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Abstract

The fields scattered by dielectric objects placed inside parallel-plate waveguides

and periodic structures in two dimensions may efficiently be computed via a finite-

difference frequency-domain (FDFD) method. This involves large, sparse linear

systems of equations that may be solved using preconditioned Krylov subspace

methods. Our preconditioners involve fast discrete trigonometric transforms and

are based on a physical approximation. Simulations show significant gain in terms

of computation time and iteration count in comparison with results obtained with

preconditioners based on incomplete LU (ILU) factorization. Moreover, with the

new preconditioners, the required number of iterations is independent of the grid

size.
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1 Introduction

Due to the introduction of electromagnetically complex environments, such

as metamaterials, in the design of antennas and waveguides and in electro-

magnetic shielding, the corresponding problems in computational electromag-

netics have become more demanding both in size and complexity. Finite-

difference methods constitute versatile tools by which these problems may be

solved. The most popular of them, the finite-difference time-domain (FDTD)

method, initially proposed by Yee [1], leads to an explicit leap-frog scheme

for marching on in time. Nevertheless, because it is a time-domain approach,

FDTD is in general not suitable for dispersive media, whose properties are

frequency-dependent, or for applications where the interest is in the time-

harmonic response of the system. In such configurations, one would have to

use a frequency-domain method instead, e.g., the finite-difference frequency-

domain (FDFD) method. Besides, for many configurations such as 2D waveg-

uides, a frequency-domain approach allows for an exact modal formulation of

the absorbing boundary conditions [2,3].

The FDFD approach leads to a sparse linear system Au = b. The associated

matrix-vector product is fast, which suggests that Krylov subspace iterative

methods may constitute suitable solvers. However, due to ill-conditioning, con-

vergence is often slow, so that long computation times are required. One way

to speed up the convergence rate is to precondition the system. Instead of
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the original linear system Au = b, a preconditioned system A−1
0 Au = A−1

0 b is

solved. The matrix A0, called the preconditioner, is chosen keeping two criteria

in mind: the system A0w = d can be rapidly solved for any vector d, and the

iterative method converges in less steps with A−1
0 A than with A. The latter is

often realized by using an approximated inverse A−1
0 ≈ A−1, which improves

the conditioning of the system.

A large family of preconditioners already exists for sparse linear systems.

Among them, one of the most popular techniques is the incomplete factor-

ization method. The standard incomplete LU factorization (ILU) uses an

approximated LU factorization of A, skipping parts of the computation by

imposing on both L and U the sparsity pattern of A. This technique can be

modified to allow for extra fill-in during the factorization. Another precondi-

tioning approach widely used in many branches of applied physics is based

on multigrid theory. However, in the context of the Helmholtz equation, it

has been demonstrated that this leads to difficulties concerning both of the

main multigrid components: the smoothing and the coarse grid correction.

In [4] and [5], these difficulties are analyzed in detail and measures are pro-

posed to overcome them. Preconditioners that involve fast discrete transforms

have been introduced in the preconditioning of Toeplitz matrices by circu-

lant matrices [6]. For the discretized counterpart of the Helmholtz equation,

such fast preconditioners have been developed to treat a box-shaped domain

filled by a homogeneous medium with absorbing boundary conditions [7,8].

For that problem, the application of the preconditioner effectively amounts to

replace the boundary conditions by more convenient ones (Dirichlet or Neu-

mann). Larsson and Otto proposed this preconditioning method [3] to treat

the propagation of hydro-acoustic waves in a duct. Combined with a domain
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decomposition method, their technique has been extended to domains consist-

ing of layers with different material properties [9,10].

In this article, we consider the FDFD method for two 2D structures containing

dielectric scatterers, namely, a parallel-plate waveguide and a transversely pe-

riodic structure. The time-harmonic problem is first reduced to the Helmholtz

equation and discretized with finite differences. The extent of the computa-

tional domain is then limited to the section where the scatterers are located.

At the transverse boundaries that limit this section, we use the modal rep-

resentation of the solution to obtain an exact formulation for the absorbing

boundary conditions. To define the preconditioner, we look at the physics of

the problem. We notice that the field can be represented as uncoupled propa-

gating or attenuating modes everywhere except in the inhomogeneous regions.

Even there, we can expect that an uncoupled modal description constitutes

a good approximation. Therefore, we define the preconditioner such that it

approximates the linear system by decoupling the mutual influences of all the

modal constituents propagating or attenuating inside the structure. The re-

sulting preconditioner can be associated with a matrix with a block structure

that is diagonalizable by means of a fast discrete trigonometric transformation.

This corresponds to an approximation of the initial 2D problem by several un-

coupled 1D problems, associated with an effective dielectric permittivity that

is invariant along the transverse coordinate.

We start by presenting the FDFD approach and the preconditioner for the

parallel-plate waveguide in Section 2. In Section 3, the same approach is ap-

plied to the periodic structure. We discuss a few numerical experiments and

4



compare our preconditioner with ILU preconditioners in Section 4.

2 Parallel-plate waveguides

2.1 Configuration and formulation

Fig. 1. Parallel-plate waveguide configuration.

In a two dimensional configuration, we consider a parallel-plate waveguide

containing dielectric scatterers and excited by an incident TE field, i.e., ori-

ented along uz, the unit vector in the z-direction (Fig. 1). The total field is

firstly decomposed into two parts as follows

E =
(

Ei
z + Es

z

)

uz, (1)

where Ei
z and Es

z respectively represent the non-vanishing components of the

incident and scattered electric fields. In this configuration, the time-harmonic

Maxwell equations can be reduced to the Helmholtz equation for Es
z , i.e.,

∆Es
z + k2

0εrE
s
z = jk0Z0J

c
z , (2)

in which k0 and Z0 respectively stand for the free-space wavenumber and

wave impedance. Further, j =
√
−1 and εr is the relative permittivity of the

dielectric medium. The contrast current density J c
z is defined by

J c
z = j

k0

Z0

(εr − 1) Ei
z. (3)
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Furthermore, the following boundary conditions are imposed at the metallic

plates

Es
z = 0 for x = 0 or x = X. (4)

In the y-direction, the physical domain is assumed to be infinite. However, the

extent of the computational domain has to remain finite. It is limited to the

waveguide section where the scatterers are located by placing two artificial

boundaries at y = 0 and y = Y on which exact discrete absorbing (non-

reflecting) boundary conditions will be supplied.

2.2 Discretization

We introduce an uniform grid as

xm = m∆x for m = 0, · · · ,M with ∆x = X/M,

yn = n∆y for n = 0, · · · , N with ∆y = Y/N,

(5)

in which M and N are the number of grid points with respect to x and y,

respectively. The Helmholtz equation (2) is discretized on the interior points of

this grid using the central-difference approximation for the spatial derivatives.

This leads to

1

(∆x)2
(Es

z [m + 1, n] − 2Es
z [m,n] + Es

z [m − 1, n])

+
1

(∆y)2
(Es

z [m,n + 1] − 2Es
z [m,n] + Es

z [m,n − 1])

+k2
0εr[m,n]Es

z [m,n] = jk0Z0J
c
z [m,n],

(6)

for m = 1, · · · ,M − 1 and n = 1, · · · , N − 1.
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2.3 Boundary Conditions

On the metallic plates, the discretization of (4) gives

Es
z [0, n] = Es

z [M,n] = 0 for n = 0, · · · , N. (7)

For the absorbing boundary conditions, an exact formulation can be obtained

from a modal representation of the solution. Our approach is very similar to

the ones that lead to nonlocal Dirichlet-to-Neuman maps [2,3], except that we

start directly from the discretized problem. Thus, our discretization scheme

is rendered self-consistent, which implies that additional discretization errors

due to the boundary conditions are avoided. Firstly, we focus on the boundary

placed at y = 0, i.e., n = 0. The discrete sine transform of the scattered field

with respect to m is defined at n = 1 by

Ês
z [ℓ, 1] =

√

2

M

M−1
∑

m=1

Es
z [m, 1] sin

πmℓ

M
, (8)

for ℓ = 1, · · · ,M − 1. If we assume that no scatterers are present near the

boundary (i.e. εr[m,n] = 1 for n ≤ 1), the scattered field can be represented

in terms of modes in this region. An exact absorbing boundary condition

is obtained by imposing that each mode should propagate or attenuate away

from the computational domain. Hence, Ês
z [ℓ, 0] follows from Ês

z [ℓ, 1] according

to

Ês
z [ℓ, 0] = Ês

z [ℓ, 1] e−γ[ℓ]∆y , (9)

where the propagation coefficients of the modes γ[ℓ] are obtained directly from

the discretized Helmholtz equation, which yields

γ[ℓ] =
2

∆y
arcsin

(

∆y

2

√

k2
x[ℓ] − k2

0

)

. (10)
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Furthermore, the associated transverse wavenumbers are given by

kx[ℓ] =
2

∆x
sin

πℓ

2M
. (11)

Finally, we perform a backward discrete sine transform to obtain the value of

the field on the boundary

Es
z [m, 0] =

√

2

M

M−1
∑

ℓ=1

Ês
z [ℓ, 0] sin

πmℓ

M
. (12)

From the expressions (8), (9) and (12), we obtain the formulation of the ab-

sorbing boundary condition

Es
z [., 0] = (U Γ UH) Es

z [., 1], (13)

where U = UH = U−1 stands for the matrix associated with the discrete sine

transform. Its elements are given by

(U)ℓ,ℓ′ =

√

2

M
sin

π ℓ ℓ′

M
, ℓ, ℓ′ = 1, · · ·M − 1. (14)

Further,

Γ = diagM−1

(

e−γ[1]∆y, · · · , e−γ[M−1]∆y
)

(15)

is a diagonal matrix describing the propagation and/or attenuation of the

modes between n = 1 and n = 0. At y = Y , we again assume that there are

no scatterers beyond or crossing the boundary. A similar analysis leads to

Es
z [., N ] = (U Γ UH) Es

z [., N − 1]. (16)

2.4 Linear system

Using (7), (13) and (16) to account for the field on the boundary of the domain

in (6), we obtain a linear system Au = b of size Nu = (M − 1)(N − 1). The
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unknown u and the right-hand-side b are vectors containing the scattered

electric field Es
z and the source term jk0Z0J

c
z ,respectively. The matrix A has

a block structure which can be expressed by means of the Kronecker product

(denoted by ⊗) [11]

A = D2x ⊗ IN−1 + IM−1 ⊗ D2y

+
1

(∆y)2
(U Γ UH) ⊗ (B1 + BN−1) + k2

0Λεr
,

(17)

where IM−1 and IN−1 denote identity matrices of size M − 1 and N − 1,

respectively. The matrices D2x and D2y are associated with the discretization

of the second-order partial derivatives

D2x =
1

(∆x)2
tridiagM−1

(

1,−2, 1
)

,

D2y =
1

(∆y)2
tridiagN−1

(

1,−2, 1
)

.

(18)

The square matrices Bn, of size (N − 1), are given by

(Bn)ℓ,ℓ′ =























1 for ℓ = ℓ′ = n,

0 otherwise.

(19)

Further, Λεr
is a diagonal matrix containing the relative permittivity values

on the interior points of the grid. In the context of iterative solvers based

on Krylov subspaces, the computation time needed for one iteration mainly

depends on the complexity of the matrix-vector product Av for any v. By

employing fast algorithms to compute the discrete sine transforms, this com-

plexity is of order O(MN + M log M), which is very efficient.
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2.5 Discrete sine transform preconditioner

Our preconditioner A0 is defined so that it decouples all the modal constituents

propagating or attenuating inside an effective background. This yields an ap-

proximation of the actual configuration only in the inhomogeneous regions

where the scatterers are located. In order to examine the mutual influence of

these constituents in the original linear system, we analyze the discrete sine

transform of A with respect to the transverse direction

Â = (UH ⊗ IN−1)A(U ⊗ IN−1). (20)

Using (17) and results about sine transforms of diagonal and tridiagonal ma-

trices [12], we obtain

Â = D̂2x ⊗ IN−1 + IM−1 ⊗ D2y

+
1

∆y2
Γ ⊗ (B1 + BN−1)

+ k2
0

N−1
∑

n=1

(

T̂ n
εr
− Ĥn

εr

)

⊗ Bn,

(21)

in which D̂2x = diagM−1(−k2
x[ℓ]). For n = 1, · · · , N − 1, T̂ n

εr
and Ĥn

εr
are the

respective Toeplitz and Hankel matrices,

(

T̂ n
εr

)

ℓ,ℓ′
=

1√
2M

ε̃r

[

ℓ − ℓ′, n
]

,

(

Ĥn
εr

)

ℓ,ℓ′
=

1√
2M

ε̃r

[

ℓ + ℓ′, n
]

,

(22)

where

ε̃r[ℓ, n] =

√

2

M

M−1
∑

m=1

εr[m,n] cos
πℓm

M
. (23)

Note that ε̃r[ℓ, n] is the standard discrete cosine transform of the vector

(0, εr[1, n], · · · , εr[M − 1, n], 0)T (24)
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for each value of n. To remove the coupling between the modal constituents in

the waveguide, Â must be approximated by a matrix that is block diagonal.

In the context of fast-transform based preconditioners [6], the most commonly

used technique is to take the optimal approximation A0 of A with respect to

the Frobenius norm, i.e., A0 is the block diagonal matrix such that ‖A−A0‖F =

‖Â − Â0‖F is minimal, where

‖A − A0‖F =
Nu
∑

ℓ,ℓ′=1

|(A)ℓ,ℓ′ − (A0)ℓ,ℓ′ |2. (25)

Because the Frobenius norm remains invariant under unitary transformations,

Â0 is obtained upon replacing T̂ n
εr
− Ĥn

εr
by its diagonal part in (21). It leads

to the formulation of the preconditioner

A0 = (U ⊗ IN−1)Â0(U
H ⊗ IN−1), (26)

with

Â0 = D̂2x ⊗ IN−1 + IM−1 ⊗ D2y

+
1

(∆y)2
Γ ⊗ (B1 + BN−1)

+ k2
0

N−1
∑

n=1

δ
(

T̂ n
εr
− Ĥn

εr

)

⊗ Bn.

(27)

δ(.) indicates a diagonal matrix with elements that are the diagonal elements

of the argument. The decoupling allows for a separate treatment of the modal

constituents. Hence, the preconditioner replaces the initial linear system of

size (M −1)(N −1) by M −1 decoupled systems of size N −1. More precisely,

to solve the equation A0w = d, we compute the sine transform of the right

hand side

d̂ = (UH ⊗ IN−1)d. (28)
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Then, we solve the M − 1 decoupled systems

Â
(ℓ)
0 ŵ[ℓ, .] = d̂[ℓ, .], (29)

where

Â
(ℓ)
0 = D2y − k2

x[ℓ] IN−1

+
e−γ[ℓ]∆y

(∆y)2
(B1 + BN−1) + k0

2Λ
(ℓ)
εe
r
,

(30)

in which Λ
(ℓ)
εe
r

are diagonal matrices containing an effective permittivity that

depends on the modal order, and on the longitudinal coordinate according to

εe
r[ℓ, n] =

1√
2M

(

ε̃r

[

0, n] − ε̃r

[

2ℓ, n]
)

. (31)

Thus, the decoupled systems can be identified with single-mode physical con-

figurations with an effective dielectric permittivity that is invariant along the

transverse coordinate. Finally the solution is given by the sine transform of ŵ

w = (U ⊗ IN−1)ŵ. (32)

The use of A0 as a preconditioner is only worthwhile if solving A0w = d

is inexpensive for any vector d. The decoupled systems are tridiagonal and

symmetric. Therefore, each one can be solved in O(N) operations. Taking

into account the computations of the sine transforms in (28) and (32), the

complexity of solving A0w = d is of order O(MN log M). Hence, during one

iteration, the cost of the preconditioner remains moderate, even if it is slightly

more expensive than the cost of the matrix-vector product Av.
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3 Periodic structures

3.1 Configuration and formulation

Fig. 2. Periodic structure configuration.

We adopt a similar approach for dielectric structures that are periodic with

respect to x (Fig. 2)

εr(x + qX, y) = εr(x, y), ∀q ∈ Z. (33)

We assume that the incident field is a TE plane wave

Ei
z(r) = Ei

z0e
−jki.r, (34)

where ki = (kxi, kyi)
T stands for the incident wave vector. As in the parallel-

plate case, the problem can be reduced to the inhomogeneous Helmholtz

equation, (2), with a contrast current density source term, as in (3). In the

x-direction, the extent of the computational domain can be limited to one

period (0 ≤ x ≤ X) by means of Bloch-wave boundary conditions, i.e.,

Es
z(X, y) = Es

z(0, y)e−jkxiX . (35)

In the y-direction, the computational domain is restricted to the section where

the scatterers are located.
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3.2 Discretization

Starting from the grid defined in (5), the discretization of the Helmholtz equa-

tion remains as in (6), albeit that m = 0, · · · ,M − 1 and n = 1, · · · , N − 1,

i.e., m = 0 is now included. The discretized equation, combined with modal

absorbing and Bloch-wave boundary conditions, yield a linear system Au = b

of size M(N − 1),

A = D2x ⊗ IN−1 + IM ⊗ D2y

+
1

(∆y)2
(U Γ UH) ⊗ (B1 + BN−1) + k2

0Λεr
.

(36)

Note that (36) has the same form as (17), albeit that there are some slight

differences in the definition of the constituent terms. The diagonal matrix Λεr

contains the relative permittivity values both on the interior points and on

the boundary m = 0. In view of Bloch-wave boundary conditions, the matrix

D2x becomes

D2x =
1

(∆x)2
[tridiagM(1,−2, 1) + P ], (37)

where

(P )ℓ+1,ℓ′+1 =







































ejkxiX for ℓ = 0, ℓ′ = M − 1,

e−jkxiX for ℓ = M − 1, ℓ′ = 0,

0 otherwise.

(38)

The unitary transformation U is associated with the modal representation of

the solution in the periodic structure. It may be expressed as

UH = FΛi, (39)

where Λi introduces the phase shifts associated with the angle of incidence,

Λi = diagM

(

1, ejkxi∆x, · · · , ej(M−1)kxi∆x

)

, (40)
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and F is the matrix associated with the discrete Fourier transform of size M .

Its elements are given by

(F )ℓ+1,ℓ′+1 =
ej2πℓℓ′/M

√
M

, ℓ, ℓ′ = 0, · · ·M − 1. (41)

Further, the diagonal matrix Γ contains the propagation and/or attenuation

factors of modes that have traveled a distance ∆y, i.e.,

Γ = diagM

(

e−γ[0]∆y, · · · , e−γ[M−1]∆y
)

. (42)

The propagation coefficients γ are associated with the discretized Helmholtz

equation with Bloch-wave boundary conditions,

γ[ℓ] =
2

∆y
arcsin

(

∆y

2

√

k2
x[ℓ] − k2

0

)

, (43)

where

kx[ℓ] =
2

∆x
sin

(

kxi∆x

2
+

πℓ

M

)

(44)

are the corresponding transverse wavenumbers.

3.3 Preconditioner

We start with the formulation of the U -transform of A

Â = (UH ⊗ IN−1)A(U ⊗ IN−1). (45)

Using (36) and results from [6], we obtain an explicit expression for Â

Â = D̂2x ⊗ IN−1 + IM ⊗ D2y

+
1

∆2
y

Γ ⊗ (B1 + BN−1)

+
N−1
∑

n=1

Ĉn
εr
⊗ Bn,

(46)
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where the circulant matrices Ĉn
εr

are generated by the discrete Fourier trans-

form ε̆r[ℓ, n] of εr[m,n] with respect to m. Their elements are given by

(

Ĉn
εr

)

ℓ,ℓ′
=

1√
M

ε̆r

[

ℓ − ℓ′, n
]

. (47)

The preconditioner A0 is defined as the optimal approximation of A with

respect to the Frobenius norm such that the modal constituents are decoupled.

In the periodic case, this amounts to

A0 = (U ⊗ IN−1)Â0(U
H ⊗ IN−1), (48)

with

Â0 = D̂2x ⊗ IN−1 + IM ⊗ D2y

+
1

(∆y)2
Γ ⊗ (B1 + BN−1)

+
N−1
∑

n=1

δ(Ĉn
εr

) ⊗ Bn.

(49)

To solve A0w = d, d is subjected to a unitary transformation. Then the

decoupled systems Â
(ℓ)
0 ŵ[ℓ, .] = d̂[ℓ, .] are solved for ℓ = 0, · · · ,M − 1, where

Â
(ℓ)
0 = D2y − k2

x[ℓ]IN−1

+
e−γ[ℓ]∆y

(∆y)2
(B1 + BN−1) + k2

0Λεe
r
,

(50)

in which Λεe
r

is a diagonal matrix, with the effective permittivity

εe
r[ℓ, n] =

1√
M

ε̆r[0, n] =
1

M

M−1
∑

m=0

εr[m,n] (51)

on its diagonal. Just as in the parallel-plate waveguide case, the decoupled

systems can be interpreted as single-mode configurations with an effective

permittivity independent of the transverse coordinate. However, the result

is slightly different because the discrete transform we use is not the same.

Here, the effective permittivity is also independent of the mode order and
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corresponds to the mean value of εr with respect to m.

Finally, w is obtained via a unitary transformation on ŵ.

4 Numerical experiments

4.1 Parallel-plate waveguide

Fig. 3. Geometry of the waveguide filled by 4 scatterers.

As an illustration, we consider a parallel-plate waveguide section filled by

4 square dielectric scatterers of relative permittivity εr1 = 8 and εr2 = 12

(Fig. 3). The excitation is provided by a first-order incident mode at a fre-

quency of 1000 GHz. The iterative method we employ is BiCGstab(2) for

which each iteration involves the computation of 4 matrix-vector products.

This choice is motivated by the numerical experiments conducted in [13], in

which for 5 different sparse linear systems, shorter computation times are ob-

tained with BiCGstab(2) than with other iterative methods (Bi-CG, CGS,

GMRES, BiCGstab(l) with l 6= 2). In all the simulations, the stopping crite-

rion is defined such that the norm of the residual, ri = b − Aui, after the last

iteration is reduced by a factor of 10−6 with respect to the norm of b. The

number of points is determined so that the grid steps along x and y are the

same, and that the criterion k0
√

εr∆x < π/5 (i.e. at least ten points per local

wavelength) is satisfied everywhere. The choice N = 2M = 128 fulfills that
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criteria.

In Fig. 4, we have depicted the amplitude of the scattered field computed

Fig. 4. Amplitude of the electric field Es
z .

with these parameters. To evaluate the efficiency of the preconditioner in this

simulation, we compare in Table 1 the number of matrix-vector products and

the computation times obtained for different scenarios, viz., without any pre-

conditioner, with ILU(0) and ILU(3) factorizations, and with the fast trans-

form based preconditioner (FTP). Observe that FTP outperforms ILU(0) and

ILU(3). The decrease in the computation time is about a factor of 9.5 as com-

pared with no preconditioning, about a factor of 3 with ILU(0), and about a

factor of 2 with ILU(3).

Let us investigate which parameters play a role in the performance of the

No ILU(0) ILU(3) FTP

Matrix-vector products 3357 429 133 65

CPU time (s) 2.18 0.71 0.45 0.23

Table 1

Number of matrix-vector products and computation times without any precondi-

tioner, with ILU(0), with ILU(3) and with FTP.

preconditioner. In Fig. 5, we keep the same physical configuration but we

modify the grid size. Observe that the FTP preconditioner yields almost the

18



same number of iterations regardless of the grid size. By contrast, if no pre-

conditioner is used or an ILU preconditioner, then the number of iterations

increases significantly when the grid size is decreased.

In the next set of simulations, the influence of two physical parameters is
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Fig. 5. Influence of the grid size on the performances of the preconditioners: (a)

Comparison with no preconditioner, (b) Comparison with ILU(0) and ILU(3).

analyzed. In Fig. 6, we show that FTP outperforms ILU(0) and ILU(3) in

terms of the iteration count for relative permittivity values εr2 = 12 and εr1

varying from 2 to 30. Besides, we observe that high permittivity contrasts

require more iterations with all methods. For FTP, this behavior can be re-

lated to the decoupling approximation. When the dielectric profile has strong

transversal variations, the condition |ε̃r[0, n]| ≫ |ε̃r[l, n]| for l 6= 0 does not

hold. Therefore, the diagonal terms in T̂ n
εr
− Ĥn

εr
cease to be dominant, which
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affects the conditioning of A−1
0 A, and yields a degradation of the performance.

In Fig. 6, also the influence of the frequency on the preconditioners is inves-
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Fig. 6. Influence of 2 physical parameters on the performances of the preconditioners:

(a) The relative permittivity εr1, (b) The frequency.

tigated. Even if FTP comprises a considerable improvement over ILU(0) and

ILU(3) in the entire frequency range, we observe a significant degradation of

the performance at high frequencies.

In the last simulation of this section, we look at the performances of the pre-

conditioners when the limits of the scatterers are not parallel to one of the

axes. In Table 2, we show the results obtained when the four scatterers are

rotated an angle of 45◦. Note that again FTP outperforms ILU(0) and ILU(3)

in terms of iteration count and computation time.

20



No ILU(0) ILU(3) FTP

Matrix-vector products 1393 313 101 45

CPU time (s) 0.94 0.52 0.35 0.19

Table 2

Performance of the preconditioners when the scatterers are rotated an angle of 45◦.

4.2 Periodic structure

Upon imposing Bloch-wave boundary conditions at x = 0 and x = X, we

obtain an electromagnetic-band-gap (EBG) crystal working in the millimeter-

wave range. This kind of structure is generally electromagnetically character-

ized by its transmission and reflection coefficients in the specular directions.

We have examined the ability of the FTP-preconditioned FDFD to obtain

these coefficients for a wide range of frequencies and angles of incidence. In

Fig. 7a, the simulation, performed at normal incidence and up to 1400 GHz,

confirms the presence of a band gap centered at 700 GHz and a bandwidth of

400 GHz. However, as in the waveguide case, the performance of our method

deteriorates at high frequencies. The influence of the angle of incidence is

shown at a frequency of 1000 GHz in Fig. 7b. No significant effects are noticed

in the iteration count, even at grazing incidence. For validation purposes, we

have checked that exactly the same results are obtained when the computation

domain includes two periods of the structure.
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Fig. 7. Evolution of the transmission coefficient with respect to: (a) The frequency

at normal incidence. (b) The incidence angle at 1000GHz.

5 Conclusion

We have proposed an FDFD method to compute the fields scattered by dielec-

tric objects placed inside a parallel-plate waveguide or arranged periodically

with respect to the transverse direction. We have used the modal representa-

tion of the solution to obtain an exact discretized formulation for the absorbing

boundary conditions. The main result is the development of preconditioners

by which a significant acceleration may be achieved. These fast precondition-

ers are based on a physical approximation and involve discrete fast transforms.

They are developed so that they introduce approximations only in the inho-

mogeneous sections of the structure. They are defined as optimal approxima-

tions with respect to the Frobenius norm, such that the modal constituents in

the structure are decoupled. They amount to replacing the original 2D con-
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figuration by several 1D decoupled effective configurations. Numerical tests

have shown that our approach outperforms significantly ILU(0) and ILU(3)

preconditioners in terms of the computation time. Furthermore, we have ob-

served that although the iteration count increases with the permittivity con-

trast and with frequency, it is independent of the grid size. We have also

shown that this method is suitable to compute the transmission coefficients of

2D electromagnetic-band-gap crystals. An important extension of this work

would be to solve three-dimensional electromagnetic problems for which the

complete Yee staggered grid for vector fields is needed.
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