*(2-3j); print x, y, z, z.real, type(z), 3/2, 3.0/2.0, 3%2, 3**2 \

simultaneous assignment, complex numbers, type, division, modulus, power

2 2 (13+0j) 13.0 <type ’complex’> 1 1.5 1 9

>>> y=float(x); print x, type(x), y, type(y) # variable type re-assignment

2 <type ’int’> 2.0 <type ’float’>

Python is particularly good at manipulating strings, which are immutable unless re-assigned.

Strings can be written using single (or double) quotes, concatenated using +, repeated by *, and

‘sliced’ with the slicing operator [r:s], where element s is not included in the slice (indexation

starts at 0). Negative indices correspond to position relative to the right-hand-side. Numbers are

converted to strings with str(), and strings to floats or integers by float() or int().8 When

parsing data, it is often useful to remove all start and end whitespace, with strip().

>>> a=’data1’; b=a+’data2’; c=a*2; d=str(x); print b, c, b[5:]+b[:-5], d, len(a), ’data3’ in b \

string operations: +, *, type conversion, slicing, len(), string search

data1data2 data1data1 data2data1 2 5 False

>>> e=’ data1 data2 data3 ’; print e.strip() # the strip() method

data1 data2 data3

3.2 Container types: lists and dictionaries

Python has a number of useful built-in data structures. A list is a mutable ordered set of arbitrary

comma-separated objects, such as numbers, strings, and other lists. Lists (like strings) can be

manipulated using +, *, and the slicing operator [r:s]. A list copy can be created using [:]. Nested

list elements are indexed by [r][s][· · ·]. Lists can be sorted in ascending order (numerically

8The raw input() command can be used to prompt user input, e.g. data=raw input(‘enter:’) will prompt with
‘enter:’ and creates a string data from the user input. Example 3 below shows that double and triple backslashes
in a string will return a single and a double backslash when the string is printed (this is useful when automatically
generating LATEX code). An alternative is to use a raw string r‘string ’, which will almost always be printed as
entered. It is also possible to search across strings, e.g. a in ‘string ’, while len(a) gives the number of characters
in the string. Python also provides some support for Unicode strings (www.unicode.org).

9

and then alphabetically) with the method sort(), or reversed using reverse(). Lists can also

be sorted according to complicated metrics, and this can be very useful in scientific computing.

For instance, if A=[[1,2],[4,6]], B=[[3,1],[2,4]] and C=[[1,0,0],[0,2,0],[0,0,3]] define

three matrices, contained in a list x=[A,B,C], then x can be ordered by the determinant (say) using

x.sort(key=det), which will give x=[A,C,B], and where the det function has been imported by

from scipy.linalg import det. List membership can be tested by in.

>>> output=[1.27,’converged’,0,[1.25,’no’]]; output+=[[’ols’,’gmm’]]; output.sort()

>>> print output, ’converged’ in output, output[3][1], output[1:3] # list manipulation and methods

[0, 1.27, [1.25, ’no’], [’ols’, ’gmm’], ’converged’] True gmm [1.27, [1.25, ’no’]]

Strings can be split into a list of elements using the split() method, which is very useful

when parsing databases. Note that methods can be combined, as in strip().split(), which

are executed from left to right. New lists can be constructed easily by list comprehension, which

loops over existing lists, may be combined with conditions, and can return nested lists.9 The

enumerate() function loops over the elements of a list, and returns their position (index) and

value, and the zip() function can be used for pairwise-combination of lists.

9The slicing operator can also take a step-length argument, i.e. [r:s:step]. An empty list of length n is given
by [None]*n, and len() gives the number of elements. The append() and extend() methods can also be used
instead of +=, for lists, or elements of lists, respectively. List elements can be assigned to with a[i]=b, and a list
slice can be replaced with a slice of a different length. Items can be added at a specific index with insert(), and
removed with remove() or pop(). The index of a given element can be found using index(), and its number of
occurrences by count(). Slices can be deleted (and the list dimension changed) by del a[r:s]. A Python tuple
is essentially an immutable list that can be created from a list using the tuple() function. They behave like lists,
although list methods that change the list cannot be applied to them. Tuples are often useful as dictionary keys
(see below). The default of split() is to split on all runs of whitespace, and the inverse of e.g. a.split(’;’)

is ’;’.join(a.split(’;’)). Also, range(n) is equivalent to [0,1,2,. . .,n-1]. Another useful string method is
a.replace(‘string1’,‘string2’), which replaces all occurrences of ‘string1 ’ in a with ‘string2 ’.

10

>>> print ’data1 data2 data3’.split(), ’data1;data2;data3’.split(’;’), \

’ data1:data2:data3 ’.strip().split(’:’) # the split() method

[’data1’, ’data2’, ’data3’] [’data1’, ’data2’, ’data3’] [’data1’, ’data2’, ’data3’]

>>> squares_cubes=[[x**2,x**3] for x in range(6) if x**2<=16]; print squares_cubes \

list comprehension

[[0, 0], [1, 1], [4, 8], [9, 27], [16, 64]]

>>> for x,y in enumerate(squares_cubes): print x,y, # the enumerate() function

0 [0, 0] 1 [1, 1] 2 [4, 8] 3 [9, 27] 4 [16, 64]

>>> print zip(range(5),squares_cubes) # the zip(function)

[(0, [0, 0]), (1, [1, 1]), (2, [4, 8]), (3, [9, 27]), (4, [16, 64])]

Python dictionaries (also known as ‘hash tables’ or ‘associative arrays’) are flexible mappings,

and contain values that are indexed by unique keys. The keys can be any immutable data type,

such as strings, numbers and tuples. An empty dictionary is given by a={}, a list of keys is

extracted using a.keys(), and elements are accessed by a[key] or a.get(key). Elements can be

added to (or re-assigned) and removed from dictionaries.10 Dictionaries can also be constructed

using the dict() function and list comprehension.

>>> results={’betahat’:[-1.23,0.57],’loglik’:-7.6245,’R2’:0.18,’convergence’:’yes’} \

dictionary construction

>>> print results.keys(), results[’betahat’][1], results[’R2’]>0.50 # dictionary manipulation

[’convergence’, ’loglik’, ’R2’, ’betahat’] 0.57 False

>>> print dict([(x,[x**2,x**3]) for x in range(5)]) # dictionary build from list

{0: [0, 0], 1: [1, 1], 2: [4, 8], 3: [9, 27], 4: [16, 64]}

10As for lists, dictionary elements can be re-assigned and deleted, and membership is tested by in. For a full list
of dictionary methods, see [11, Chapter 4].

11

3.3 Control structures and user-defined functions

Commands can be executed subject to conditions by using the if, elif (else if) and else statements,

and can contain combinations of == (equal to), <, >, <=, >= and != (not equal to), and the usual

Boolean operators and, or and not. Python while statements repeat commands if some condition

is satisfied, and for loops over the items of an iterable sequence or list, e.g. for i in a:.11 The

body of Python control structures and functions is defined by whitespace indentation.

>>> i=0 # variable initialization

>>> while i<=10: # while loop

if 2<=i<=8: print i, # a compound conditional statement

i+=1 # variable increment

2 3 4 5 6 7 8

A function is defined by def and return statements, and can be documented by including a

""" comment within the body, which can be viewed using help(function name). In Example

0, the function pdfnorm returns the density function f(x) of the normal N(mu, sigma**2), and

specifies default values for the arguments mu=0 and sigma=1.12 The function can be called without

these arguments, or they can be reset, or can be called using keyword arguments. Functions can

also be called by ‘unpacking’ arguments from a list using *[]. Example 0 gives four ways in

which the function can be called to give f(2) ≈ 0.0540. The function can be evaluated at multiple

arguments using list comprehension, e.g. print [pdfnorm(x) for x in range(10)].13 However,

it is much faster to call the function with a vector array argument by from scipy import arange

and print pdfnorm(arange(10)).14 Python can also deal naturally with composite functions, e.g.

11The break and continue statements are respectively used to break out of the smallest enclosing for / while

loop, and to continue with the next iteration. The pass statement performs no action, but is useful as a placeholder.
12This is for illustration only: in practice, the SciPy stats module can be used, e.g. from scipy.stats import

norm, and then norm.pdf(x) gives the same result as pdfnorm(x), for the standard normal N(0, 1).
13This is also achieved by passing pdfnorm to the map() function, i.e. print map(pdfnorm,range(10)).
14Array computations are very efficient. In a simple speed test (using the machine described in Section 5), we

compute pdfnorm(x) once only, where x ∈ {0, 1, . . . , 1000000}, by (a) [pdfnorm(x) for x in range(1000000)], (b)
map(pdfnorm,range(1000000)), (c) from scipy import arange and pdfnorm(arange(1000000)), and also (d) from

12

scipy.log(pdfnorm(0)) will return ln(f(x)) at x = 0.15

(Example 0. A user-defined function pdfnorm)

from scipy import pi,sqrt,exp # import scipy module pi, sqrt, exp

def pdfnorm(x,mu=0,sigma=1): # function definition and default arguments

"""Normal N(mu,sigma**2) density function. # function documentation string

Default values mu=0, sigma=1.""" # function name, arguments, string returned by help(pdfnorm)

return (1/(sqrt(2*pi)*sigma))*exp(-0.5*((x-mu)**2)/(sigma**2)) # return function result

print pdfnorm(2), pdfnorm(2,0,1), pdfnorm(2,sigma=1), pdfnorm(*[2,0,1]) # call pdfnorm

Python uses call by assignment, which enables implementation of function calls by value and by

reference. Essentially, the call by value effect can be obtained by appropriate use of immutable

objects (such as numbers, strings or tuples), or by manipulating but not re-assigning mutable

objects (such as lists, dictionaries or class instances). The call by reference effect can be obtained

by re-assigning mutable objects; see e.g. [14, Sections 3.2.10, 3.3.4] for discussion.

4 Longer examples

4.1 (Example 1.) Reading and writing data

It is straightforward to import data of various forms into Python objects. We illustrate using 100

cross-sectional observations on income and expenditure data in a text file, from [10, Table F.8.1].16

scipy.stats import norm and norm.pdf(arange(1000000)). Tests (a) and (b) both run in roughly 58 seconds,
while (c) and (d) take about 0.5 seconds, i.e. the array function is more than 100 times faster. It is encouraging that
the user-defined pdfnorm() is comparable in speed terms to the SciPy stats.norm.pdf().

15Given two functions f : X → Y and g : Y → Z, where the range of f is the same set as the domain of g (otherwise
the composition is undefined), then the composite function g ◦ f : X → Z is defined as (g ◦ f)(x) := g(f(x)).

16The dataset is freely available at www.stern.nyu.edu/∼wgreene/Text/Edition6/TableF8-1.txt. The variable
names (‘MDR’, ‘Acc’, ‘Age’, ‘Income’, ‘Avgexp’, ‘Ownrent’, and ‘Selfempl’) are given in a single header line. Data is
reported in space-separated columns, which contain integers or floats. See Examples 2, 3, and 6 for analysis.

13

(Example 1a. Creating a data dictionary from a text file)

f=open(’./TableF8-1.txt’,’r’) # open raw data file for reading, specifying path

header=f.readline().strip().split(); data_dict=dict([x,[]] for x in header) \

read first line of data, initialize data dictionary, with header variables as keys

for j in f.readlines(): # read all data into dictionary, matching columns to variables

for k,l in enumerate(j.strip().split()): data_dict[header[k]].append(eval(l))

f.close() # close data file object

In Example 1a, a file object f is opened with open(). A list of variable names, header, is created

from the first line of the file: readline() leaves a new line character at the end of the string,

which is removed by strip(), and the string is split into list elements by split(). A dictionary

data dict is initialized by list comprehension with keys taken from header, and corresponding

values [] (an empty list). The dictionary is then filled with data (by iterating across the remaining

lines of f), after which the file object is closed by close().17 The command eval() ‘evaluates’

the data into Python expressions, and the dictionary elements corresponding to the variables ‘Acc’,

‘Age’, ‘MDR’, ‘Ownrent’ and ‘Selfempl’ are automatically created as integers, while ‘Avgexp’ and

‘Income’ are floats. The formatted data dictionary is then ready for use in applied work.

The cPickle module provides a powerful means of saving arbitrary Python objects to file,

and for retrieving them.18 The ‘pickling’ (save) can be applied to, e.g. numbers and strings,

lists and dictionaries, top-level module functions and classes, and creates a byte stream (string

representation) without losing the original object structure. The original object can be reconstructed

17Valid arguments for open() are the filename (including the path if this is not the current location) and the mode
of use of the file: useful are ‘r’ read only (default) and ‘w’ write only (‘r+’ is read and write). While f.readlines()

reads f into a list of strings, f.read() would read f into a single string. The iteration for j in f.readlines(): in
this example could also be replaced by for j in f:.

18cPickle is an optimized C implementation of the standard pickle module, and is reported to be faster for
data save and load ([2] and [31, Section 12.2]), although some of the pickle functionality is missing. The default
cPickle save ‘serializes’ the Python object into a printable ASCII format (other protocols are available). See
docs.python.org/library/pickle.html for further details. In Example 1b, the raw data file is 3.37k, and the
Python .bin, which contains additional structural information, is 5.77k. The present authors have made frequent use
of cPickle in parsing and manipulating the U.S. Department of Transportation Origin and Destination databases.

14

by ‘unpickling’ (load). The technique is very useful when storing the results of a large dataset parse

to file, for later use, avoiding the need to parse the data more than once. It encourages short modular

code, since objects can easily be passed from one code (or user) to another, or sent across a network.

The speed of cPickle also makes Python a natural choice for application checkpointing, a technique

which stores the current state of an application, and that is used to restart the execution should the

system fail. Applications in econometrics include treatment of massive microeconometric datasets,

and intensive Monte Carlo simulation (e.g. a bootstrap simulation, or one with a heavy numerical

computation in each of a large number of replications).

In Example 1b, a file object g is created, and the dictionary data dict is pickled to the file

python data.bin, before being immediately unpickled to a new dictionary data dict2.

(Example 1b. cPickle Python object save and load)

import cPickle # import cPickle module and methods

g=open(’./python_data.bin’,’w’); cPickle.dump(data_dict,g); g.close() # data save

h=open(’./python_data.bin’,’r’); data_dict2=cPickle.load(h); h.close() # data load

4.2 (Example 2.) Graphics and R

We build on Example 1, and show how Python can be linked to the free statistical language R,

and in particular to its graphical features, through the rpy module. Example 2 creates an empty

R pdf object (by r.pdf), called descriptive.pdf, of dimension 1× 2 (by r.par), to be filled with

two generated plots: the first r.plot creates a scatter of the ‘Income’ and ‘Avgexp’ variables from

data dict, while the second creates a kernel density (r.density) plot of the ‘Income’ variable.

The .pdf Figure 2 is automatically generated, and can be imported into a LATEX file (as here!).

15

(Example 2. R graphics from a data dictionary)

from rpy import * # import rpy module and methods

r.pdf(’./descriptive.pdf’); r.par(mfrow=[1,2]) # create empty R pdf object

(r.plot(data_dict[’Income’],data_dict[’Avgexp’],xlab=’Income’,

ylab=’Expenditure’,main=’Scatterplot’,type=’p’,lwd=3)) # R scatterplot

income_density=r.density(data_dict[’Income’]) # R estimated kernel density

(r.plot(income_density[’x’],income_density[’y’], # R kernel plot

xlab=’Income’,ylab=’frequency’,main=’Kernel density’,type=’l’,lwd=2))

r.dev_off() # close R pdf object

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●● ●●●

●

● ●●

●

●

●

●

2 4 6 8 10

0
50

0
10

00
15

00

Scatterplot

Income

Ex
pe

nd
itu

re

0 2 4 6 8 10

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

Kernel density

Income

fre
qu

en
cy

Figure 2: Python/R .pdf output plot, generated using rpy (see Example 2).

16

4.3 (Example 3.) Creation of LATEX code

This example shows how to design a simple function that will create LATEX code for a table of

descriptive statistics (see [13] for related discussion of ‘literate econometric practice’, where models,

data, and programs are dynamically linked to a written report of the research, and R’s ‘Sweave’

for a complementary approach). The user-defined function tex table takes arguments filename

(the name of the .tex file), data dict (a data dictionary, from Example 1), and cap (the table

caption). The list variables contains the sorted keys from data dict. The output string holds

table header information (and where a double backslash corresponds to a single backslash in the

string, and a triple backslash corresponds to a double backslash). For each variable name i, the

output string is augmented with the mean, standard deviation, minimum and maximum of the

corresponding variable from data dict, computed using the scipy.stats functions. The string

formatting symbol % separates a string from values to format. Here, each %0.2f (formats a value

to a 2 decimal place float) acts as a placeholder within the string, and is replaced from left to right

by the values given after the string.19 The output string also contains table footer information,

including the caption and a LATEX label reference. Once output has been created, it is written

(using the write method) to filename. The function return ends the procedure.

19For additional conversion specifiers, see [11, Table 3-1].

17

(Example 3. LaTeX table from a data dictionary; code saved in tex functions.py)

from scipy.stats import * # import scipy.stats module and methods

def tex_table(filename,data_dict,cap): # user-defined function

"""Create .tex table.""" # function documentation string

variables=data_dict.keys(); variables.sort() # define variable names (table rows)

output=(’\\begin{table}\n\\begin{center}\n\\begin{tabular}’+ # create output string

’{’+’c’*5+’}\n’+’variable & mean & stdev & min & max\\\ \\hline\n’)

for i in variables: # loop across rows of table

output+=i+’ & %0.2f & %0.2f & %0.2f & %0.2f\\\ \n’ % (mean(data_dict[i]),

std(data_dict[i]), min(data_dict[i]), max(data_dict[i])) # add data to table

output+=’\\end{tabular}\n\\caption{’+cap+’}\n\\label{tab:tab1}\n\\end{center}\n\\end{table}’

f=open(filename,’w’); f.write(output); f.close() # write output string to file, close file

return

The tex table function can be saved in a separate ‘module’ tex functions.py, and then called

simply by another Python program (user) with, e.g.:

from tex_functions import tex_table

tex_table(’./table.tex’,data_dict,’Descriptive statistics.’) # call .tex table function

It is straightforward to import the resulting LATEX output into a .tex file (as in Table 1 in this

paper) using a LATEX command, e.g. \input{./table.tex}.20 The generic code can be used with

any data dictionary of the same general form as data dict, and is easily modified.

4.4 (Example 4.) Classes and object-oriented programming

The following example illustrates rapid prototyping and object-oriented Python, with a simple

bivariate copula estimation. Appendix A.1 contains a short discussion of the relevant copula theory.

We use 5042 time series observations on the daily closing prices of the Dow Jones Industrial Average

20It is also possible to automatically compile a valid filename.tex file (that includes all relevant preamble and
document wrapper material) to a .pdf by import os followed by os.system("pdflatex filename.tex ").

18

variable mean stdev min max

Acc 0.73 0.45 0.00 1.00
Age 32.08 7.83 20.00 55.00

Avgexp 189.02 294.24 0.00 1898.03
Income 3.37 1.63 1.50 10.00
MDR 0.36 1.01 0.00 7.00

Ownrent 0.36 0.48 0.00 1.00
Selfempl 0.05 0.22 0.00 1.00

Table 1: Descriptive statistics.

and the S&P500 over 9 June 1989 to 9 June 2009.21 The raw data is parsed in Python, and log

returns are created, as x and y (not shown). There are two classes: a base class Copula, and

a derived class NormalCopula. The methods available in each class, and the class inheritance

structure, can be viewed by, e.g. help(Copula). A Copula instance (conventionally referred to

by self) is initialized by a=Copula(x,y), where the initialization takes the data as arguments

(and init is the ‘constructor’). The instance variables a.x and a.y (SciPy data arrays) and

a.n (sample size) become available. The method a.empirical cdf(), with no argument, returns

an empirical distribution function F̂ (x) = (n + 1)−1
∑n

i=1 1Xi≤x, for both a.x and a.y, evaluated

at the observed datapoints (sum returns the sum). The Copula method a.rhat() will return an

‘in development’ message, and illustrates how code segments can be clearly reserved for future

development (perhaps a general maximum-likelihood estimation procedure for multiple copula

types). The Copula method a.invert cdf() is again reserved for future development, and will

return a user-defined error message, since this operation requires the estimated copula parameters,

which have not yet been computed (and so a does not have a simulate attribute; this is tested

with hasattr).22

21The dataset is available from the authors as djia sp500.csv. The data was downloaded from finance.yahoo.com

(under tickers ∧DJI for Dow Jones and ∧GSPC for S&P500). It is easy to iterate over the lines of a .csv file with
f=open(’filename.csv’,’r’) and for i in f:, and it is not necessary to use the csv module for this. This example
is not intended to represent a serious copula model (there is no dynamic aspect, for instance).

22Python has flexible built-in exception handling features, which we do not explore here (e.g. [2, Chapter 5]).

19

A NormalCopula instance can now be created by b=NormalCopula(x,y). The derived class

NormalCopula(Copula) inherits the methods of Copula (i.e. init , empirical cdf as well as

invert cdf), replacing them by methods defined in the NormalCopula class if necessary (i.e. rhat),

and adding any new methods (i.e. simulate). The first time that the method b.rhat() is called, it

will compute the estimated copula parameters R̂ = n−1
∑n

i=1 υiυ
′
i, where υi = (Φ−1(ui1),Φ−1(ui2))

(b.test), Φ−1 is the inverse standard normal distribution (norm.ppf from scipy.stats), u1 and

u2 are the empirical distributions of b.x and b.y respectively, and i indexes the observation (the

NumPy matrix type mat is also used here, and has transpose method .T). The routine further

corrects R̂ (b.u) by:

(R̂)ij√
(R̂)ii

√
(R̂)jj

7→ (R̂)ij ,

and stores the result as b.result. All subsequent calls of b.rhat() will immediately return

b.result, with no need for further computation.

For the stock index data, we find R̂12 ≈ 0.9473 (the estimated copula correlation). Once R̂ has

been estimated, it can be used for simulation with b.simulate() (which would have automatically

called b.rhat() if this had not yet been done). This method computes the Cholesky decomposition

R̂ = AA′ (cholesky, from scipy.linalg, where the lower-triangular A is stored in b.chol), which

is used to scale independent bivariate standard normal variates x = (x1, x2)′ = AN(0, 1)2 =

N(0, R̂)2, generated using the rpy r.rnorm function. Bivariate uniforms u = (u1, u2)′ are then

computed by passing x through Φ(·) (norm.cdf), where Φ is the univariate standard normal

distribution. This gives (u1, u2)′ = (F̂1(x1), F̂2(x2))′, where F̂ are the empirical marginals. We

illustrate with 1000 simulations of (u1, u2)′ (see Figure 3).

In a full application, we may be interested in converting the uniform marginals back to the

original scale. This requires numerical inversion of the empirical distribution functions, which could

be tricky. In this example, the possibility is left open, and b.invert cdf() will now return an

‘in development’ message, as required. We could imagine extending the code to include additional

20

classes, as the empirical study becomes deeper. For instance, Copula, EllipticalCopula(Copula)

and NormalCopula(EllipticalCopula) and StudentCopula(EllipticalCopula), where the base

class Copula could contain general likelihood-based methods, in addition to computation of empirical

or parametric marginals, and methods for graphical or descriptive data analysis; the derived class

EllipticalCopula could contain computation of R̂, which is used by both the Normal ‘closed-form’

and the Student ‘semi-closed form’ estimation routines (but not by non-elliptical copulas, such as

Archimedean copulas, which could have a separate class); and the derived classes NormalCopula

and StudentCopula could use R̂ appropriately in estimation of the full set of copula parameters

(R̂ directly for the normal copula; and R̂ and an estimated degrees-of-freedom parameter for the

Student’s copula), as well as containing specific simulation routines.

21

(Example 4. Rapid prototype of bivariate copula estimation using classes; comments in main text)

from scipy import *; from scipy.stats import *

from scipy.linalg import cholesky; from rpy import *

class Copula:

def __init__(self,x,y):

self.x=array(x); self.y=array(y); self.n=float(len(self.x))

def empirical_cdf(self):

return ([sum(self.x<=i)/(self.n+1) for i in self.x],

[sum(self.y<=i)/(self.n+1) for i in self.y])

def rhat(self):

print ’Copula class rhat() not yet implemented.’; return

def invert_cdf(self):

if not hasattr(self,’simulate’): print ’Must estimate a copula first.’; return

else: print ’Copula class invert_cdf() not yet implemented.’; return

class NormalCopula(Copula):

def rhat(self):

if not hasattr(self,’result’):

self.test=(array(zip(norm.ppf(self.empirical_cdf())[0],

norm.ppf(self.empirical_cdf())[1])))

self.u=array(mat(self.test).T*mat(self.test)/self.n)

self.result=(array([[self.u[i][j]/(sqrt(self.u[i][i])*sqrt(self.u[j][j]))

for i in range(2)] for j in range(2)]))

return self.result

def simulate(self):

if not hasattr(self,’result’): self.result=self.rhat()

self.chol=cholesky(self.result,lower=1)

return norm.cdf(array(mat(self.chol)*mat(r.rnorm(2,0,1)).T))

22

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Copula simulation

Uniform (X)

Un
ifo

rm
 (Y

)

Figure 3: 1000 simulations from a simple bivariate copula model (see Example 4).

4.5 (Example 5.) Using C++ from Python for intensive computations

This example shows how to include C++ code directly within a Python program, using the

scipy.weave module. We are motivated by the nested speed test result in Section 5, which shows

that Python nested loops are quite inefficient compared to some software packages. Specifically,

a 5000 × 5000 nested loop that only keeps track of the cumulative sum of the loop indexes

runs in about 9 seconds in Python 2.5.4, compared to 5 seconds in Ox Professional 5.00, for

instance (see Table 2). Generally, we would not advise use of Python nested loops for numerical

23

computations, and the problem worsens rapidly as the number of loops increases. However, it is

easy to optimize Python programs by writing the heaviest computations in C++ (or Fortran).

To illustrate, Example 5 solves the problem of the slow nested loop in the speed test. The C++

code that will perform the computation is simply included in the Python program as a raw string

r"""string """, exactly as it would be written in a C++ editor (but without the C++ preamble

statements). The scipy.weave.inline module is called with the string that contains the C++

commands (code), the variables that are to be passed to and (although not in this example) from

the C++ code (dimension), the method of variable type conversion (performed automatically using

the scipy.weave.converters.blitz module), and optionally the compiler to be used (here, gcc,

the GNU Compiler Collection). There will be a short compile time, when the Python program is

first run, and we would expect some small overhead compared to the same code running directly

in C++. However, we find over 1000 replications that the loop test now runs in a mean time of

0.02 seconds, or about 600 times faster than in Python! (roughly 300 times faster than Ox).

(Example 5. Including C++ code within a Python program)

from scipy.weave import inline,converters

dimension=5000

code= r"""

{

long long kk=0;

for (int i=0; i<dimension; i++) {

for (int j=0; j<dimension; j++) {

kk+=i+j;

}

}

}

"""

scipy.weave.inline(code,[’dimension’],type_converters=scipy.weave.converters.blitz,compiler=’gcc’)

24

4.6 (Example 6.) Numerical optimization and Matlab-like plotting

This example illustrates the numerical optimization functionality of SciPy, and uses Matplotlib to

create publication-quality graphics (see also [16] for an application). The code segment is included

in Appendix A.3. We use the income and expenditure data that was formatted in Example 1, and

analyzed in Examples 2 and 3.23 The data dictionary is loaded using cPickle. Two SciPy arrays

are created: y (100×1) contains the variable ‘Acc’, and X (100×6) contains a constant, ‘Age’,

‘Income’, ‘MDR’, ‘Ownrent’ and ‘Selfempl’ (‘Avgexp’ is dropped, since it perfectly predicts ‘Acc’).

We estimate a probit model Prob(yi = 1) = Φ(x′iβ) + ui, i = 1, 2, . . . , 100, where x′i is the ith

row of X, and β = (β0, . . . , β5)′. Two user-defined functions specify the negative log-likelihood

− lnL(β) = −
100∑
i=1

{yi ln Φ(x′iβ) + (1− yi) ln(1− Φ(x′iβ))}

and the gradient function

∂(− lnL(β))

∂β
= −

100∑
i=1

(
φ(x′iβ)(yi − Φ(x′iβ))

Φ(x′iβ)(1− Φ(x′iβ))

)
xi,

where φ() is the density function of the standard normal (scipy.stats.norm, scipy.log, and

numpy.dot are used in the expressions). The unconstrained optimization β̂ = arg min(− lnL(β)) is

solved using the SciPy Newton-conjugate-gradient (scipy.optimize.fmin ncg) method, with the

least squares estimate of β used as starting value (scipy.linalg.inv is used in the calculation),

and making use of the analytical gradient. The method converges rapidly, and the accuracy of the

23‘Acc’ is a dummy variable taking value 1 if a credit card application is accepted, and 0 otherwise. ‘Age’ is age
in years. ‘Avgexp’ is average monthly credit card expenditure. ‘Income’ is scaled (/10000) income. ‘MDR’ is the
number of derogatory reports. ‘Ownrent’ is a dummy taking value 1 if the individual owns his home, and 0 if he
rents. ‘Selfempl’ is a dummy taking value 1 if the individual is self-employed, and 0 otherwise.

25

maximum-likelihood estimate β̂ was checked using EViews 6.0 (which uses different start values).24

It could be useful in a teaching environment to explain the estimation procedure in more detail.

Here, we use Matplotlib to design a figure for this purpose (Figure 4). We create a contour plot of

− lnL(β) in the (β1, β2)-space, using numpy.meshgrid, as well as matplotlib.pyplot. The plot

settings can all be user-defined (e.g. line widths, colours, axis limits, labels, grid-lines, contour

labels). We use LATEX commands directly within Matplotlib to give mathematical axis labels, add

a text box with information on the optimization, and annotate the figure with the position of the

least squares starting values (in (β1, β2)-space), and the maximum-likelihood estimate. Matplotlib

creates a .png graphic, which can be saved in various formats (here, as a .pdf file).

5 Speed comparisons

In this section, we compare the speed performance of extended Python 2.6.5 with Gauss 8.0,

Mathematica 6.0, Ox Professional 5.00, R 2.11.1, and Scilab 5.1.1. We run 15 mathematical

benchmark tests on a 1.66MHz Centrino Duo machine with 1GB RAM running Windows XP. The

algorithms are adapted from [30, Section 8], and are described in Appendix A.2. They include a

series of general mathematical, statistical and linear algebra operations, that occur frequently in

applied work, as well as routines for nested loops and data import and analysis. The tests are

generally performed on large dimension random vectors or matrices, which are implemented as

SciPy arrays.25 We summarize the tests, and report the extended Python functions that are used:

24Other numerical optimization routines are available. For instance, BFGS, with numerical or analytical gradient,
is available from scipy.optimize, as fmin bfgs(f,x0,fprime=fp), where f is the function to be minimized, x0 is the
starting value, and fp is the derivative function (if fprime=None, a numerical derivative is used instead). Optional
arguments control step-size, tolerance, display and execution parameters. Other optimization routines include a
Nelder-Mead simplex algorithm (fmin), a modified level set method due to Powell (fmin powell), a Polak-Ribière
conjugate gradient algorithm (fmin cg), constrained optimizers, and global optimizers including simulated annealing.

25All of the Python speed tests discussed in Section 5 and Appendix A.2 that require pseudo-random uniform
numbers (13 of the 15 tests) use the well-known Mersenne Twister (MT19937). See Section 10.3 in [21] and Section
9.6 in [31] for details. Python supports random number generation from many discrete and continuous distributions.
For instance, the continuous generators include the beta, Cauchy, χ2, exponential, Fisher’s F , gamma, Gumbel,
Laplace, logistic, lognormal, noncentral χ2, normal, Pareto, Student’s t, and Weibull.

26

0.05 0.10 0.15 0.20 0.25 0.30
β2

0.050

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

β
1

MINIMUM

START

Optimization successful after 12
iterations, 13 function evaluations,
and 104 gradient evaluations

46.000

46.000

48.000

48.000

50.000

50.000

(Negative) log-likelihood contour cross-section

Figure 4: Annotated contour plot from probit estimation (see Example 6).

• Fast Fourier Transform over vector (scipy.fftpack.fft()).

• Linear solve of Xw = y for w (scipy.linalg.solve()).

• Vector numerical sort (scipy.sort()).

• Gaussian error function over matrix (scipy.special.erf()).

• Random Fibonacci numbers using closed-form (uses SciPy array).

• Cholesky decomposition (scipy.linalg.cholesky()).

27

• Data import and descriptive statistics (uses numpy.mat() and numpy.loadtxt()).

• Gamma function over matrix (scipy.special.gamma()).

• Matrix element-wise exponentiation (**).

• Matrix determinant (scipy.linalg.det()).

• Matrix dot product (numpy.dot()).

• Matrix inverse (scipy.linalg.inv()).

• Two nested loops (core Python loops; fast Python/C++ routine implemented).

• Principal components analysis (mdp.pca()).

• Computation of eigenvalues (scipy.linalg.eigvals()).

For each software environment, the 15 tests were run over 10 (sometimes 5) replications. The code

for the benchmark tests, implemented in Gauss, Mathematica, Ox, R, and Scilab, and the dataset

that is required for the data import test, are available from www.scientificweb.com/ncrunch.

We have made minor modifications to the timing (using the time module) and dimensions of some

of the tests, but have not attempted to further optimize the code developed by [30], although we

have looked for the fastest Python and R implementations in each case. Our results cannot be

directly compared to those in [30], or [15], who run a previous version of these speed tests.

Full results are reported in Table 2, which gives the mean time (in seconds) across all replications

for each of the tests. The tests have been ordered by increasing run-time for the extended Python

implementation. The ‘overall performance’ of each software is calculated following [30], as:

(
n−1

∑
i

minj(tij)

tij

)
× 100%,

28

where i = 1, 2, . . . , n are the tests, j is the software, and tij is the speed (seconds) of test i with

software j. Higher overall performance values correspond to higher overall speed (maximum 100%).

We remark briefly on the results. Extended Python is comparable in ‘overall performance’ to

the econometric and statistical programming environments Ox and Scilab. For the first 12 tests,

the Python implementation is either the fastest, or close to this, and displays some substantial

speed gains over GAUSS, Mathematica, and R. While the data test imports directly into a NumPy

array, Python is also able to parse complicated and heterogeneous data structures (see Example

1 for a simple illustration). The loop test takes almost twice as long as in GAUSS and Ox, but

is considerably faster than Mathematica, Scilab, and R. It is well-known that Python loops are

inefficient, and most such computations can usually be made much faster either by using vectorized

algorithms ([14, Section 4.2]), or by optimizing one of the loops (often the inner loop). We would

certainly not suggest that Python nested loops be used for heavy numerical work. In Section 4,

Example 5, we show that it is straightforward to write the loop test as a Python/C++ routine,

and that this implementation runs about 600 times faster than core Python. Code optimization

is generally advisable, and not just for Python (see, e.g. www.scipy.org/PerformancePython).

The principal components routine is the fastest implementation. The speed of the eigenvalue

computation is roughly comparable to Mathematica.

Given the limited number of replications, and the difficulty of suppressing background processes,

the values in Table 2 are only indicative (and especially for the heavier tests, which can sometimes

be observed to have mean run-times that increase in the number of replications), although we do

not expect the qualitative results to change dramatically with increased replications. In any given

application, Python is likely to be comparably fast to some purpose-built mathematical software,

and any slow time-critical code components can always be optimized by using C++ or Fortran.

29

Test Python GAUSS Mathematica Ox R Scilab

Fast Fourier Transform over vector 0.2 2.2 0.2 0.2 0.6 0.7

Linear solve of Xw = y for w 0.2 2.4 0.2 0.7 0.8 0.2

Vector numerical sort 0.2 0.9 0.5 0.2 0.4 0.3

Gaussian error function over matrix 0.3 0.9 3.6 0.1 1.0 0.3

Random Fibonacci numbers 0.3 0.4 2.3 0.3 0.6 0.5

Cholesky decomposition 0.4 1.6 0.3 0.6 1.3 0.2

Data import and statistics 0.4 0.2 0.5 0.3 0.8 0.3

Gamma function over matrix 0.5 0.7 3.3 0.2 0.7 0.2

Matrix element-wise exponentiation 0.5 0.7 0.2 0.2 0.8 0.6

Matrix determinant 0.7 7.3 0.5 3.4 2.1 0.4

Matrix dot product 1.4 8.9 1.0 1.7 7.8 1.0

Matrix inverse 2.0 7.3 1.9 6.4 9.0 1.4

Two nested loops? 8.1 4.3 84.7 4.8 58.0 295.9

Principal components analysis 11.1 359.0 141.7 n/a 55.9 88.3

Computation of eigenvalues 32.3 90.2 24.2 21.7 13.6 17.3

Overall performance 67% 30% 53% 70% 29% 65%

Table 2: Speed test results. The mean time (seconds) across 10 replications is reported to 1
decimal place, for each of the 15 tests detailed in Appendix A.2. The GAUSS and R nested
loops and the GAUSS, R, and Scilab principal components tests were run over 5 replications. The
Scilab principal components test code ([30]) uses a third-party routine. The tests were performed
in ‘Python’ (extended Python 2.6.5), ‘GAUSS’ (GAUSS 8.0), ‘Mathematica’ (Mathematica 6.0),
‘Ox’ (Ox Professional 5.00), ‘R’ (R 2.11.1) and ‘Scilab’ (Scilab 5.1.1), on a 1.66MHz Centrino Duo
machine with 1GB RAM running Windows XP. The fastest implementation of each individual
test is highlighted. ‘Overall performance’ is calculated as in [30]: (n−1

∑
i minj(tij)/tij) × 100%,

where i = 1, 2, . . . , n are the tests, j is the software used, and tij is the speed (seconds) of test i
with software j. The speed test codes are python speed tests.py, benchga5.e, benchmath5.nb,
benchox5.ox, r speed tests.r, and benchsc5.sce, and are available from the authors (code for
the Python and R tests was written by the authors). There is no principal components test in the
[30] Ox code, and that result is not considered in the overall performance for Ox. ?For a much
faster (Python/C++) implementation of the Python nested loop test, see Section 4, Example 5,
and the discussion in Section 5.

30

6 Concluding remarks

Knowledge of computer programming is indispensable for much applied and theoretical research.

Although Python is now used in other scientific fields (e.g. physics), and as a teaching tool,

it is much less well-known to econometricians and statisticians (exceptions are [5], which briefly

introduces Python, and contains some nice examples; and [1]). We have tried to motivate Python

as a powerful alternative for advanced econometric and statistical project work, but in particular

as a means of linking different environments used in applied work.

Python is easy to learn, use, and extend, and has a large standard library and extensive third-

party modules. The language has a supportive community, and excellent tutorials, resources, and

references. The ‘pythonic’ language structure leads to readable (and manageable) programs, fast

development times, and facilitates reproducible research. We agree with [13] that reproducibility

is important (they also note the desirability of a single environment that can be used to manage

multiple parts of a research project; consider also the survey paper [22]). Extended Python offers

the possibility of direct programming of large-scale applications or, for users with high-performance

software written in other languages, it can be useful as a strong ‘glue’ between different applications.

We have used the following packages here: (1) cPickle for data import and export, (2)

matplotlib (pyplot) for graphics, (3) mdp for principal components analysis, (4) numpy for efficient

array operations, (5) rpy for graphics and random number generation, (6) scipy for scientific

computation (especially arange for array sequences, constants for built-in mathematical constants,

fftpack for Fast Fourier transforms, linalg for matrix operations, math for standard mathematical

functions, optimize for numerical optimization, special for special functions, stats for statistical

functions, and weave for linking C++ and Python), and (7) time for timing the speed tests.

Many other Python modules can be useful in econometrics (see [2] and [31] for coverage of

standard modules). These include csv (.csv file import and export), os (common operating-

system tools), random (pseudo-random number generation), sets (set-theoretic operations), sys

31

(interpreter tools), Tkinter (see wiki.python.org/moin/TkInter; for building application front-

ends), urllib and urllib2 (for internet support, e.g. automated parsing of data from websites and

creation of internet bots and web spiders), and zipfile (for manipulation of .zip compressed data

files). For third-party modules, see [14] (and also wiki.python.org/moin/NumericAndScientific).

Also useful are the ‘Sage’ mathematics system (www.sagemath.org), the statsmodels Python

statistics package (statsmodels.sourceforge.net), and the ‘SciPy Stats Project’, a blog that

developed out of the ‘Google Summer of Code 2009’ (www.scipystats.blogspot.com).

Of additional interest are the Psyco just-in-time compiler, which is reported to give substantial

speed gains in some applications (see [14, Section 8], and [28] for a manual), and ScientificPython

(not to be confused with SciPy), which provides further open source scientific tools for Python

(see dirac.cnrs-orleans.fr/plone/software/scientificpython). The f2py module can be

used to link Fortran and Python (cens.ioc.ee/projects/f2py2e), and the SWIG (Simplified

Wrapper and Interface Generator) interface compiler (www.swig.org) provides advanced linking

for C++ and Python. The ‘Cython’ language can be used to write C extensions for Python

(www.cython.org). For completeness, we note that some commercial Python libraries are also

available, e.g. the PyIMSL wrapper (to the IMSL C Numeric library). Python is also appropriate

for network applications, animations, and application front-end management (e.g. it can be linked

to Excel with the xlwt module, available from pypi.python.org/pypi/xlwt).

Parallel processing is possible in Python, with the multiprocessing package. Python is

implemented so that only one simple thread can interact with the interpreter at a time (the Global

Interpreter Lock: GIL). However, NumPy can release the GIL, leading to significant speed gains

when arrays are used. Unlike threads, full processes each have their own GIL, and do not interfere

with one another. In general, achieving optimal use of a multiprocessor machine or cluster is

non-trivial. However, Python tools are also available for sophisticated parallelization.

We hope that this paper will encourage the reader to join the Python community!

32

Acknowledgements R.B. and S.L. thank the editor, Esfandiar Maasoumi, and two anonymous

referees, for comments that improved the paper; and are grateful to Christophe Bontemps, Christine

Choirat, David Joyner, Marko Loparic, Sébastien de Menten, Marius Ooms, Skipper Seabold and

Michalis Stamatogiannis for helpful suggestions, Mehrdad Farzinpour for providing access to a

Mac OS X machine, and John Muckstadt and Eric Johnson for providing access to a DualCore

machine. R.B. thanks ENAC and Farid Zizi for providing partial research funding. R.B. was

affiliated to ENAC when the first draft of this paper was completed. S.L. thanks Nathalie Lenoir

for supporting this project, and Sébastien de Menten, who had the foresight to promote Python at

Electrabel (which involved S.L. in the first place). This paper was typed by the authors in MiKTEX

2.8 and WinEdt 5, and numerical results were derived using extended Python 2.6.5 (described in

Section 2), as well as C++, EViews 6.0, Gauss 8.0, Mathematica 6.0, Ox Professional 5.00, R 2.9.1

and R 2.11.1, and Scilab 5.1.1. The results in Table 2 depend upon our machine configuration,

the number of replications, and our modification of the original [30] benchmark routines. They

are not intended to be a definitive statement on the speed of the other software, most of which we

have used productively at some time in our work. The authors are solely responsible for any views

made in this paper, and for any errors that remain. All extended Python, C++, and R code for

the examples and speed tests was written by the authors. Code and data are available on request.

33

References

[1] Almiron, M., Almeida, E., and Miranda, M. The reliability of statistical functions in

four software packages freely used in numerical computation. Brazilian Journal of Probability

and Statistics 23 (2009), 107–119.

[2] Beazley, D. Python Essential Reference, 2nd ed. New Riders, 2001.

[3] Borcherds, P. Python: a language for computational physics. Computer Physics

Communications 177 (2007), 199–201.

[4] Bröker, O., Chinellato, O., and Geus, R. Using Python for large scale linear algebra

applications. Future Generation Computer Systems 21 (2005), 969–979.

[5] Choirat, C., and Seri, R. Econometrics with Python. Journal of Applied Econometrics 24

(2009), 698–704.

[6] Cribari-Neto, F., and Zarkos, S. R: Yet another econometric programming environment.

Journal of Applied Econometrics 14 (1999), 319–329.

[7] Dale, D., Droettboom, M., Firing, E., and Hunter, J. Matplotlib Release 0.99.3.

matplotlib.sf.net/Matplotlib.pdf, 2010.

[8] Downey, A. Think Python: How to think like a computer scientist - Version 1.1.22.

www.greenteapress.com/thinkpython/thinkpython.pdf, 2008.

[9] Elkies, N. On A4 +B4 + C4 = D4. Mathematics of Computation 51 (1988), 825–835.

[10] Greene, W. Econometric Analysis, 6th ed. Prentice-Hall, 2008.

[11] Hetland, M. Beginning Python: From Novice to Professional. Apress, 2005.

[12] Kleiber, C., and Zeileis, A. Applied Econometrics with R. Springer, 2008.

34

[13] Koenker, R., and Zeileis, A. On reproducible econometric research. Journal of Applied

Econometrics 24 (2009), 833–847.

[14] Langtangen, H. Python Scripting for Computational Science, 2nd ed. Springer, 2005.

[15] Laurent, S., and Urbain, J.-P. Bridging the gap between Gauss and Ox using OXGAUSS.

Journal of Applied Econometrics 20 (2005), 131–139.

[16] Lucks, J. Python - All a Scientist Needs. arxiv.org/pdf/0803.1838, 2008.

[17] Meinke, J., Mohanty, S., Eisenmenger, F., and Hansmann, U. SMMP v. 3.0 –

Simulating proteins and protein interactions in Python and Fortran. Computer Physics

Communications 178 (2008), 459–470.

[18] Nelsen, R. An Introduction to Copulas, 2nd ed. Springer, 2006.

[19] Nilsen, J. MontePython: Implementing Quantum Monte Carlo using Python. Computer

Physics Communications 177 (2007), 799–814.

[20] Nilsen, J. Python in scientific computing: Applications to Bose-Einstein condensates.

Computer Physics Communications 177 (2007), 45.

[21] Oliphant, T. Guide to NumPy. www.tramy.us/numpybook.pdf, 2006.

[22] Ooms, M. Trends in applied econometrics software development 1985-2008. In Palgrave

Handbook of Econometrics, T. Mills and K. Patterson, Eds., vol. 2. Palgrave MacMillan, 2009.

[23] Ooms, M., and Doornik, J. Econometric software development: past, present and future.

Statistica Neerlandica 60 (2006), 206–224.

[24] Patton, A. Copula-based models for financial time series. In Handbook of Financial Time

Series, T. Andersen, R. Davis, J.-P. Kreiß, and T. Mikosch, Eds. Springer, 2009.

35

[25] Pilgrim, M. Dive into Python. www.diveintopython.org/download/diveintopython

-pdf-5.4.zip, 2004.

[26] Racine, J., and Hyndman, R. Using R to teach econometrics. Journal of Applied

Econometrics 17 (2002), 175–189.

[27] Renfro, C. A compendium of existing econometric software packages. Journal of Economic

and Social Measurement 29 (2004), 359–409.

[28] Rigo, A. The Ultimate Psyco Guide - Release 1.6. psyco.sourceforge.net/

psycoguide.ps.gz, 2007.

[29] SciPy community. SciPy Reference Guide - Release 0.9.0.dev6597.

docs.scipy.org/doc/scipy/scipy-ref.pdf, 2010.

[30] Steinhaus, S. Comparison of mathematical programs for data analysis (Edition 5.04).

www.scientificweb.com/ncrunch/ncrunch5.pdf, 2008.

[31] van Rossum, G. The Python Library Reference: Release 2.6.2. docs.python.org/archives/

python-2.7-docs-pdf-a4.zip (ed. by F.J. Drake, Jr.), 2010.

[32] van Rossum, G. Python Tutorial: Release 2.6.2. docs.python.org/archives/

python-2.7-docs-pdf-a4.zip (ed. by F.J. Drake, Jr.), 2010.

[33] van Rossum, G. Using Python: Release 2.6.2. docs.python.org/archives/

python-2.7-docs-pdf-a4.zip (ed. by F.J. Drake, Jr.), 2010.

[34] Zeileis, A., and Koenker, R. Econometrics in R: Past, present, and future. Journal of

Statistical Software 27, 1 (2008).

[35] Zito, T., Wilbert, N., Wiskott, L., and Berkes, P. Modular toolkit for Data Processing

(MDP): a Python data processing framework. Frontiers in Neuroinformatics 2 (2009). # 8.

36

A Appendix

A.1 A short introduction to bivariate copulas

Excellent references to copula theory and applications include [18] and [24]. Let X and Y be

random variables such that

X ∼ F, Y ∼ G, (X,Y) ∼ H,

where F and G are marginal distribution functions, and H is a joint distribution function. Sklar’s

Theorem states that

H(x, y) = CΘ(F (x), G(y)),

where CΘ(u, v) is (in this paper) a parametric copula function that maps C(u, v) : [0, 1]2 7→ [0, 1],

and that describes the dependence between u := F (x) and v := G(y), and ‘binds’ the marginals F

and G together, to give a valid joint distribution H; and Θ is a set of parameters that characterize

the copula. The probability integral transform X ∼ F =⇒ F (x) ∼ U [0, 1], where U is a uniform

distribution, implies that the copula arguments u and v are uniform.

Elliptical copulas (notably Normal and Student’s t) are derived from elliptical distributions.

They model symmetric dependence, and are relatively easy to estimate and simulate. Copulas

are generally estimated using maximum likelihood, although for elliptical copulas some of the

parameters in Θ can often be estimated using efficient (semi-)closed form formulae.

Here, we assume that the marginals are known, so that

H(x, y) = CΘ(F̂ (x), Ĝ(y)),

and F̂ (x) and Ĝ(x) are empirical marginal distributions, e.g. F̂ (x) := (n+ 1)−1
∑n

i=1 1Xi≤x, where

Xi is an observed datapoint, 1· is the indicator function, and n is the sample size.

37

The 2−dimensional Normal copula is given by:

CR(u) = ΦR(Φ−1(u1),Φ−1(u2)) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
(2π)−1|R|−1/2 exp(−x′R−1x/2)dx1dx2,

where Θ := R is a 2×2 correlation matrix, uj = F̂j(xj), ΦR is a 2-dimensional Normal distribution,

and Φ−1 (Φ) is the univariate (inverse) standard Normal distribution. We further define a bivariate

copula density ∂2CΘ(u)/∂u1∂u2, which for the Normal gives cR(υ) := |R|−1/2 exp(−υ′(R−1 −

I2)υ/2), where υ = (Φ−1(u1),Φ−1(u2))′. Maximum-likelihood estimation of R solves

R̂ = arg max
R

n−1
n∑

i=1

ln cR(u).

Numerical optimization of the log-likelihood surface is usually slow and can lead to numerical errors.

Fortunately, there is a closed-form for the Normal R̂:

R̂ = n−1
n∑

i=1

υiυ
′
i,

where υi = (Φ−1(ui1),Φ−1(ui2))′. Due to numerical errors, we correct to a valid correlation matrix:

(R̂)ij√
(R̂)ii

√
(R̂)jj

7→ (R̂)ij .

Once we have estimated the copula parameters we have, in the bivariate case, H(x, y) =

C
Θ̂

(F̂ (x), Ĝ(y)) := C
Θ̂

(u, v). Simulation from a copula involves generation of (ur, vr), which can

subsequently be transformed to the original data scale (not considered here). For the bivariate

Normal, we simulate by: (1) Compute the Cholesky decomposition R̂ = AA′, (2) Simulate a 2-

vector of standard Normals z ∼ N(0, 1)2, (3) Scale the standard Normals: x = Az ∼ N(0, R̂)2, (4)

Simulate the uniforms uj by uj = Φ(xj), j = 1, 2: this gives (u1, u2) = (F̂1(x1), F̂2(x2)).

38

A.2 Speed test algorithms

We detail the algorithms that are used for the speed tests discussed in Section 5 (adapted from

[30]), and reported in Table 2. We assume that all required Python modules have been imported.

Matrices and vectors have representative elements X = (Xrs) and x = (xr) respectively. Further,

we let I = {1, 2, . . . , 10}. We give brief details on the extended Python implementations.

• Fast Fourier Transform over vector

[Replication i] Generate a 220×1 random uniform vector x = (U(0, 1)). [Start timer] Compute

the Fast Fourier Transform of x. [End timer] [End replication i] Repeat for i ∈ I. Random

numbers are generated with x=scipy.random.random(2**20). The Fast Fourier transform

is performed using scipy.fftpack.fft(x).

• Linear solve of Xw = y for w

[Replication i] Generate a 1000×1000 random uniform matrix X = (U(0, 1)). Generate a

1000×1 vector y = (j), j = 1, 2, . . . , 1000. [Start timer] Solve Xw = y for w. [End timer]

[End replication i] Repeat for i ∈ I. Random numbers are generated using the command

x=scipy.random.random((1000,1000)). The array sequence is y=scipy.arange(1,1001).

The linear solve is performed by the command scipy.linalg.solve(x,y).

• Vector numerical sort

[Replication i] Generate a 1000000×1 random uniform vector x = (U(0, 1)). [Start timer]

Sort the elements of x in ascending order. [End timer] [End replication i] Repeat for i ∈ I.

Random numbers are generated using x=scipy.random.random(1000000). The array sort

method is scipy.sort(x).

• Gaussian error function over matrix

[Replication i] Generate a 1500×1500 random uniform matrix X = (U(0, 1)). [Start timer]

Compute the Gaussian error function erf(x). [End timer] [End replication i] Repeat for i ∈ I.

39

The random array is generated with x=scipy.random.random((1500,1500)). The error

function implementation is scipy.special.erf(x).

• Random Fibonacci numbers

[Replication i] Generate a 1000000×1 random uniform vector x = (b1000× U(0, 1)c), where

b·c returns the integer part. The Fibonacci numbers yn are defined by the recurrence relation

yn = yn−1 + yn−2, where y0 = 0 and y1 = 1 initialize the sequence. [Start timer] Compute

the Fibonacci numbers yn for x = (n) (i.e. n ∈ {0, 1, . . . , 999} will give 1 million random

drawings from the first 1000 Fibonacci numbers), using the closed-form Binet formula

yn =
φn − (−φ)−n√

5
,

where φ = (1 +
√

5)/2 is the golden ratio.26 [End timer] [End replication i] Repeat for i ∈ I.

The random vector is x=scipy.floor(1000*scipy.random.random((1000000,1))). The

Binet formula is implemented as ((golden**x)-(-golden)**(-x))/scipy.sqrt(5), where

golden is taken from scipy.constants.

• Cholesky decomposition

[Replication i] Generate a 1500×1500 random uniform matrix X = (U(0, 1)). Compute

the dot product X ′X. [Start timer] Compute the upper-triangular Cholesky decomposition

X ′X = U ′U , i.e. solve for square U . [End timer] [End replication i] Repeat for i ∈ I.

The random array is x=scipy.random.random((1500,1500)). The dot product is computed

by y=numpy.dot(x.T,x). The Cholesky decomposition computation is performed by the

command scipy.linalg.cholesky(y,lower=False).

26A faster closed-form formula is yn = b(φn/
√

5) + (1/2)c, although we do not use it here. For extended Python,
the faster formula takes roughly 0.2 seconds across 10 replications. We also correct for a typo in the [30] Mathematica
code: RandomInteger[{100,1000},. . .] is replaced by RandomInteger[{0,999},. . .].

40

• Data import and statistics

[Replication i] [Start timer] Import the datafile Currency2.txt. This contains 3160 rows and

38 columns of data, on 34 daily exchange rates over the period 2 January 1990 to 8 February

2002. There is a single header line. For each currency-year, compute the mean, minimum and

maximum of the data, and the percentage change over the year.27 [End timer] [End replication

i] Repeat for i ∈ I. We import the data with numpy.mat(numpy.loadtxt("filename ")).

• Gamma function over matrix

[Replication i] Generate a 1500×1500 random uniform matrix X = (U(0, 1)). [Start timer]

Compute the gamma function Γ(x). [End timer] [End replication i] Repeat for i ∈ I. The

random array is x=scipy.random.random((1500,1500)). The gamma function command is

scipy.special.gamma(x).28

• Matrix element-wise exponentiation

[Replication i] Generate a 2000×2000 random uniform matrix X = (U(1, 1.01)) := (Xrs).

[Start timer] Compute the matrix Y = (X1000
rs). [End timer] [End replication i] Repeat

for i ∈ I. The random array is x=1+(scipy.random.random((2000,2000))/100). The

exponentiation is x**1000.

• Matrix determinant

[Replication i] Generate a 1500×1500 random uniform matrix X = (U(0, 1)). [Start timer]

Compute the determinant det(X). [End timer] [End replication i] Repeat for i ∈ I. The

random array is generated by x=scipy.random.random((1500,1500)). The determinant is

computed by scipy.linalg.det(x).

27The file Currency2.txt is available from www.scientificweb.com/ncrunch. We modify the [30] GAUSS code to
import data into a matrix using load data[]=∧"filename "; and datmat=reshape(data,3159,38);. For the GAUSS
and Python implementations, we first removed the header line from the data file, before importing the data.

28We correct for a typo in the [30] Mathematica code: we use RandomReal[{0,1},{1000,1000}] instead of
RandomReal[NormalDistribution[],{1000,1000}].

41

• Matrix dot product

[Replication i] Generate a 1500×1500 random uniform matrix X = (U(0, 1)). [Start timer]

Compute the dot product X ′X. [End timer] [End replication i] Repeat for i ∈ I. The

random array is x=scipy.random.random((1500,1500)). The dot product is computed by

numpy.dot(x.T,x).

• Matrix inverse

[Replication i] Generate a 1500×1500 random uniform matrix X = (U(0, 1)). [Start timer]

Compute the inverse X−1. [End timer] [End replication i] Repeat for i ∈ I. The random

array is x=scipy.random.random((1500,1500)). The inverse is scipy.linalg.inv(x).

• Two nested loops

[Replication i] Set a = 1. [Start timer] (Loop across l = 1, 2, . . . , 5000). (Loop across

m = 1, 2, . . . , 5000). Set a = a + l + m. (Close inner loop). (Close outer loop). [End timer]

[End replication i] Repeat for i ∈ I. Routine written in core Python. See Section 4 (Example

5) and Section 5 for further discussion.

• Principal components analysis

[Replication i] Generate a 10000×1000 random uniform matrix X = (U(0, 1)). [Start timer]

Transform X into principal components using the covariance method. [End timer] [End

replication i] Repeat for i ∈ I. The random array is x=scipy.random.random((10000,1000)).

The principal components are computed using mdp.pca(x).

• Computation of eigenvalues

[Replication i] Generate a 1200×1200 random uniform matrix X = (U(0, 1)). [Start timer]

Compute the eigenvalues of X. [End timer] [End replication i] Repeat for i ∈ I. The random

array is x=scipy.random.random((1200,1200)). The eigenvalues are computed using the

command scipy.linalg.eigvals(x).

42

A.3 Python code segment for probit example

(Example 6(i). Numerical optimization and Matlab-like plotting)

import cPickle

from matplotlib import pyplot

from scipy import array,shape,arange,log,ones,random

from scipy.stats import norm

from scipy.optimize import fmin_ncg

from scipy.linalg import inv

from numpy import dot,meshgrid

f=open(’./python_data.bin’,’r’); data_dict=cPickle.load(f); f.close()

y=array(data_dict[’Acc’]); vars=data_dict.keys(); vars.sort()

x=array([[1]*len(y)]+[data_dict[r] for r in vars if r!=’Acc’ and r!=’Avgexp’])

def nll(beta,x,y):

return (dot(-((y*log(norm.cdf(dot(x.T,beta))))+

((1-y)*log(1-norm.cdf(dot(x.T,beta))))),ones(len(y))))

def nllprime(beta,x,y):

return (-dot(x,(norm.pdf(dot(x.T,beta))*(y-norm.cdf(dot(x.T,beta))))/

(norm.cdf(dot(x.T,beta))*(1-norm.cdf(dot(x.T,beta))))))

beta_hat_ols=dot(inv(dot(x,x.T)),dot(x,y))

a=fmin_ncg(nll,beta_hat_ols,args=(x,y),fprime=nllprime,disp=1)

b1=arange(-0.05,-0.03,0.0003);b2=arange(0.095,0.325,0.0003)

X1,X2=meshgrid(b1,b2); Z=ones((len(b1),len(b2))); beta_test=array(list(a)[:])

43

(Example 6(ii). Numerical optimization and Matlab-like plotting)

for i in range(len(b1)):

for j in range(len(b2)):

beta_test[1]=b1[i]; beta_test[2]=b2[j]

Z[i][j]=nll(beta_test,x,y)

pyplot.figure()

CS=pyplot.contour(b2,b1,Z,linewidths=(4,4,4,4,4,4),\

colors=(’green’,’blue’,’red’,’black’,’pink’,’yellow’))

pyplot.clabel(CS,inline=1,fontsize=12)

pyplot.xlabel(r’β_{2}’,fontsize=16)

pyplot.ylabel(r’β_{1}’,fontsize=16)

pyplot.title(’(Negative) log-likelihood contour cross-section’,fontsize=20)

pyplot.plot([0.19866354],[-0.04009722],’ro’)

pyplot.plot([0.042544232],[-0.01230058],’ro’)

pyplot.annotate(’MINIMUM’,xy=(0.19866354,-0.04009722),\

xytext=(0.21,-0.045),arrowprops=dict(facecolor=’black’,\

shrink=0.01))

pyplot.annotate(’START’,xy=(0.042544232,-0.01230058),\

xytext=(0.10,-0.02),arrowprops=dict(facecolor=’black’,\

shrink=0.01))

pyplot.text(0.16,-0.02,’Optimization successful after 12\niterations,\

13 function evaluations,\nand 104 gradient evaluations’,\

bbox={’facecolor’:’red’,’alpha’:1,’pad’:10},fontsize=14)

pyplot.ylim(-0.05,-0.01)

pyplot.xlim(0.04,0.35)

pyplot.grid(True)

pyplot.show()

	Introduction
	Installation of packages
	Modular code and package import

	Language basics
	Basic types: numbers and strings
	Container types: lists and dictionaries
	Control structures and user-defined functions

	Longer examples
	(Example 1.) Reading and writing data
	(Example 2.) Graphics and R
	(Example 3.) Creation of LaTeX code
	(Example 4.) Classes and object-oriented programming
	(Example 5.) Using C++ from Python for intensive computations
	(Example 6.) Numerical optimization and Matlab-like plotting

	Speed comparisons
	Concluding remarks
	Appendix
	A short introduction to bivariate copulas
	Speed test algorithms
	Python code segment for probit example

