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Python is a powerful high-level open source programming language, that is available for multiple platforms. It supports object-oriented programming, and has recently become a serious alternative to low-level compiled languages such as C++. It is easy to learn and use, and is recognized for very fast development times, which makes it suitable for rapid software prototyping as well as teaching purposes. We motivate the use of Python and its free extension modules for high performance stand-alone applications in econometrics and statistics, and as a tool for gluing different applications together. (It is in this sense that Python forms a 'unified' environment for statistical research). We give details on the core language features, which will enable a user to immediately begin work, and then provide practical examples of advanced uses of Python. Finally, we compare the run-time performance of extended Python against a number of commonly-used statistical packages and programming environments.

Introduction

"And now for something completely different."

(catch phrase from Monty Python's Flying Circus.)

Python is a powerful high-level programming language, with object-oriented capability, that was designed in the early 1990s by Guido van Rossum, then a programmer at the Dutch National Research Institute for Mathematics and Computer Science (CWI) in Amsterdam. The core Python distribution is open source and is available for multiple platforms, including Windows, Linux/Unix and Mac OS X. The default CPython implementation, as well as the standard libraries and documentation, are available free of charge from www.python.org, and are managed by the Python Software Foundation, a non-profit body. 1 van Rossum still oversees the language development, which has ensured a strong continuity of features, design, and philosophy. Python is easy to learn and use, and is recognized for its very clear, concise, and logical syntax. This feature alone makes it particularly suitable for rapid software prototyping, and greatly eases subsequent program maintenance and debugging, and extension by the author or another user.

In software development, there is often a trade-off between computational efficiency and final performance, and programming efficiency, productivity, and readability. For both applied and theoretical econometricians and statisticians, this frequently leads to a choice between low-level languages such as C++, and high-level languages or software such as PcGive, GAUSS, or Matlab (e.g. [START_REF] Ooms | Econometric software development: past, present and future[END_REF] and [START_REF] Renfro | A compendium of existing econometric software packages[END_REF]). A typical academic study might involve development of asymptotic theory for a new procedure with use of symbolic manipulation software such as Mathematica, assessment of the finite-sample properties through Monte Carlo simulation using C++ or Ox, treatment of a very large microeconometric database in MySQL, preliminary data analysis in EViews or Stata, production of high quality graphics in R, and finally creation of a written report using L A T E X.

An industrial application will often add to this some degree of automation (of data treatment or updating, or of report generation), and frequently a user-friendly front-end, perhaps in Excel.

We will motivate the use of Python as a particularly appropriate language for high performance stand-alone research applications in econometrics and statistics, as well as its more commonly known purpose as a scripting language for gluing different applications together. In industry and academia, Python has become an alternative to low-level compiled languages such as C++. Recent examples in large-scale computational applications include [START_REF] Bröker | Using Python for large scale linear algebra applications[END_REF], [START_REF] Lucks | Python -All a Scientist Needs[END_REF], [START_REF] Meinke | 3.0 -Simulating proteins and protein interactions in Python and Fortran[END_REF], [START_REF] Nilsen | MontePython: Implementing Quantum Monte Carlo using Python[END_REF] and [20, who explicitly refers to faster development times], and indicate comparable run times with C++ implementations in some situations (although we would generally expect some overhead from using an interpreted language). The Python Wiki lists Google, Industrial Light and Magic, and Yahoo! among major organizations with applications written in Python. 2 Furthermore, Python can be rapidly mastered, which also makes it suitable for training purposes ( [START_REF] Borcherds | Python: a language for computational physics[END_REF] discusses physics teaching).

The paper is organized as follows. Section 2 explains how Python and various important additional components can be installed on a Windows machine. Section 3 introduces the core features of Python, which are straightforward, even for users with little programming experience.

While we do not attempt to replace the excellent book length introductions to Python such as [2, a comprehensive treatment of standard modules], [8, with good case studies and exercises], [11, with detailed examples], and [14, more oriented towards computational science], we provide enough detail to enable a user to immediately start serious work. Shorter introductions to the core language include the Python tutorial [START_REF] Van Rossum | Python Tutorial: Release 2[END_REF], which is regularly updated. 3 Python comes into its own as a general programming language when some of the many free external modules are imported.

In Section 4, we detail some more advanced uses of Python, and show how it can be extended with scientific modules (in particular, NumPy and SciPy), and used to link different parts of a research project. We illustrate practical issues such as data input and output, access to the graphical capabilities of R (through the rpy module), automatic creation of a L A T E X code (program segment) from within Python (with numerical results computed using scipy), object-oriented programming in a rapid prototype of a copula estimation, incorporation of C++ code within a Python program, and numerical optimization and plotting (using matplotlib). In Section 5, we compare the speed of extended Python to a number of other scientific software packages and programming environments, in a series of tests. We find comparable performance to languages such as Ox, for a variety of mathematical operations. Section 6 concludes the paper, and mentions additional useful modules. Supplementary material is contained in Appendix A.

Installation of packages

Here, we describe the procedure for installation of Python and some important additional packages, on a Windows machine. We use Windows for illustration only, and discussion of installation for other operating systems is found in [START_REF] Hetland | Beginning Python: From Novice to Professional[END_REF] and [START_REF] Van Rossum | Using Python: Release 2.6.2[END_REF], and is generally straightforward. We use Python 2.6.5 (March 2010), which is the most recent production version for which compatible versions of the scientific packages NumPy and SciPy are available. Python 2.6.5 includes the core language and standard libraries, and is installed automatically from www.python.org/download, by following the download instructions. 4 After installation, the Python Integrated Development Environment (IDLE), or 'shell window' (interactive interpreter) becomes available (see Figure 1). The compatible Pywin32 should also be installed. This provides extension modules for access to many Windows API (Application Programming Interface) functions, and is available from sourceforge.net. 4 The Windows Installer file for Python 2.6.5 is python-2.6.5.msi.

The latest version of Python, 3.0, is less well-tested, and we do not use it in this paper.

The Pywin32 file (build 210) is pywin32-210.win32-py2.6.exe. The NumPy 1.4.1 file is numpy-1.4.1-win32-superpack-python2.6.exe. The SciPy 0.8.0 file is scipy-0.8.0rc2-win32-superpack-python2.6.exe. The R-2.9.1 file is R-2.9.1-win32.exe. The RPy 1.0.3 file is rpy-1.0.3-R-2.9.0-R-2.9.1-win32-py2.6.exe. The MDP file is MDP-2.6.win32.exe. The Matplotlib 1.0.0 file is matplotlib-1.0.0.win32-py2.6.exe. The automatic MinGW 5.1.6 installer file is MinGW-5.1.6.exe. We have tested the installations on a 1.73GHz Celeron M machine with 2GB RAM running Windows Vista, and a 1.66MHz Centrino Duo machine with 1GB RAM running Windows XP. Further information on IDLE is available at docs.python.org/library/idle.html, while some alternative environments are listed in [11, Two open source packages provide advanced functionality for scientific computing. The first of these, NumPy (numpy.scipy.org), enables Matlab-like multidimensional arrays and array methods, linear algebra, Fourier transforms, random number generation, and tools for integrating C++ and Fortran code into Python programs (see [START_REF] Oliphant | Guide to NumPy[END_REF] for a comprehensive manual, and [14, Chapter 4] for applications). NumPy version 1.4.1 is stable with Python 2.6.5 and Pywin32 (build 210), and is available from sourceforge.net (follow the link from numpy.scipy.org). The second package, SciPy (www.scipy.org), which requires NumPy, provides further mathematical libraries, including statistics, numerical integration and optimization, genetic algorithms, and special functions. SciPy version 0.8.0 is stable with the above packages, and is available from sourceforge.net (follow the link from www.scipy.org); see [START_REF]SciPy community[END_REF] for a reference. We use NumPy and SciPy extensively below.

For statistical computing and an excellent graphical interface, Python can be linked to the R language (www.r-project.org) via the RPy interface (rpy.sourceforge.net). The strengths of R are discussed at length in [START_REF] Cribari-Neto | Yet another econometric programming environment[END_REF], [12], [START_REF] Racine | Using R to teach econometrics[END_REF] and [START_REF] Zeileis | Econometrics in R: Past, present, and future[END_REF]. An R journal exists (journal.r-project.org).

Release R 2.9.1 (June 2009; follow the download links on rpy.sourceforge.net, and choose 'full installation') and RPy 1.0.3, available from sourceforge.net, are stable with Python 2.6.5.

An additional third-party module that is useful for data-processing is MDP 2.6: Modular Toolkit for Data Processing (see [START_REF] Zito | Modular toolkit for Data Processing (MDP): a Python data processing framework[END_REF] for details). It contains a number of learning algorithms and, in particular, user-friendly routines for principal components analysis. It is available from mdp-toolkit.sourceforge.net. We also use Matplotlib 1.0.0, a comprehensive and Matlab-like advanced plotting tool, available from sourceforge.net/projects/matplotlib. Documentation ( [7]) and examples can be found at matplotlib.sourceforge.net. A C++ compiler is also needed to run Python programs that contain C++ code segments, and a good free option is a full MinGW 5.1.6 (Minimalist GNU for Windows) installation. An automatic Windows installer is available from www.mingw.org (which links to sourceforge.net), and contains the GCC (GNU Compiler System), which supports C++. We refer to the above installation as 'extended Python', and use it throughout the paper, and especially in Sections 4 and 5. We have installed the individual packages for illustration, but bundled scientific distributions of Python and additional packages are available. These include pythonxy for Windows (code.google.com/p/pythonxy/) and the Enthought Python Distribution (www.enthought.com/products/epd.php), which is free for academic use.

Python is well supported by a dynamic community, with helpful online mailing lists, discussion forums, and archives. A number of Python-related conferences are held annually. A general discussion list is available at mail.python.org/mailman/listinfo/python-list, and the Python forum is at www.python-forum.org/pythonforum/index.php. It is always advisable to check the archives before posting new requests. 5

Modular code and package import

The core Python 2.6.5 implementation is made much more powerful by standard ( [START_REF] Van Rossum | The Python Library Reference: Release 2.6.2[END_REF]) and thirdparty modules (such as RPy and SciPy). A module is easily imported using the import command (this does not automatically run the module code.). For clarity, this is usually performed at the start of a program. For instance (see Example 0 below), import scipy (Python is case-sensitive) loads the main scipy module and methods, which are then called by, e.g. scipy.pi (this gives π). The available scipy packages (within the main module) can be viewed by help(scipy). If a single scipy package is of interest, e.g. the stats package, then this can be imported by import scipy.stats (in which case methods are accessed as, e.g. scipy.stats.kurtosis(), which gives the excess kurtosis), or from scipy import stats (in which case methods are accessed by, e.g.

stats.kurtosis()).

It is often preferable to use the former, since it leads to more readable programs, while the latter will also overwrite any current packages called stats. Another way to overcome this problem is to rename the packages upon import, e.g. from scipy import stats as NewStatsPackage. If all scipy packages are of interest, then these can be imported by from scipy import *, although this will also overwrite any existing packages with the same names.

Longer Python programs can be split into multiple short modules, for convenience and reusability. For instance, in Example 3 below, it is suggested that a user-defined L A T E X table function tex table be saved in a file tex functions.py (the module name is then tex functions). As above, the function can be imported by import tex functions.tex table and then used directly by tex functions.tex table(). In the examples, we will use both forms of import. 6 mail.scipy.org/mailman/listinfo/scipy-user and mail.scipy.org/mailman/listinfo/numpy-discussion. An RPy mailing list is at lists.sourceforge.net/lists/listinfo/rpy-list. Conference announcements are posted at www.python.org/community/workshops. 6 When a script is run that imports tex functions, a compiled Python file tex functions.pyc will usually be created automatically in the same directory as tex functions.py. This serves to speed up subsequent start-up (module load) times of the program, as long as the file tex functions.py is not modified. A list of all functions defined within a module (and of all functions defined within all imported modules) is given by dir(), e.g. import tex functions and dir(tex functions) would give a list including 'tex table'.

Language basics

The IDLE can be used to test short commands in real-time (input is entered after the prompt >>>). Groups of commands can be written in a new IDLE window, saved with a .py suffix, and executed as a regular program in IDLE, or in a DOS window by double-clicking on the file. Singleline comments are preceded by a hash #, and multi-line comments are enclosed within multiple quotes """. Multiple commands can be included on one line if separated by a semi-colon, and long commands can be enclosed within parentheses () and split over several lines (a back-slash can also be used at the end of each line to be split). A general Python object a (e.g. a variable, function, class instance) be used as a function argument f(a), or can have methods (functions) applied to it, with dot syntax a.f(). There is no need to declare variables in Python since they are created at the moment of initialization. Objects can be printed to the screen by entering the object name at the prompt (i.e. >>> a) or from within a program with print a.

Basic types: numbers and strings

The operators +, -, * and / work for the three most commonly-used numeric types: integers, floats, and complex numbers (a real and an imaginary float). Float division is x/y, which returns the floor for integers. The modulus x%y returns the remainder of x divided by y, and powers x y are given by x**y. Variable assignment is performed using =, and must take place before variable use.

Python is a dynamic language, and variable types are checked at run-time. It is also strongly-typed, i.e. following variable initialization, a change in type must be explicitly requested. 7 7 Some care must be taken with variable assignment, which manipulates 'references', e.g. a=3; b=a does not make a copy of a, and so setting a=2 will leave b=3 (the old reference is deleted by re-assignment). Some standard mathematical functions are available in the scipy.math module. Note that variables may be assigned to functions, e.g. b=math.cos is allowed, and b(0) gives 1.0. As for many other mathematical packages, Python also supports long integer arithmetic, e.g. (2682440**4)+(15365639**4)+(18796760**4) and (20615673**4) both give the 30-digit number 180630077292169281088848499041L (this verifies the counterexample in [START_REF] Elkies | On A 4 + B 4 + C 4 = D 4[END_REF] to Euler's (incorrect) conjectured generalization of Fermat's Last Theorem: here, that three fourth powers never sum to a fourth power.) >>> x=y=2; z=(2+3j)*(2-3j); print x, y, z, z.real, type(z), 3/2, 3.0/2.0, 3%2, 3**2 \ # simultaneous assignment, complex numbers, type, division, modulus, power 2 2 (13+0j) 13.0 <type 'complex'> 1 1.5 1 9 >>> y=float(x); print x, type(x), y, type(y) # variable type re-assignment 2 <type 'int'> 2.0 <type 'float'> Python is particularly good at manipulating strings, which are immutable unless re-assigned.

Strings can be written using single (or double) quotes, concatenated using +, repeated by *, and 'sliced' with the slicing operator [r:s], where element s is not included in the slice (indexation starts at 0). Negative indices correspond to position relative to the right-hand-side. Numbers are converted to strings with str(), and strings to floats or integers by float() or int(). 8 When parsing data, it is often useful to remove all start and end whitespace, with strip(). 

Container types: lists and dictionaries

Python has a number of useful built-in data structures. A list is a mutable ordered set of arbitrary comma-separated objects, such as numbers, strings, and other lists. Lists (like strings) can be manipulated using +, *, and the slicing operator [r:s]. A list copy can be created using

[:]. Nested list elements are indexed by [r][s][• • • ].
Lists can be sorted in ascending order (numerically 8 The raw input() command can be used to prompt user input, e.g. data=raw input('enter:') will prompt with 'enter:' and creates a string data from the user input. Example 3 below shows that double and triple backslashes in a string will return a single and a double backslash when the string is printed (this is useful when automatically generating L A T E X code). An alternative is to use a raw string r'string ', which will almost always be printed as entered. It is also possible to search across strings, e.g. a in 'string ', while len(a) gives the number of characters in the string. Python also provides some support for Unicode strings (www.unicode.org). and then alphabetically) with the method sort(), or reversed using reverse(). Lists can also be sorted according to complicated metrics, and this can be very useful in scientific computing.

For instance, if A=[ [START_REF] Almiron | The reliability of statistical functions in four software packages freely used in numerical computation[END_REF][START_REF] Beazley | Python Essential Reference[END_REF], [START_REF] Bröker | Using Python for large scale linear algebra applications[END_REF][START_REF] Cribari-Neto | Yet another econometric programming environment[END_REF]], B=[ [START_REF] Borcherds | Python: a language for computational physics[END_REF][START_REF] Almiron | The reliability of statistical functions in four software packages freely used in numerical computation[END_REF], [START_REF] Beazley | Python Essential Reference[END_REF][START_REF] Bröker | Using Python for large scale linear algebra applications[END_REF]] and C=[[1,0,0],[0,2,0],[0,0,3]] define three matrices, contained in a list x=[A,B,C], then x can be ordered by the determinant (say) using

x.sort(key=det), which will give x=[A,C,B], and where the det function has been imported by from scipy.linalg import det. List membership can be tested by in. Strings can be split into a list of elements using the split() method, which is very useful when parsing databases. Note that methods can be combined, as in strip().split(), which are executed from left to right. New lists can be constructed easily by list comprehension, which loops over existing lists, may be combined with conditions, and can return nested lists. 9 The enumerate() function loops over the elements of a list, and returns their position (index) and value, and the zip() function can be used for pairwise-combination of lists. 9 The slicing operator can also take a step-length argument, i.e. [r:s:step]. An empty list of length n is given by [None]*n, and len() gives the number of elements. The append() and extend() methods can also be used instead of +=, for lists, or elements of lists, respectively. List elements can be assigned to with a[i]=b, and a list slice can be replaced with a slice of a different length. Items can be added at a specific index with insert(), and removed with remove() or pop(). The index of a given element can be found using index(), and its number of occurrences by count(). Slices can be deleted (and the list dimension changed) by del a[r:s]. A Python tuple is essentially an immutable list that can be created from a list using the tuple() function. They behave like lists, although list methods that change the list cannot be applied to them. Tuples are often useful as dictionary keys (see below). The default of split() is to split on all runs of whitespace, and the inverse of e.g. a.split(';') is ';'.join(a.split(';')). Also, range(n) is equivalent to [0,1,2,. . .,n-1]. Another useful string method is a.replace('string1','string2' ), which replaces all occurrences of 'string1 ' in a with 'string2 '.

Control structures and user-defined functions

Commands can be executed subject to conditions by using the if, elif (else if) and else statements, and can contain combinations of == (equal to), <, >, <=, >= and != (not equal to), and the usual Boolean operators and, or and not. Python while statements repeat commands if some condition is satisfied, and for loops over the items of an iterable sequence or list, e.g. for i in a:. 11 The body of Python control structures and functions is defined by whitespace indentation. A function is defined by def and return statements, and can be documented by including a """ comment within the body, which can be viewed using help(function name ). In Example 0, the function pdfnorm returns the density function f (x) of the normal N (mu, sigma**2), and specifies default values for the arguments mu=0 and sigma=1. 12 The function can be called without these arguments, or they can be reset, or can be called using keyword arguments. Functions can also be called by 'unpacking' arguments from a list using *[]. Example 0 gives four ways in which the function can be called to give f (2) ≈ 0.0540. The function can be evaluated at multiple arguments using list comprehension, e.g. print [pdfnorm(x) for x in range (10)]. 13 However, it is much faster to call the function with a vector array argument by from scipy import arange and print pdfnorm(arange( 10)). 14 Python can also deal naturally with composite functions, e.g. 

) Reading and writing data

It is straightforward to import data of various forms into Python objects. We illustrate using 100 cross-sectional observations on income and expenditure data in a text file, from [10,Table F.8.1]. 16 scipy.stats import norm and norm.pdf(arange(1000000)). Tests (a) and (b) both run in roughly 58 seconds, while (c) and (d) take about 0.5 seconds, i.e. the array function is more than 100 times faster. It is encouraging that the user-defined pdfnorm() is comparable in speed terms to the SciPy stats.norm.pdf(). 15 Given two functions f : X → Y and g : Y → Z, where the range of f is the same set as the domain of g (otherwise the composition is undefined), then the composite function g

• f : X → Z is defined as (g • f )(x) := g(f (x))
. 16 The dataset is freely available at www.stern.nyu.edu/∼wgreene/Text/Edition6/TableF8-1.txt. The variable names ('MDR', 'Acc', 'Age', 'Income', 'Avgexp', 'Ownrent', and 'Selfempl') are given in a single header line. Data is reported in space-separated columns, which contain integers or floats. See Examples 2, 3, and 6 for analysis.

(Example 1a. Creating a data dictionary from a text file) f=open('./TableF8-1.txt','r') # open raw data file for reading, specifying path header=f.readline().strip().split(); data_dict=dict([x,[]] for x in header) \ # read first line of data, initialize data dictionary, with header variables as keys for j in f.readlines(): # read all data into dictionary, matching columns to variables for k,l in enumerate(j.strip().split()

): data_dict[header[k]].append(eval(l)) f.

close() # close data file object

In Example 1a, a file object f is opened with open(). A list of variable names, header, is created from the first line of the file: readline() leaves a new line character at the end of the string, which is removed by strip(), and the string is split into list elements by split(). A dictionary data dict is initialized by list comprehension with keys taken from header, and corresponding values [] (an empty list). The dictionary is then filled with data (by iterating across the remaining lines of f), after which the file object is closed by close(). 17 The command eval() 'evaluates' the data into Python expressions, and the dictionary elements corresponding to the variables 'Acc', 'Age', 'MDR', 'Ownrent' and 'Selfempl' are automatically created as integers, while 'Avgexp' and 'Income' are floats. The formatted data dictionary is then ready for use in applied work.

The cPickle module provides a powerful means of saving arbitrary Python objects to file, and for retrieving them. 18 The 'pickling' (save) can be applied to, e.g. numbers and strings, lists and dictionaries, top-level module functions and classes, and creates a byte stream (string representation) without losing the original object structure. The original object can be reconstructed 17 Valid arguments for open() are the filename (including the path if this is not the current location) and the mode of use of the file: useful are 'r' read only (default) and 'w' write only ('r+' is read and write). While f.readlines() reads f into a list of strings, f.read() would read f into a single string. The iteration for j in f.readlines(): in this example could also be replaced by for j in f:. 18 cPickle is an optimized C implementation of the standard pickle module, and is reported to be faster for data save and load ( [START_REF] Beazley | Python Essential Reference[END_REF] and [31, Section 12.2]), although some of the pickle functionality is missing. The default cPickle save 'serializes' the Python object into a printable ASCII format (other protocols are available). See docs.python.org/library/pickle.html for further details. In Example 1b, the raw data file is 3.37k, and the Python .bin, which contains additional structural information, is 5.77k. The present authors have made frequent use of cPickle in parsing and manipulating the U.S. Department of Transportation Origin and Destination databases.

by 'unpickling' (load). The technique is very useful when storing the results of a large dataset parse to file, for later use, avoiding the need to parse the data more than once. It encourages short modular code, since objects can easily be passed from one code (or user) to another, or sent across a network.

The speed of cPickle also makes Python a natural choice for application checkpointing, a technique which stores the current state of an application, and that is used to restart the execution should the system fail. Applications in econometrics include treatment of massive microeconometric datasets, and intensive Monte Carlo simulation (e.g. a bootstrap simulation, or one with a heavy numerical computation in each of a large number of replications).

In Example 1b, a file object g is created, and the dictionary data dict is pickled to the file python data.bin, before being immediately unpickled to a new dictionary data dict2.

(Example 1b. cPickle Python object save and load) import cPickle # import cPickle module and methods g=open('./python_data.bin','w'); cPickle.dump(data_dict,g); g.close() # data save h=open('./python_data.bin','r'); data_dict2=cPickle.load(h); h.close() # data load

(Example 2.) Graphics and R

We build on Example 1, and show how Python can be linked to the free statistical language R, and in particular to its graphical features, through the rpy module. Example 2 creates an empty R pdf object (by r.pdf), called descriptive.pdf, of dimension 1 × 2 (by r.par), to be filled with two generated plots: the first r.plot creates a scatter of the 'Income' and 'Avgexp' variables from data dict, while the second creates a kernel density (r.density) plot of the 'Income' variable.

The .pdf Figure 2 is automatically generated, and can be imported into a L A T E X file (as here!). r.dev_off() # close R pdf object q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q 2 4 6 

(Example 3.) Creation of L A T E X code

This example shows how to design a simple function that will create L A T E X code for a table of descriptive statistics (see [13] for related discussion of 'literate econometric practice', where models, data, and programs are dynamically linked to a written report of the research, and R's 'Sweave'

for a complementary approach). The user-defined function tex table takes arguments filename (the name of the .tex file), data dict (a data dictionary, from Example 1), and cap (the table caption). The list variables contains the sorted keys from data dict. The output string holds table header information (and where a double backslash corresponds to a single backslash in the string, and a triple backslash corresponds to a double backslash). For each variable name i, the output string is augmented with the mean, standard deviation, minimum and maximum of the corresponding variable from data dict, computed using the scipy.stats functions. The string formatting symbol % separates a string from values to format. Here, each %0.2f (formats a value to a 2 decimal place float) acts as a placeholder within the string, and is replaced from left to right by the values given after the string. 19 The output string also contains table footer information, including the caption and a L A T E X label reference. Once output has been created, it is written (using the write method) to filename. The function return ends the procedure. 19 For additional conversion specifiers, see [11, Table 3 It is straightforward to import the resulting L A T E X output into a .tex file (as in Table 1 in this paper) using a L A T E X command, e.g. \input{./table.tex}. 20 The generic code can be used with any data dictionary of the same general form as data dict, and is easily modified.

(Example 4.) Classes and object-oriented programming

The following example illustrates rapid prototyping and object-oriented Python, with a simple bivariate copula estimation. Appendix A.1 contains a short discussion of the relevant copula theory.

We an empirical distribution function F (x) = (n + 1) -1 n i=1 1 X i ≤x , for both a.x and a.y, evaluated at the observed datapoints (sum returns the sum). The Copula method a.rhat() will return an 'in development' message, and illustrates how code segments can be clearly reserved for future development (perhaps a general maximum-likelihood estimation procedure for multiple copula types). The Copula method a.invert cdf() is again reserved for future development, and will return a user-defined error message, since this operation requires the estimated copula parameters, which have not yet been computed (and so a does not have a simulate attribute; this is tested with hasattr). 22 21 The dataset is available from the authors as djia sp500.csv. The data was downloaded from finance.yahoo.com (under tickers ∧ DJI for Dow Jones and ∧ GSPC for S&P500). It is easy to iterate over the lines of a .csv file with f=open('filename.csv','r') and for i in f:, and it is not necessary to use the csv module for this. This example is not intended to represent a serious copula model (there is no dynamic aspect, for instance). 22 Python has flexible built-in exception handling features, which we do not explore here (e.g. [2, Chapter 5]).

A NormalCopula instance can now be created by b=NormalCopula(x,y). The derived class NormalCopula(Copula) inherits the methods of Copula (i.e. init , empirical cdf as well as invert cdf), replacing them by methods defined in the NormalCopula class if necessary (i.e. rhat), and adding any new methods (i.e. simulate). The first time that the method b.rhat() is called, it will compute the estimated copula parameters R = n -1 n i=1 υ i υ i , where 

υ i = (Φ -1 (u i 1 ), Φ -1 (u i 2 
) = ( F 1 (x 1 ), F 2 (x 2 ))
, where F are the empirical marginals. We illustrate with 1000 simulations of (u 1 , u 2 ) (see Figure 3).

In a full application, we may be interested in converting the uniform marginals back to the original scale. This requires numerical inversion of the empirical distribution functions, which could be tricky. return norm.cdf(array(mat(self.chol)*mat(r.rnorm(2,0,1)).T)) q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0. 

(Example 5.) Using C++ from Python for intensive computations

This example shows how to include C++ code directly within a Python program, using the scipy.weave module. We are motivated by the nested speed test result in Section 5, which shows that Python nested loops are quite inefficient compared to some software packages. Specifically, a 5000 × 5000 nested loop that only keeps track of the cumulative sum of the loop indexes runs in about 9 seconds in Python 2.5.4, compared to 5 seconds in Ox Professional 5.00, for instance (see Table 2). Generally, we would not advise use of Python nested loops for numerical computations, and the problem worsens rapidly as the number of loops increases. However, it is easy to optimize Python programs by writing the heaviest computations in C++ (or Fortran).

To illustrate, Example 5 solves the problem of the slow nested loop in the speed test. The C++ code that will perform the computation is simply included in the Python program as a raw string r"""string """, exactly as it would be written in a C++ editor (but without the C++ preamble statements). The scipy.weave.inline module is called with the string that contains the C++ commands (code), the variables that are to be passed to and (although not in this example) from the C++ code (dimension), the method of variable type conversion (performed automatically using the scipy.weave.converters.blitz module), and optionally the compiler to be used (here, gcc,

the GNU Compiler Collection

). There will be a short compile time, when the Python program is first run, and we would expect some small overhead compared to the same code running directly in C++. However, we find over 1000 replications that the loop test now runs in a mean time of 0.02 seconds, or about 600 times faster than in Python! (roughly 300 times faster than Ox). create publication-quality graphics (see also [START_REF] Lucks | Python -All a Scientist Needs[END_REF] for an application). The code segment is included in Appendix A.3. We use the income and expenditure data that was formatted in Example 1, and analyzed in Examples 2 and 3. 23 The data dictionary is loaded using cPickle. Two SciPy arrays are created: y (100×1) contains the variable 'Acc', and X (100×6) contains a constant, 'Age', 'Income', 'MDR', 'Ownrent' and 'Selfempl' ('Avgexp' is dropped, since it perfectly predicts 'Acc').

We estimate a probit model Prob(y i = 1) = Φ(x i β) + u i , i = 1, 2, . . . , 100, where x i is the ith row of X, and β = (β 0 , . . . , β 5 ) . Two user-defined functions specify the negative log-likelihood

-ln L(β) = - 100 i=1 {y i ln Φ(x i β) + (1 -y i ) ln(1 -Φ(x i β))}
and the gradient function

∂(-ln L(β)) ∂β = - 100 i=1 φ(x i β)(y i -Φ(x i β)) Φ(x i β)(1 -Φ(x i β)) x i ,
where φ() is the density function of the standard normal (scipy.stats.norm, scipy.log, and numpy.dot are used in the expressions). The unconstrained optimization β = arg min(-ln L(β)) is solved using the SciPy Newton-conjugate-gradient (scipy.optimize.fmin ncg) method, with the least squares estimate of β used as starting value (scipy.linalg.inv is used in the calculation), and making use of the analytical gradient. The method converges rapidly, and the accuracy of the 23 'Acc' is a dummy variable taking value 1 if a credit card application is accepted, and 0 otherwise. 'Age' is age in years. 'Avgexp' is average monthly credit card expenditure. 'Income' is scaled (/10000) income. 'MDR' is the number of derogatory reports. 'Ownrent' is a dummy taking value 1 if the individual owns his home, and 0 if he rents. 'Selfempl' is a dummy taking value 1 if the individual is self-employed, and 0 otherwise. maximum-likelihood estimate β was checked using EViews 6.0 (which uses different start values). 24 It could be useful in a teaching environment to explain the estimation procedure in more detail.

Here, we use Matplotlib to design a figure for this purpose (Figure 4). We create a contour plot of -ln L(β) in the (β 1 , β 2 )-space, using numpy.meshgrid, as well as matplotlib.pyplot. The plot settings can all be user-defined (e.g. line widths, colours, axis limits, labels, grid-lines, contour labels). We use L A T E X commands directly within Matplotlib to give mathematical axis labels, add a text box with information on the optimization, and annotate the figure with the position of the least squares starting values (in (β 1 , β 2 )-space), and the maximum-likelihood estimate. Matplotlib

Speed comparisons

In this section, we compare the speed performance of extended Python 2.6.5 with Gauss 8.0, Mathematica 6.0, Ox Professional 5.00, R 2.11.1, and Scilab 5.1.1. We run 15 mathematical benchmark tests on a 1.66MHz Centrino Duo machine with 1GB RAM running Windows XP. The algorithms are adapted from [30,Section 8], and are described in Appendix A.2. They include a series of general mathematical, statistical and linear algebra operations, that occur frequently in applied work, as well as routines for nested loops and data import and analysis. The tests are generally performed on large dimension random vectors or matrices, which are implemented as SciPy arrays. 25 We summarize the tests, and report the extended Python functions that are used: 24 Other numerical optimization routines are available. For instance, BFGS, with numerical or analytical gradient, is available from scipy.optimize, as fmin bfgs(f,x0,fprime=fp), where f is the function to be minimized, x0 is the starting value, and fp is the derivative function (if fprime=None, a numerical derivative is used instead). Optional arguments control step-size, tolerance, display and execution parameters. Other optimization routines include a Nelder-Mead simplex algorithm (fmin), a modified level set method due to Powell (fmin powell), a Polak-Ribière conjugate gradient algorithm (fmin cg), constrained optimizers, and global optimizers including simulated annealing. 25 All of the Python speed tests discussed in Section 5 and Appendix A.2 that require pseudo-random uniform numbers (13 of the 15 tests) use the well-known Mersenne Twister (MT19937). See Section 10.3 in [START_REF] Oliphant | Guide to NumPy[END_REF] and Section 9.6 in [START_REF] Van Rossum | The Python Library Reference: Release 2.6.2[END_REF] for details. Python supports random number generation from many discrete and continuous distributions. For instance, the continuous generators include the beta, Cauchy, χ 2 , exponential, Fisher's F , gamma, Gumbel, Laplace, logistic, lognormal, noncentral χ 2 , normal, Pareto, Student's t, and Weibull. • Fast Fourier Transform over vector (scipy.fftpack.fft()).

• Linear solve of Xw = y for w (scipy.linalg.solve()).

• Vector numerical sort (scipy.sort()).

• Gaussian error function over matrix (scipy.special.erf()).

• Random Fibonacci numbers using closed-form (uses SciPy array).

• Cholesky decomposition (scipy.linalg.cholesky()).

• Data import and descriptive statistics (uses numpy.mat() and numpy.loadtxt()).

• Gamma function over matrix (scipy.special.gamma()).

• Matrix element-wise exponentiation (**).

• Matrix determinant (scipy.linalg.det()).

• Matrix dot product (numpy.dot()).

• Matrix inverse (scipy.linalg.inv()).

• Two nested loops (core Python loops; fast Python/C++ routine implemented).

• Principal components analysis (mdp.pca()).

• Computation of eigenvalues (scipy.linalg.eigvals()).

For each software environment, the 15 tests were run over 10 (sometimes 5) replications. The code for the benchmark tests, implemented in Gauss, Mathematica, Ox, R, and Scilab, and the dataset that is required for the data import test, are available from www.scientificweb.com/ncrunch.

We have made minor modifications to the timing (using the time module) and dimensions of some of the tests, but have not attempted to further optimize the code developed by [30], although we have looked for the fastest Python and R implementations in each case. Our results cannot be directly compared to those in [30], or [START_REF] Laurent | Bridging the gap between Gauss and Ox using OXGAUSS[END_REF], who run a previous version of these speed tests.

Full results are reported in The principal components routine is the fastest implementation. The speed of the eigenvalue computation is roughly comparable to Mathematica.

Given the limited number of replications, and the difficulty of suppressing background processes, the values in Table 2 are only indicative (and especially for the heavier tests, which can sometimes be observed to have mean run-times that increase in the number of replications), although we do not expect the qualitative results to change dramatically with increased replications. In any given application, Python is likely to be comparably fast to some purpose-built mathematical software, and any slow time-critical code components can always be optimized by using C++ or Fortran. ) uses a third-party routine. The tests were performed in 'Python' (extended Python 2.6.5), 'GAUSS' (GAUSS 8.0), 'Mathematica' (Mathematica 6.0), 'Ox' (Ox Professional 5.00), 'R' (R 2.11.1) and 'Scilab' (Scilab 5.1.1), on a 1.66MHz Centrino Duo machine with 1GB RAM running Windows XP. The fastest implementation of each individual test is highlighted. 'Overall performance' is calculated as in [30]: (n -1 i min j (t ij )/t ij ) × 100%, where i = 1, 2, . . . , n are the tests, j is the software used, and t ij is the speed (seconds) of test i with software j. The speed test codes are python speed tests.py, benchga5.e, benchmath5.nb, benchox5.ox, r speed tests.r, and benchsc5.sce, and are available from the authors (code for the Python and R tests was written by the authors). There is no principal components test in the [30] Ox code, and that result is not considered in the overall performance for Ox. For a much faster (Python/C++) implementation of the Python nested loop test, see Section 4, Example 5, and the discussion in Section 5.

Concluding remarks

Knowledge of computer programming is indispensable for much applied and theoretical research.

Although Python is now used in other scientific fields (e.g. physics), and as a teaching tool, it is much less well-known to econometricians and statisticians (exceptions are [START_REF] Choirat | Econometrics with Python[END_REF], which briefly introduces Python, and contains some nice examples; and [START_REF] Almiron | The reliability of statistical functions in four software packages freely used in numerical computation[END_REF]). We have tried to motivate Python as a powerful alternative for advanced econometric and statistical project work, but in particular as a means of linking different environments used in applied work.

Python is easy to learn, use, and extend, and has a large standard library and extensive thirdparty modules. The language has a supportive community, and excellent tutorials, resources, and references. The 'pythonic' language structure leads to readable (and manageable) programs, fast development times, and facilitates reproducible research. We agree with [13] that reproducibility is important (they also note the desirability of a single environment that can be used to manage multiple parts of a research project; consider also the survey paper [START_REF] Ooms | Trends in applied econometrics software development 1985-2008[END_REF]). Extended Python offers the possibility of direct programming of large-scale applications or, for users with high-performance software written in other languages, it can be useful as a strong 'glue' between different applications.

We have used the following packages here: (1) cPickle for data import and export, (2) matplotlib (pyplot) for graphics, (3) mdp for principal components analysis, (4) numpy for efficient array operations, (5) rpy for graphics and random number generation, (6) scipy for scientific computation (especially arange for array sequences, constants for built-in mathematical constants, fftpack for Fast Fourier transforms, linalg for matrix operations, math for standard mathematical functions, optimize for numerical optimization, special for special functions, stats for statistical functions, and weave for linking C++ and Python), and (7) time for timing the speed tests.

Many other Python modules can be useful in econometrics (see [START_REF] Beazley | Python Essential Reference[END_REF] and [START_REF] Van Rossum | The Python Library Reference: Release 2.6.2[END_REF] for coverage of standard modules). These include csv (.csv file import and export), os (common operatingsystem tools), random (pseudo-random number generation), sets (set-theoretic operations), sys

The 2-dimensional Normal copula is given by: C R (u) = Φ R (Φ -1 (u 1 ), Φ -1 (u 2 )) =

Φ -1 (u 1 ) -∞ Φ -1 (u 2 ) -∞ (2π) -1 |R| -1/2 exp(-x R -1 x/2)dx 1 dx 2 ,
where Θ := R is a 2 × 2 correlation matrix, u j = F j (x j ), Φ R is a 2-dimensional Normal distribution, and Φ -1 (Φ) is the univariate (inverse) standard Normal distribution. We further define a bivariate copula density ∂ 2 C Θ (u)/∂u 1 ∂u 2 , which for the Normal gives c R (υ) := |R| -1/2 exp(-υ (R -1 -I 2 )υ/2), where υ = (Φ -1 (u 1 ), Φ -1 (u 2 )) . Maximum-likelihood estimation of R solves

R = arg max R n -1 n i=1 ln c R (u).
Numerical optimization of the log-likelihood surface is usually slow and can lead to numerical errors.

Fortunately, there is a closed-form for the Normal R: R = n -1 n i=1 υ i υ i , where υ i = (Φ -1 (u i 1 ), Φ -1 (u i 2 )) . Due to numerical errors, we correct to a valid correlation matrix:

( R) ij ( R) ii ( R) jj → ( R) ij .
Once we have estimated the copula parameters we have, in the bivariate case, H(x, y) = C Θ ( F (x), G(y)) := C Θ (u, v). Simulation from a copula involves generation of (u r , v r ), which can subsequently be transformed to the original data scale (not considered here). For the bivariate Normal, we simulate by: (1) Compute the Cholesky decomposition R = AA , (2) Simulate a 2vector of standard Normals z ∼ N (0, 1) 2 , (3) Scale the standard Normals: x = Az ∼ N (0, R) 2 , (4)

Simulate the uniforms u j by u j = Φ(x j ), j = 1, 2: this gives (u 1 , u 2 ) = ( F 1 (x 1 ), F 2 (x 2 )).
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 1 Figure 1: The Python 2.6.5 Integrated Development Environment (IDLE).

  >>> a='data1'; b=a+'data2'; c=a*2; d=str(x); print b, c, b[5:]+b[:-5], d, len(a), 'data3' in b \ # string operations: +, *, type conversion, slicing, len()

  >>> output=[1.27,'converged',0,[1.25,'no']]; output+=[['ols','gmm']]; output.sort() >>> print output, 'converged' in output, output[3][1], output[1:3] # list manipulation and methods [0, 1.27, [1.25, 'no'], ['ols', 'gmm'], 'converged'] True gmm [1.27, [1.25, 'no']]

  >>> i=0 # variable initialization>>> while i<=10: # while loop if 2<=i<=8: print i, # a compound conditional statement i+=1 # variable increment 2 3 4 5 6 7 8

  scipy.log(pdfnorm(0)) will return ln(f (x)) at x = 0. 15(Example 0. A user-defined function pdfnorm) from scipy import pi,sqrt,exp # import scipy module pi, sqrt, exp def pdfnorm(x,mu=0,sigma=1): # function definition and default arguments """Normal N(mu,sigma**2) density function. # function documentation string Default values mu=0, sigma=1.""" # function name, arguments, string returned by help(pdfnorm) return (1/(sqrt(2*pi)*sigma))*exp(-0.5*((x-mu)**2)/(sigma**2)) # return function result print pdfnorm(2), pdfnorm(2,0,1), pdfnorm(2,sigma=1), pdfnorm(*[2,0,1]) # call pdfnorm Python uses call by assignment, which enables implementation of function calls by value and by reference. Essentially, the call by value effect can be obtained by appropriate use of immutable objects (such as numbers, strings or tuples), or by manipulating but not re-assigning mutable objects (such as lists, dictionaries or class instances). The call by reference effect can be obtained by re-assigning mutable objects; see e.g. [14, Sections 3.2.10, 3.3.4] for discussion.4 Longer examples 4.1 (Example 1.

(

  Example 2. R graphics from a data dictionary) from rpy import * # import rpy module and methods r.pdf('./descriptive.pdf'); r.par(mfrow=[START_REF] Almiron | The reliability of statistical functions in four software packages freely used in numerical computation[END_REF][START_REF] Beazley | Python Essential Reference[END_REF]) # create empty R pdf object (r.plot(data_dict['Income'],data_dict['Avgexp'],xlab='Income', ylab='Expenditure',main='Scatterplot',type='p',lwd=3)) # R scatterplot income_density=r.density(data_dict['Income']) # R estimated kernel density (r.plot(income_density['x'],income_density['y'], # R kernel plot xlab='Income',ylab='frequency',main='Kernel density',type='l',lwd=2))

Figure 2 :

 2 Figure 2: Python/R .pdf output plot, generated using rpy (see Example 2).

  test), Φ -1 is the inverse standard normal distribution (norm.ppf from scipy.stats), u 1 and u 2 are the empirical distributions of b.x and b.y respectively, and i indexes the observation (the NumPy matrix type mat is also used here, and has transpose method .T). The routine further corrects R (b.u) by:(R) ij ( R) ii ( R) jj → ( R) ij ,and stores the result as b.result. All subsequent calls of b.rhat() will immediately return b.result, with no need for further computation. For the stock index data, we find R 12 ≈ 0.9473 (the estimated copula correlation). Once R has been estimated, it can be used for simulation with b.simulate() (which would have automatically called b.rhat() if this had not yet been done). This method computes the Cholesky decomposition R = AA (cholesky, from scipy.linalg, where the lower-triangular A is stored in b.chol), which is used to scale independent bivariate standard normal variates x = (x 1 , x 2 ) = AN (0, 1) 2 = N (0, R) 2 , generated using the rpy r.rnorm function. Bivariate uniforms u = (u 1 , u 2 ) are then computed by passing x through Φ(•) (norm.cdf), where Φ is the univariate standard normal distribution. This gives (u 1 , u 2

Figure 3 :

 3 Figure 3: 1000 simulations from a simple bivariate copula model (see Example 4).

(Example 5 . 4 . 6 (

 546 Including C++ code within a Python program) from scipy.weave import inline,scipy.weave.inline(code,['dimension'],type_converters=scipy.weave.converters.blitz,compiler='gcc') Example 6.) Numerical optimization and Matlab-like plotting This example illustrates the numerical optimization functionality of SciPy, and uses Matplotlib to
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 4 Figure 4: Annotated contour plot from probit estimation (see Example 6).
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 1 

	1]; also see

Table 1 :

 1 use 5042 time series observations on the daily closing prices of the Dow Jones Industrial Average Descriptive statistics. and the S&P500 over 9 June 1989 to 9 June 2009.

	variable	mean	stdev	min	max
	Acc	0.73	0.45	0.00	1.00
	Age	32.08	7.83	20.00	55.00
	Avgexp 189.02 294.24 0.00 1898.03
	Income	3.37	1.63	1.50	10.00
	MDR	0.36	1.01	0.00	7.00
	Ownrent	0.36	0.48	0.00	1.00
	Selfempl	0.05	0.22	0.00	1.00

21 

The raw data is parsed in Python, and log returns are created, as x and y (not shown). There are two classes: a base class Copula, and a derived class NormalCopula. The methods available in each class, and the class inheritance structure, can be viewed by, e.g. help(Copula). A Copula instance (conventionally referred to by self) is initialized by a=Copula(x,y), where the initialization takes the data as arguments (and init is the 'constructor'). The instance variables a.x and a.y (SciPy data arrays) and a.n (sample size) become available. The method a.empirical cdf(), with no argument, returns

  In this example, the possibility is left open, and b.invert cdf() will now return an 'in development' message, as required. We could imagine extending the code to include additional classes, as the empirical study becomes deeper. For instance, Copula, EllipticalCopula(Copula) and NormalCopula(EllipticalCopula) and StudentCopula(EllipticalCopula), where the base class Copula could contain general likelihood-based methods, in addition to computation of empirical or parametric marginals, and methods for graphical or descriptive data analysis; the derived class EllipticalCopula could contain computation of R, which is used by both the Normal 'closed-form' and the Student 'semi-closed form' estimation routines (but not by non-elliptical copulas, such as Archimedean copulas, which could have a separate class); and the derived classes NormalCopula and StudentCopula could use R appropriately in estimation of the full set of copula parameters ( R directly for the normal copula; and R and an estimated degrees-of-freedom parameter for the Student's copula), as well as containing specific simulation routines.

	(Example 4. Rapid prototype of bivariate copula estimation using classes; comments in main text)
	from scipy import *; from scipy.stats import *
	from scipy.linalg import cholesky; from rpy import *
	class Copula:
	def __init__(self,x,y):
	self.x=array(x); self.y=array(y); self.n=float(len(self.x))
	def empirical_cdf(self):
	return ([sum(self.x<=i)/(self.n+1) for i in self.x],
	[sum(self.y<=i)/(self.n+1) for i in self.y])
	def rhat(self):
	for i in range(2)] for j in range(2)]))
	return self.result
	def simulate(self):
	if not hasattr(self,'result'): self.result=self.rhat()
	self.chol=cholesky(self.result,lower=1)

print 'Copula class rhat() not yet implemented.'; return def invert_cdf(self): if not hasattr(self,'simulate'): print 'Must estimate a copula first.'; return else: print 'Copula class invert_cdf() not yet implemented.'; return class NormalCopula(Copula): def rhat(self): if not hasattr(self,'result'): self.test=(array(zip(norm.ppf(self.empirical_cdf())[0], norm.ppf(self.empirical_cdf())[1]))) self.u=array(mat(self.test).T*mat(self.test)/self.n) self.result=(array([[self.u[i][j]/(sqrt(self.u[i][i])*sqrt(self.u[j][j]))

Table 2 ,

 2 which gives the mean time (in seconds) across all replications for each of the tests. The tests have been ordered by increasing run-time for the extended Python implementation. The 'overall performance' of each software is calculated following[30], as: = 1, 2, . . . , n are the tests, j is the software, and t ij is the speed (seconds) of test i with software j. Higher overall performance values correspond to higher overall speed (maximum 100%).We remark briefly on the results. Extended Python is comparable in 'overall performance' to the econometric and statistical programming environments Ox and Scilab. For the first 12 tests, the Python implementation is either the fastest, or close to this, and displays some substantial speed gains over GAUSS, Mathematica, and R. While the data test imports directly into a NumPy array, Python is also able to parse complicated and heterogeneous data structures (see Example 1 for a simple illustration). The loop test takes almost twice as long as in GAUSS and Ox, but is considerably faster than Mathematica, Scilab, and R. It is well-known that Python loops are inefficient, and most such computations can usually be made much faster either by using vectorized

	n -1	i	min j (t ij ) t ij	× 100%,

algorithms ([14, Section 4.2]), or by optimizing one of the loops (often the inner loop). We would certainly not suggest that Python nested loops be used for heavy numerical work. In Section 4, Example 5, we show that it is straightforward to write the loop test as a Python/C++ routine, and that this implementation runs about 600 times faster than core Python. Code optimization is generally advisable, and not just for Python (see, e.g. www.scipy.org/PerformancePython).

Table 2 :

 2 Speed test results. The mean time (seconds) across 10 replications is reported to 1 decimal place, for each of the 15 tests detailed in Appendix A.2. The GAUSS and R nested loops and the GAUSS, R, and Scilab principal components tests were run over 5 replications. The Scilab principal components test code ([30]

For brevity, we will omit the prefix http:// from internet URL references throughout the paper.

See wiki.python.org/moin/OrganizationsUsingPython.

For additional documentation, see[START_REF] Pilgrim | Dive into Python[END_REF], and references in, e.g.[START_REF] Langtangen | Python Scripting for Computational Science[END_REF] and www.python.org/doc/.

A full listing of mailing lists is available from mail.python.org/mailman/listinfo. The www.python.org helpdesk can be contacted at help (at) python.org.SciPy and NumPy mailing lists are available at

The break and continue statements are respectively used to break out of the smallest enclosing for / while loop, and to continue with the next iteration. The pass statement performs no action, but is useful as a placeholder.

This is for illustration only: in practice, the SciPy stats module can be used, e.g. from scipy.stats import norm, and then norm.pdf(x) gives the same result as pdfnorm(x), for the standard normal N (0, 1).

This is also achieved by passing pdfnorm to the map() function, i.e. print map(pdfnorm,range(10)).

Array computations are very efficient. In a simple speed test (using the machine described in Section 5), we compute pdfnorm(x) once only, where x ∈ {0, 1, . . . , 1000000}, by (a) [pdfnorm(x) for x in range(1000000)], (b) map(pdfnorm,range(1000000)), (c) from scipy import arange and pdfnorm(arange(1000000)), and also (d) from

It is also possible to automatically compile a valid filename.tex file (that includes all relevant preamble and document wrapper material) to a .pdf by import os followed by os.system("pdflatex filename.tex ").
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(interpreter tools), Tkinter (see wiki.python.org/moin/TkInter; for building application frontends), urllib and urllib2 (for internet support, e.g. automated parsing of data from websites and creation of internet bots and web spiders), and zipfile (for manipulation of .zip compressed data files). For third-party modules, see [START_REF] Langtangen | Python Scripting for Computational Science[END_REF] (and also wiki.python.org/moin/NumericAndScientific).

Also useful are the 'Sage' mathematics system (www.sagemath.org), the statsmodels Python statistics package (statsmodels.sourceforge.net), and the 'SciPy Stats Project', a blog that developed out of the 'Google Summer of Code 2009' (www.scipystats.blogspot.com).

Of additional interest are the Psyco just-in-time compiler, which is reported to give substantial speed gains in some applications (see [START_REF] Langtangen | Python Scripting for Computational Science[END_REF]Section 8], and [START_REF] Rigo | The Ultimate Psyco Guide -Release 1[END_REF] for a manual), and ScientificPython (not to be confused with SciPy), which provides further open source scientific tools for Python (see dirac.cnrs-orleans.fr/plone/software/scientificpython). The f2py module can be used to link Fortran and Python (cens.ioc.ee/projects/f2py2e), and the SWIG (Simplified Wrapper and Interface Generator) interface compiler (www.swig.org) provides advanced linking for C++ and Python. The 'Cython' language can be used to write C extensions for Python (www.cython.org). For completeness, we note that some commercial Python libraries are also available, e.g. the PyIMSL wrapper (to the IMSL C Numeric library). Python is also appropriate for network applications, animations, and application front-end management (e.g. it can be linked to Excel with the xlwt module, available from pypi.python.org/pypi/xlwt).

Parallel processing is possible in Python, with the multiprocessing package. Python is implemented so that only one simple thread can interact with the interpreter at a time (the Global Interpreter Lock: GIL). However, NumPy can release the GIL, leading to significant speed gains when arrays are used. Unlike threads, full processes each have their own GIL, and do not interfere with one another. In general, achieving optimal use of a multiprocessor machine or cluster is non-trivial. However, Python tools are also available for sophisticated parallelization.

We hope that this paper will encourage the reader to join the Python community!

A Appendix

A.1 A short introduction to bivariate copulas Excellent references to copula theory and applications include [START_REF] Nelsen | An Introduction to Copulas[END_REF] and [START_REF] Patton | Copula-based models for financial time series[END_REF]. Let X and Y be random variables such that

where F and G are marginal distribution functions, and H is a joint distribution function. Sklar's Theorem states that

and that describes the dependence between u := F (x) and v := G(y), and 'binds' the marginals F and G together, to give a valid joint distribution H; and Θ is a set of parameters that characterize the copula. The probability integral transform X ∼ F =⇒ F (x) ∼ U [0, 1], where U is a uniform distribution, implies that the copula arguments u and v are uniform.

Elliptical copulas (notably Normal and Student's t) are derived from elliptical distributions.

They model symmetric dependence, and are relatively easy to estimate and simulate. Copulas are generally estimated using maximum likelihood, although for elliptical copulas some of the parameters in Θ can often be estimated using efficient (semi-)closed form formulae.

Here, we assume that the marginals are known, so that

and F (x) and G(x) are empirical marginal distributions, e.g. F (x) := (n + 1) -1 n i=1 1 X i ≤x , where X i is an observed datapoint, 1 • is the indicator function, and n is the sample size.

A.2 Speed test algorithms

We detail the algorithms that are used for the speed tests discussed in Section 5 (adapted from [30]), and reported in Table 2. We assume that all required Python modules have been imported.

Matrices and vectors have representative elements X = (X rs ) and x = (x r ) respectively. Further, we let I = {1, 2, . . . , 10}. We give brief details on the extended Python implementations.

• Fast Fourier Transform over vector The linear solve is performed by the command scipy.linalg.solve(x,y).

• Vector numerical sort

)). [Start timer]

Sort the elements of x in ascending order. [End timer] [End replication i] Repeat for i ∈ I.

Random numbers are generated using x=scipy.random.random(1000000). The array sort method is scipy.sort(x).

• Gaussian error function over matrix

)). [Start timer]

Compute the Gaussian error function erf(x). [End timer] [End replication i] Repeat for i ∈ I.

The random array is generated with x=scipy.random.random((1500,1500)). The error function implementation is scipy.special.erf(x).

• Random Fibonacci numbers [Replication i] Generate a 1000000×1 random uniform vector x = ( 1000 × U (0, 1) ), where

• returns the integer part. The Fibonacci numbers y n are defined by the recurrence relation

, where y 0 = 0 and y 1 = 1 initialize the sequence. [Start timer] Compute the Fibonacci numbers y n for x = (n) (i.e. n ∈ {0, 1, . . . , 999} will give 1 million random drawings from the first 1000 Fibonacci numbers), using the closed-form Binet formula

where φ = (1 + √ 5)/2 is the golden ratio. The random array is x=scipy.random.random((1500,1500)). The dot product is computed by y=numpy.dot(x.T,x). The Cholesky decomposition computation is performed by the command scipy.linalg.cholesky(y,lower=False). 26 A faster closed-form formula is yn = (φ n / √ 5) + (1/2) , although we do not use it here. For extended Python, the faster formula takes roughly 0.2 seconds across 10 replications. We also correct for a typo in the [30] The principal components are computed using mdp.pca(x). 

• Computation of eigenvalues