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Origin and Avoidance of Spurious Solutions 
in the Transverse Resonance Method 

Hen6 Aubert, Bernard Souny, and Henri Baudrand, Senior Member, ZEEE 

Abstract- In the context of transverse resonance method, a 
criterion is established for the choice of trial functions introduced 
in Galerkin’s method: this criterion allows to avoid the appear- 
ance of spurious solutions in the whole region of a propagation 
diagram and guarantees, at the same time, a good precision for 
the true solutions. 

I. INTRODUCTION 

OST OF the research dealing with the problem of M spurious solutions has been developed in the context 

of finite-element method and many options for avoiding these 

nonphysical solutions have been presented in scientific liter- 

ature [ 11-[4]: the fundamental cause of spurious modes lies 
in the inaccurate approximation of the zero eigenvalue and 

the corresponding eigenfunctions [ 5 ] .  The enforcement of the 

divergence-free constraint on the trial functions allows to 

suppress spurious solutions present in the initial formulation 

VI, [61. 
Up to now, no scientific communication, at least to our 

knowledge, has dealt with the origin and the avoidance of 

spurious solutions in the transverse resonance method. This 

method, particularly well-adapted to the study of multilay- 

ered structures, is used very often to characterize dispersion 

phenomena in planar transmission lines [7]-[ 131: the size of 

matrices resulting from the transverse resonance condition is 

reduced considerably compared with the usual finite-element 

method. Meanwhile, spurious solutions may be encountered 

in the numerical treatment of the transverse resonance method 

which are difficult to distinguish from the true propagation 

constants and which hinder the systematic investigation of 

physical solutions: the origin of these embarassing solutions 

is very obscure and therefore their avoidance a priori seems 

to be quite difficult. 

In this paper, the problem of spurious solutions is studied 

in the context of the transverse resonance method. We show 

that the characterization of dispersion phenomena in planar 

transmission lines gives rise to a resonance condition which 

has theoretically a solution for an infinite propagation constant. 

This nonphysical solution seems to be the origin of spurious 

solutions in the numerical resolution of dispersion problem: 

as a matter of fact, we show that the basic cause of spuri- 
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ous modes lies in the inaccurate approximation of the field 

belonging to this infinite-p solution. 

In order to describe well the fields belonging to the infinite- 

@ solution, a criterion for the choice of trial functions used 

in the Galerkin’s method is rigorously found. In the E-field 

formulation, the tangential components of the electric field 

in the discontinuity plane are expanded over trial functions: 

the key step for the elimination of spurious solutions is the 

enforcement of zero curl of the E-field along the axis normal to 

the discontinuity plane. A similar criterion can be established 

in the H-field formulation, where we have to force the curl 

of the magnetic field to zero along the axis normal to the 

discontinuity plane. 

The numerical applications of our general theoretical study 

is divided in two parts. First, in the case of unilateral finline, 

we consider the behavior of spurious and physical solutions 

with respect to the number of trial functions which do not 

satisfy the criterion deduced in the theoretical approach. These 

results illustrate the existence of an infinite solution for the 

propagation constant: the inaccurate description of the field 

belonging to this nonphysical solution generates spurious 

solutions. 

In the second part of the numerical application, we show 

that a appropriate choice of trial functions satisfying the 

above mentioned criterion suppresses the spurious solutions 

and guarantees, at the same time, a good precision for the 

physical solutions. 

11. THEORETICAL APPROACH 

In order to illustrate the theoretical developments, consider 

the general unilateral transmission line of Fig. 1. The metal 

on the interface is distributed arbitrarily. 

The dielectric substrate of Fig. 1 is assumed to be isotropic 

and homogeneous. Losses in the dielectric and in the conduc- 

tors as well as the metal thickness are neglected. 

A. Transverse Resonance Method 

The analysis of planar structures using the transverse reso- 

nance method has been the subject of numerous publications 

[7]-[13]. In this study, the application of the method to 

the characterization of dispersion phenomena in the planar 

transmission line of Fig. 1 will be presented in a brief 

development. Note only that the operator formalism is used 

to reinforce the systematic character of this method: it is a 

concise and clear way to treat the well-known relationships be- 

tween the electromagnetic fields, deduced from the equivalent 

transmission line of the structure. 

0018-9480/93$03.00 0 1993 IEEE 
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Fig. 1 .  
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Cross-sectional view of a unilateral planar transmission line. 
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The first point of this method consists in the determination 

of the equivalent transmission line of the considered planar 

structure in the 1~ -direction [13]. Let E represent the electric 

field in the metallized interface (called discontinuity plane, 

shown in Fig. 2) and define the current density J in this plane 

by the following relation: 

J'= @I n" + @I1 2 1 1  

Thus f =  J" + J'" (1) 

with J'Z = x Z i  Vz E {I, 11) 

b* 4 

b I  3 

I 

short circuit 

Fig. 3 .  Transmission line equivalent of planar structure shown Fig. 1. 

Then, we can easily establish the equivalent transmission line 

of the studied structure shown in Fig. 3. 

Note that the electric field E is the fundamental unknown: 

we call it the "adjustable source". We have to solve the two 

continuity relation imposed to the electromagnetic fields in 

the discontinuity plane, that is: 

Y,'" = (Y,')'" + (Y,")'" V n  

and the inner product: 

Smn is the delta Kronecker. 

mode admittances Y,' and Yil are given below [12]: 

The analytical expressions of the well-known TM, and TE, 

Y,' = Yn(l) coth(pn(l)bi) 

discontinuity plane 

Fig. 2. Presentation of current density. and 

with 

+ 

E = 0 on the metal (2) and mode admittance Yn(er) : 

J = 0 elsewhere 
' 

(8) 
(3) P n ( E r ) .  J W E o E r  

TE, mode : -, TM, mode : - 
J W P O  Pn(Er) In the E-field formulation, these two equations are expressed 

only in terms of the adjustable source E: 
with 

8 = 0 on the metal (4) 

Y8 = 0 elsewhere ( 5 )  

and 
where Y is the total admittance operator viewed by the dis- 

continuity plane (The H-field formulation is discussed later). 

on a basis g p  which element are zero on the metallic part of 

the discontinuity plane. 

Next, we determine the matrix representation of the ad- 

mittance operator Y on this basis (Galerkin's method). The 

general term of this matrix can be written under the following 

In order to satisfy (4), we just expand the electric field E k,2 = w2p0t,. 

The determinant of (Y) is put equal to zero ifi order to ensure 

the existence of non-trivial solutions for (5): this is in fact, 

a resonance condition which allows to calculate the unknown 
propagation constant from a variational form. 
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B. Existence of an Infinite Solution for 

the Propagation Constantp 

to the infinite-P solution, we have to choose trial functions 

4,"(x) and $ y ( x )  so that: 

(1 1) 
By applying the transverse resonance method, we demon- 

strate the existence of an infinite solution for the dispersion 
a4: 

4m(-yx (.) vm 

problem. In other words, we demonstrate the fact that: 
with 

(Y ) (Z )  -0 

a -m 

The symbol ( Y )  defines the matrix representation of the 

admittance 'perator On the basis g p  and p denotes the LdCnown where e," and e y  are the components Over trial functions 4: 
propagation constant along the z-axis. We can write: and 4: respectively. 

Comments: 1) In the H-field version of the method, the 

current density is taken as the fundamental unknown of the 

problem. 
From (2) and (3), the new equations to be solved will be 

the followings: 

(2) = C . P i ? P  

P 

and the boundary condition (5): 

(Y)(E') = 0 * CYp,., = 0 v p  (9) 
9 ZJ'= 0 on the metal (13) 

with Ypq given above by (6). Since J = 0 elsewhere (14) 
+ 

Y,T" + cc 

a+cc  

instead of (4) and (5) considered in the E-field version, in 

which 2 is the total impedance operator viewed by the dis- 

continuity plane. Thus, we have to solve the system equations: 

and 
(Z)(J) = 0 * zpqxq = 0 v p  

(4 = &a 

(10) 

we can find a solution E,  for (9) when p is infinite: it is 

sufficient to take: 

Y y +  0 

P -  03 

Vn P 

with 

P 

and 

1 
with z p ,  = C($P> f:E)j+f:E>G,) 

n 

( G p ,  IT", = 0 Vn>P 

that is to say E,  expanded over a TM, basis satisfies the 

boundary conditions for infinite p. 
Thus, we obtain the following result: infinite-P is a possible 

theoretical solution of the dispersion problem. This nonphysi- 

cal solution satisfies the fundamental boundary conditions (5) 
and is transverse magnetic along y-axis. 

Therefore, we obtain a similar criterion of (1 1 )  for the choice 

of trial functions e,m and expanding the current density 

in the discontinuity we could easily demonstrate that a 

TE, condition must be satisfied in to fully describe all 

the mathematical solutions of (13) and (14). This condition can 

be expressed in terms of the current density. In fact, we have: In other words, from the Maxwell equation, we can 

(e x E )  . y ' =  - jw& .g= 0 ( e x x ) . g = j w t Z . ? j = O  

since since 

H ,  = 0 E, = 0 

which leads to with 

aE, dE, 

d z  ax 
= o  

+ +  

J = H x @  

dE.2 Therefore: 

ax dJ ,  a J ,  

ax a z  

+ -jPE, = - 

Therefore. in order to fullv described all the solution of the 
= 0  

boundary problem, that is to say the electric field belonging to 

the physical propagation constants and the E,  field associated 
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so the current density in the discontinuity plane must be 

expanded over trial functions 6: and which do satisfy 

the following relationship: 

In this manner, in order to avoid the spurious solutions-or 

at least, to numerically remove these solutions far away from 

the physical ones-it seems judicious to choose trial functions 

satisfying the criterion (11) in the E-field formulation or 

Note that the application of the criterion (1  1) and (15) does 

not depend on the structure configuration. As matter of fact, 

the criterion ( 1  1) (resp. (15)) is deduced from the zero TM, 
mode admittance (resp. zero TE, mode impedance) when @ 

is infinite: this property is quite general and, therefore, the 

criterion is applicable for all kinds of planar transmission lines. 

80,- e m . & 4  Qm (15) criterion (15) in the H-field formulation. 

(16) 

with 

where 2: and z? are the components over trial functions 0: 

and 0," respectively. 

Note that this result has been used for other reasons by 

Jansen in [18] for the characterization of dispersion phenom- 

ena in single and coupled microstrip lines. 

2) An analogy can be made between our approach and 

the one used in the finite-element method: the basic cause 

of spurious modes in the latter method lies in the inaccurate 

approximation of the zero eigenvalues and the corresponding 

eigenfunctions [5 ] .  These spurious modes do not satisfy the 

free divergence Maxwell equation. Indeed, the equation to be 

solved is: 

111. NUMERICAL RESULTS AND DISCUSSION 

A .  Numerical Properties of Detected Spurious Solutions 

Let N ,  and N ,  represent the number of trial functions along 

the x and z-axis respectively, being inevitably finite numbers 

for the numerical requirements. The values of these parameters 

are conditioned by the convergence criterion on the solution 

for the propagation constant p. 
The analytical expression of trial functions is given in such 

a way to ensure a good accuracy of obtained results, to build 

a well-conditioned matrix and to calculate easily the matrix 

(e x e x E )  - IC:,!? = 0 
(17) elements [14]. 

Usually, in order to reduce the matrix size, the edge effects, 

In the case of isotropic and homogeneous media, by taking 

the divergence of (17) we obtain: 

that is to say the tendmcY of the mx-"m electric field compo- 

nent to a metallic edge to become infinite near this edge, are 

taken into account by the choice of appropriate trial functions 

Take the example of a unilateral finline: the metallization 

thickness is assumed to be zero and allows us to choose the 

following usual trial functions for the electric field in the slot: 

(3 x G x 2) - k i e . 2  = 0 1151. 

which gives 

(18) k ? G . E = O  

So, (1 8) yields mathematically a non zero divergence of the 

electric field when k,  is equal to zero. The divergence of the 

eigenfunctions belonging to the zero eigenvalue is not zero. 

The key step for the elimination of spurious modes is the 

enforcement of the zero divergence of the vector fields used 

for the fields description [2]-[6]. This static solution for w = 0 

is obviously a uninteresting one, but must be mathematically 

well-described, otherwise it takes a finite value and may appear 

as spurious solution in the investigation domain of physical 

solutions. 

In the context of transverse resonance method, we formu- 

late an analogous principle: since infinite-/3 is a solution of 

the boundary equations to be solved, we have to describe 

simultaneously the E, field corresponding to this solution 

and the E field belonging to the physical solutions. In other 

words, we have to choose correct trial functions which have 

to be appropriate for taking into account the characteristics of 

the true solutions and the requirement for infinite- /3 solution. 

If this choice is not made, that is if the trial functions do 

not allow to describe the theoretical E, field, the infinite- 

@ solution will take a very embarassing finite value in the 

numerical treatment (becoming visible as a zero determinant in 

the domain of real solutions) and will hinder the investigation 

of physical solutions. 

27r a 
cos (m - 1)- (x - 1) 

4,"(x) = 

Q m  E {l ,2 ,3; . . ,NZ) 

&(x) = sin ( k  - 
w 

where w designates the slot width. Thus, one or two trial 

functions are enough to obtain good numerical results for the 

propagation constant [ 161. 

But, with these acceptable solutions, we detect another 

solution, called ,Boo, which has a surprising behavior versus 

the number of trial functions. 

As a matter of fact, for a given number of modes, there 

exists a number N = N ,  = N ,  of trial functions beyond 

which this solution takes increasingly larger values (Fig. 4): 

The greater is the number N of trial functions, the better are 

described all the solutions of the boundary problem, especially 

the infinite-@ solution. Thus numerical solution pm is removed 

to infinity for a sufficiently large number of trial functions. 

The transverse Magnetic nature along the y-axis of the 

infinite- p solution can be illustrated by the calculation of the 
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Fig. 4. The two numerical solutions of the resonance condition versus the 
number of trial functions in the case of a unilateral finline: a = 3.556 mm, 
bl = 3,556 mm, = 0.254 mm, b3 = 3.302 mm, E,. = 2. 22 with a 

frequency of 30 GHz. 

mode magnitudes of spurious solutions p,: take a very large 

value for solution of the resonance condition det ( Y )  = 0 and 

determine the true solution of this resonance condition. As an 

example, in the case of a unilateral finline, with 70 modes 

and 1 1  trial functions, we give the mode magnitude spectrum 

for these two kinds of solutions (Fig. 5). It can be noted that 

the solution is principally Transverse Magnetic, since the TE, 

mode magnitudes are negligeable compared with TM, mode 

magnitudes. 

B.  Avoidance of Spurious Solutions 

z-axis mentioned above: 

Applying the criterion (11) with the trial functions along 

4Z(X) = 

Vm E {l,2,3,...,Nz} 

and 

(20) 

yields trial functions along z-axis which have not to be 

expressed analytically. Actually, the matrix representation 

of the admittance operator needs only the determination of 

the inner products (4:, f n z ) ,  since the other inner products 

(4pl fnz) can be easily deduced by integration by part: 

Mk, f n z )  = caz4,", f n z )  

= -k#t, a z f n Z ) a ( d t ,  fnz) 

Therefore, we calculated twice less inner products in this case 

than in the case of classical trial functions given by (20). 

A, is introduced in (20) to ensure a zero-component of the 

electric field on the fin (boundary condition). 

Nevertheless, for information, we give the variation of the 

first trial functions along the z-axis in the discontinuity plane 

(Fig. 6). 

The obtained results with the new kind of trial functions 

are very encouraging: the spurious solutions Pm, detected in 

30 

3 g 20 

2 

t lo 

0 
0 LO 20 w 4u 

harmonicorder 

4 1  

P 
d l  

n 

0 10 20 a 40 

harmonicor& 

(b) 

Fig. 5. Mode Magnitudes spectrum. (a) Of spurious solution: 0 = 61.240,01 
rad/m. (b) Of physical solution: = 598,82 rad/m. 

the calculation of the propagation constant of the fundamental 

mode in a unilateral finline, has disappeared, or at least, is 

removed far away from the investigation domain of physical 

solutions for p (its value is greater than lo8 rad/m !). 

The cosine trial functions, namely: 

Vm E { 1 , 2 1 3 , . . . , N z }  

4:(z) = sin ( I C  - 1)- (z - - 
2w W "> 2 

Vk  E { 1 , 2 , 3 , . . . , N z }  (21) 

seem not to generate spurious solutions-moreover note that 

they satisfy the criterion (1 1)-and do not involve complex 

calculations. The drawback in the manipulation of this kind of 

trial functions is that the solutions of the resonance condition 

(zero determinant) do not converge very well with the number 

of these trial functions. Since they do not take the edge effects 

into account, they involve matrices of relatively large sizes. 

The variation of the determinant versus the propagation 

constant /3 for the three kinds of trial functions (19), (20), and 

(21) (Fig. 7) shows a very similar behavior of the determinant 

in the cases of the trial functions (20) and the cosine trial 

functions. 

Finally, calculate the power density of the true and spurious 

solution in the cross section of a unilateral finline (Fig. 8) 

(the spurious solution is obtained in the case of trial functions 

which do not satisfy the criterion (1 l), that is those of equation 

(19)). 
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Fig. 6. The new trial functions along the z-axis in the case of unilateral finline (see Fig. 4). 

i 
wnh mal funcnons (IS1 

455 

x 

I 

0 6000 
B (radlm) 

Fig. 7. Determinant versus the unknown 3 for three kinds of trial functions. 

We find that the energy of the physical solution is principally 

localized between the fins. In contrast, the spurious solution 

localizes its energy near the fins and essentially, near the edges. 

IV. CONCLUSION 

A very promising and simple criterion about the choice of 

trial functions in Galerkin's method has been theoretically 

found to suppress spurious modes present in the transverse 

resonance method. With a particular choice of trial functions, 

this method does not suffer from the appearance of nonphysical 

solutions in the numerical resolution of dispersion problem. 

(b) 

Fig. 8. Power density in the cross section of a unilateral finline. (a) For 
the physical solution ( 3  = 598.82 rad/m). (b) For the spurious solution 
( 3  = 61.240.01 rad/m). 
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