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This paper studies the optimal auction for a seller who is bound to sell a single item to one of two potential buyers organized in a "well-coordinated" cartel. After discussing the way the cartel reacts to any auction mechanism, we show that if the seller has no way to deter collusion, he can still accomodate it optimally with a very simple mechanism, either having the cartel pay to get an e%cient allocation or randomly allocating the item. We then discuss the way to implement this mechanism, so that it enables a fair amount of competition if the seller made a mistake and the buyers don't collude. We )nd that a simple implementation using reserve prices and lotteries may yield expected revenues close to the optimum if buyers compete, while highly increasing expected revenues if they collude. Finally, we discuss the extension to the n-buyers case.

Introduction

Many authors have reported evidence of collusion in auctions. [START_REF] Aspremont | Incentives and Incomplete Information[END_REF] This is clearly a major concern for the seller, even if he is a government and is mainly concerned with e%ciency: Indeed, given a certain level of government spending, those revenues which are raised through auctions don't have to be raised through e%ciency distorting taxes. Moreover, when the cartel can not use transfers among its members, collusion sometimes takes the form of either randomizing who will get the auctioned item, or choosing the winner by rotating among the cartel members, even further degrading e%ciency.

In some cases, the seller can deter collusion by choosing an appropriate auction format: For example, if there are few further interaction between the buyers after the auction, and side-payments between them are not possible, the seller can reasonably use a sealed-bid auction to sell the item (for this type of auction, cartels are unstable, as even if an agreement is met between the buyers prior to the auction, some of them will have incentives to deviate from this agreement once the auction runs, and other members of a the cartel will not be able to react to this deviation2 ). However, this is often not possible: If buyers are patient enough and are engaged in a repeated collusion/competition game with uncertain horizon involving the seller relatively rarely, there is little he can do to design his auction in order to upset a grim trigger strategy equilibrium.

Still, the seller can accommodate collusion, and is usually advised to use high reserve prices to limit its adverse e<ects. Yet, this is frequently problematic when the government has to allocate essential facilities, needed for a valuable service to be o<ered to consumers, or wants to procure something it values much3 (defence procurement for example): In many cases, it is thus clear that the government will sell the item, even at a very low price, so that no reserve price will appear as credible. Then, it might seem that the seller has no way to increase his revenue above the minimum possible buyer's valuation, which we will show not to be true.

In this paper, we will focus on the case where the seller of a single item has no way to break a cartel and is bound to sell the item, and will look for the best way for the seller to accommodate collusion.

This clearly depends on the way the cartel is organized. After presenting the model in section 2, we'll discuss this issue in section 3. We'll see that when the cartel members can use side payments between them or can communicate before the auction, it is reasonable to assume that, whatever the auction, the cartel will manage to achieve the maximum e%ciency attainable to him. Taking this into account, in section 4 we'll derive the optimal auction mechanism, when the cartel is composed of two potential buyers and the seller can prevent the resale of the item: We'll show that the seller's revenue can be increased by having the cartel choose to either randomly draw which buyer gets the item at the minimum price or have one buyer get the item for sure, but at a higher price. In section 5, we'll show how to implement this auction mechanism, in a way so that a "fair amount" of competition occurs in case the seller made a mistake and buyers don't collude. We propose to use a reserve price auction, and to randomly allocate the item for the minimum price in case no bid exceeds the reserve price.

We then derive the equilibrium strategies for this implementation if the buyers compete, and )nd that this auction may not yield much lower revenues than a classical auction. Finally, we extend this implementation to a n-buyers auction in section 6 and propose an auction where a lottery determines the winner among the buyers placing the highest k bids, for a price equal to the k th bid, where the "size" of the lottery k is all the larger as more bids are low. Section 7 discusses other ways to )ght collusion and concludes.

2T h e m o d e l

A seller has to sell an item through an auction mechanism he can design. We assume he is willing to sell the item whatever revenue he gets from it, and can prevent the resale of the item.

There are two potential buyers B1 and B2.

We denote v 1 and v 2 , buyer B1 and buyer B2's private valuations for the item, assumed to be drawn from a given symmetric continuous joint density function, [START_REF] Athey | Optimal collusion with private information[END_REF] whose support is S =[v, v] 2 . The valuation v i is only known by buyer Bi. These valuations' marginal density function is f m , their distribution function is F m . Buyers are risk-neutral.

We assume that the buyers are part of a cartel, which manages to coordinate the buyers' actions so that the cartel's ex-post total surplus is the maximum attainable to him for the given auction mechanism (we discuss this assumption in the next section, and show that it is not unrealistic provided the cartel can use present or future transfers between its members).

Let d = v 1 v 2 be the di<erence between the two buyers' valuations, f its density function on

S =[v v, v v],a n dF its distribution function.
All of this is common knowledge.

Finally, we assume that the function J, de)ned by

J(d)=d 1 F (d) f (d) is non-decreasing on [0, v v].
This is a classical assumption in auction theory and is veri)ed with most standard distribution functions F5 .

3T h e e ciency of the cartel

In the model, we assumed that the cartel manages to get ex-post the maximum surplus it could reach. This is a very important assumption, since it determines what auction mechanism maximizes the sellers' revenue. In this section, reviewing part of the literature on cartels, we explain why this assumption is not so unrealistic when a cartel can make present or future side payments between its members.

Suppose buyers organised in a cartel can participate an auction mechanism. Following the literature, we consider a third party, the cartel, can design a collusion mechanism to assign their bids to the cartel members. The cartel's goal is to maximize ex ante the sum of its members' surplus (i.e. before buyers' valuations are known). Here, we assume that the buyers have exogenous incentives to participate the cartel and not to deviate from the actions which are assigned to them as a result of the collusion mechanism (for example because deviating from this action would trigger a competition war in future interactions): So, all that is required from the mechanism is to give incentives to the cartel members to truthfully declare their valuation for the item.

In their paper "Bidding Rings", Mc Afee and Mc Millan [14] have been the )rst to study this problem, focusing on English auctions with reserve price, for which they analyze the optimal collusion mechanism (i.e. the mechanism maximizing ex-ante the cartel members' total surplus, in a setting where the cartel members' valuations for the auctioned item are private, independent and identically distributed). They consider two cases: strong cartels and weak cartels according to whether side payments are possible or not.

The strong cartel (with side payments)

Mc Afee and Mc Millan [14] show that if the cartel is strong, one of the optimal collusion mechanisms for the cartel is to have a prior auction to decide who will get the item at the reserve price r:A l l the cartel members have to declare how much they agree to pay the cartel for it, and eventually this payment is split equally between all the non-winning members. This budget-balanced collusion mechanism achieves e%ciency as the buyer with the highest valuation always wins the prior auction, as soon as its valuation exceeds r.

In fact, if the buyers' valuations are independant, this can be generalized to any auction mechanism the seller chooses (provided the item has to be allocated), just by using a D'Aspremont/Gerard-Varet [1] collusion mechanism (hereafter referred to as AGV mechanisms):

To see that, imagine a seller has chosen an auction mechanism. If the cartel members choose actions in this auction which give the item to buyer B1 with probability P 1 (and thus to buyer B2 with probability P 2 =1 P 1 ) for payments by cartel members equal to T 1 and T 2 , then the cartel members' total surplus is

v 1 P 1 + v 2 P 2 T 1 T 2 =(v 1 v 2 )P 1 T 1 T 2 + v 2 .
So, for a given di<erence d =(v 1 v 2 ) between buyer B1 and buyer B2's valuations, it is the same set of actions that maximize the cartel members' total surplus. Let's denote P i (d) and T i (d) the outcome of one of these actions maximizing cartel surplus.

Then, in order to have its members truthfully reveal their valuations, the cartel can use the following AGV collusion mechanism: If buyer B1 announces v 1 , and buyer B2 announces v 2 ,t h e buyers are assigned to choose their actions in the auction mechanism so as to get the outcome

(P i ( v 1 v 2 ) , T i ( v 1 v 2 )
) and intra-cartel transfers are made according to the following rules:

t 1 ( v 1 , v 2 )=E v1 [v 1 P 1 (v 1 v 2 ) T 1 (v 1 v 2 )] E v2 [v 2 P 2 ( v 1 v 2 ) T 2 ( v 1 v 2 )] = t 2 ( v 1 , v 2 )
This is a classical AGV mechanism, and it is easy to check 6 that truth-telling constitutes a Bayesian-Nash equilibrium.

Of course, there might be other budget-balanced collusion mechanism, yielding the same cartel's ex-ante expected surplus, but they would all imply that the cartel perfectly manages to coordinate the buyer's actions in order to get the maximum cartel's surplus attainable ex-post with the given auction mechanism.

So the seller knows that whatever auction mechanism he chooses, he must expect the cartel members' actions to be the same as if he was facing a single entity: the cartel.

The weak cartel (no side payments)

If the cartel is weak, Mc Afee and Mc Millan [14] show [START_REF] Comanor | Identical Bids and Cartel Behavior[END_REF] for an English auction, that an optimal collusion mechanism, such that cartel members are always treated symmetrically, is to randomly decide who will be the winner among those members whose valuation exceed the reserve price r.A classical variant of this mechanism is to choose the winner by rotating among the cartel members (rotating bids). Another variant is to let the members decide to place a bid equal to r or below, and let the auctioneer do the randomizing. [START_REF] Blume | Modeling tacit collusion in repeated auctions[END_REF] The )rst part of

t 1 ( v 1 , v 2 ) does not depend on buyer B1's announce v 1 . So, if buyer B2 announces it true value v 2 , buyer B1 wants to maximise Ev 2 [v 1 P 1 ( v 1 v 2 ) T 1 ( v 1 v 2 )] + Ev 2 [v 2 P 2 ( v 1 v 2 ) T 2 ( v 1 v 2 )] = E v 2 [v 1 P 1 ( v 1 v 2 )+v 2 P 2 ( v 1 v 2 ) T 1 ( v 1 v 2 ) T 2 ( v 1 v 2 )] .
By de)nition of P i and T i , whatever B2's valuation v 2 ,thetermv

1 P 1 ( v 1 v 2 )+v 2 P 2 ( v 1 v 2 ) T 1 ( v 1 v 2 ) T 2 ( v 1 v 2 ) is maximum for v 1 v 2 = v 1 v 2 ,that is for v 1 = v 1 .
So truthtelling constitutes a Bayesian-Nash equilibrium. [START_REF] Comanor | Identical Bids and Cartel Behavior[END_REF] under a classical technical assumption on the valuations' distribution which is veri)ed for most distribution. Namely, that

H(v)= 1 F (v) f (v)
is non-increasing.

Without the possibility to do transfers among its members, a weak cartel therefore performs very poorly in capturing the e%ciency available to him if he always treats his member symmetrically..

Yet, recent research has shown that weak cartels can improve e%ciency if its members frequently interact, by not always treating the cartel members identically. Fudenberg, Levine and Maskin [10] have extended the Folk Theorem to repeated adverse selection models with independent private values:

Applying their theorem shows that if the cartel members communicate and are patient enough, the cartel is able to achieve e%ciency without side-payments [START_REF] Cook | Fact and Fancy on Identical Bids[END_REF] . The idea is to keep an account of who wins, and to put former winners at a disadvantage, so that expected future surplus di<erence play the same role as side payments in AGV mechanisms.

Even if the cartel members don't communicate, Skrzypacz and Hopenhayn [25], and Blume and

Heidues [6] have shown that while the cartel can't extract all the surplus he could theoretically get, he can still approach it: One example of collusion mechanism is to let the cartel members bid as they want, and to exclude the winner of an auction of a next few auctions, with a given probability.

Another example is to keep an account of how many times each member has won and exclude one buyer from a few further auctions if this account becomes too dissymmetric. By arti)cially lowering the expected surplus a buyer gets from winning an auction (and transferring this loss to the losers), these collusion mechanism give buyers incentives to place lower bids, while still enabling a better allocation e%ciency.

This shows, that the distinction between weak and strong cartel may not be the relevant one from the seller's point of view, or that we should consider side-payments in a larger sense, possibly integrating future pay-o< transfers.

Thus, if cartel members can make side-payments or can communicate and frequently interact, one can reasonably assume that, whatever the auction mechanism, the cartel sets a collusion mechanism such that its surplus will be maximized ex-post.
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Aoyagi [3] also identi)es conditions under which there exists an optimal collusion mechanism when the cartel members' valuations are not private. See Athey and Bagwell [4] for a related application to collusion in cournot competition.

4 An optimal auction mechanism when two buyers collude and the seller is bound to sell the item

In this section, consistently with our assumptions and with what we saw in the previous section, we take for granted that, whatever the auction proposed by the seller, the cartel can extract the full surplus attainable to him.

What can the seller do to improve his revenues if he bound to sell an item while facing a single entity maximizing his surplus? To ensure that the item can be sold whatever the buyers' valuations, the seller has to make it possible to get the item at the lowest possible valuation v. But, as the seller can prevent the resale of the item, there remains one thing he can control, and for which the cartel may be willing to pay an extra price: the fact that the item is allocated to the buyer who values it the most.

Indeed an optimal auction mechanism consists in proposing the cartel to either "buy" an e%cient allocation (that is, the possibility to choose the buyer who gets the item) or to randomize the winner of the auction.

Proposition 1 There exists a price r ,w i t hv <r<v+ v v 2 , such that one optimal auction mechanism is to propose two possible outcomes:

• either randomly allocate the item to one of the two buyers (with equal chance) at price v,

• or let the cartel choose who gets the item at a higher price r.

This price r is such that 2(r v) is the unique solution to

x = 1 F (x) f (x) .
This leads the item to be allocated randomly when the di erence between the buyers valuations is inferior to 2(r v), and to the highest valuing buyer otherwise By entangling the o<er for which the item is sold at the lower price with the maximum possible allocation ine%ciency (allocating the item randomly), the seller can charge a higher price in case the cartel chooses to bene)tf r o ma ne %cient allocation. This result can be related to the Mussa/Rosen model [19], by considering the e%ciency of the allocation as a product's quality: The seller proposes two o<ers and chooses to degrade the quality of the o<er intended to be chosen by a buyer paying little attention to quality, in order to have a buyer paying high attention to quality pay more for the e%cient quality o<er.

Proof: Refer to Appendix 9 v 1 v 2 v v v v v v v * =2r-v v *
This result is quite intuitive, and might seem obvious, yet it is not trivial: A priori the optimal auction mechanism might have consisted in a complex list of proposed random allocations with different corresponding payments. Surprisingly, whatever the valuations' distribution, o<ering the above two possible outcomes is enough to maximize the seller's revenue.

Note that to implement this mechanism, the seller does not have to address the cartel as an entity: A simple implementation would consist in asking the buyers to either bid v or a higher price r, informing them that in case of a tie, the winner is randomly drawn. This raises the participation issue: what if a buyer declares that he doesn't want to participate the auction? This could be a way for the cartel to choose the buyer getting the item while paying the minimum price v . In order to prevent that, the seller has to commit not to sell the item if any of the two buyers does not participate, unless the other buyer agrees to pay the higher price r. Knowing that, if the commitment is credible, both buyers will participate and the seller does not take any risk of not selling the item. Now, it is clear that in case the seller made a mistake and a cartel does not exist, this mechanism would not perform very well, as the seller's revenue would never exceed the price r. The problem is how to design an auction such that, if there is a cartel, he is faced with the optimal mechanism described above, and if the buyers compete, they have incentives to place bids that may result in high payments. This is the subject of the next section.

5 Implementation of this optimal auction mechanism.

Another and better way to implement this mechanism, so as to introduce more competition if buyers do not collude, would be to conduct a "normal" auction with reserve price r and, in case no buyer places a valid bid, to have a lottery determine the winner at a price v. [START_REF] Fudenberg | The Folk Theorem with Imperfect Public Information[END_REF] Furthermore, the seller commits not to sell the item at a price below the reserve price r if one of the buyers does not participate the auction mechanism.

With this auction, the competing buyer's equilibrium strategies di<er from those of classical auctions with reserve price, as their expected surplus when they do not place a valid bid depends on their valuation (this is because if they don't place a valid bid, they still have a chance to get the item thanks to the lottery).

If the buyers compete and have independant identically-distributed valuations, whatever auction format is chosen among the four classical auctions (English, Dutch, )rst-price sealed-bid, second-price sealed bid) to implement the optimal mechanism in case of collusion, there exists a Bayesian-Nash equilibrium yielding the following allocation: If both buyers have valuations below the threshold v =2 r v (v r), a lottery takes place to determine the winner. If at least one buyer has a valuation above v , the buyer with the highest valuation gets the item. (In fact, buyers only place bids above the reserve price when their valuations exceed the threshold v ). We show this for English, and sealed-bid second-price auction type, and we give the idea of the proof for the sealed bid )rst price (or strategically-equivalent Dutch) auction in Appendix 2.

So, part of the buyers who might )nd it pro)table to get the item at the reserve price r, prefer taking their chance to get the item at the lowest price v through the lottery, rather than participating the auction with reserve price. However, if one buyer chooses to participate the auction with reserve price r, his strategy is a classical competitive one, and the buyer who values the item the most gets it. As a consequence of the revenue equivalence theorem (Myerson [20]), the seller's expected revenue is the same for the four auctions formats (since revenue will always be equal to v when both buyers

v 1 v 2 v v v v v v v * =2r-v v * r
The buyer with the highest valuation gets the item and pays v (2)

The buyer with the highest valuation gets the item and pays r instead of v (2) (=v 2 )

The buyer with the highest valuation gets the item and pays r

instead of v (2) (=v 1 )
The winner is randomly drawn and pays v instead of v (2) v (2) is the lowest valuation between v 1 and v 2 This enables us to evaluate the cost of choosing an auction with activity-dependant reserve price and lottery, if buyers compete. As an example, if the buyers' valuations are distributed uniformly on [v,v+ l] , one can easily compute that expected revenue when two buyers compete is v + l/3 for any of the four classical auctions without reserve price and v +26/27 l/3 if the optimal anti-collusion mechanism is implemented via activity-dependant reserve price and lottery, while the expected revenue if there is a strong cartel goes from v to v +2/9 l/3.

In fact, while expected revenue is always lower with the auction with activity-dependant reserve price and lottery than with classical auctions, for some particular valuations the ex-post revenue is actually higher ()gure 2). For example, for a second price or English auction, this is the case when one buyer has a valuation above v while the other buyer's valuation is below r : In this case, the reserve price plus lottery auction yields a revenue equal to r instead of a revenue equal to the lowest valuation v (2) .

When both buyers have valuations above v , the revenues are the same (the second highest valuation). When both buyers have valuations below v , the auction with activity-dependant reserve price and lottery yields a revenue equal to v instead of the lowest valuation v (2) .

It can be shown that for a given r (determining the value of v =2 r v = v +2(r v)),t h e expected revenue loss R from adopting the auction with activity-dependant reserve price and lottery rather than classical auctions without reserve price is

R(v )= v v (1 F m (t)) 2 dt (1 F m (v ))(v v) (v v) (1 F m (v ))(v v) F m (v )(v v).
So, for values of r near v, corresponding to (v v) close to 0, the order of the expected revenue loss is at most of the second degree (v v) 2 (while the order of revenue gain when there is a strong cartel is of the )rst degree (v v)). In situations where the seller is uncertain whether or not he faces a strong cartel, it might thus be interesting to set a reserve price under which a lottery occurs (at least a small one).
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The n-buyers case. Auctions with activity-dependant reserve prices and lotteries

We haven't been able to )nd the optimal mechanism with more than two buyers.

Yet, we saw that the 2-buyers problem is equivalent to )nding the optimal way to sell the possibility to modify the allocation away from a low-price allocation to the cartel. The solution presented above can be seen as organizing a lottery to choose the winner and proposing the cartel to pay for excluding one buyer from the lottery Thus, a natural extension of this mechanism in case of n potential buyers, would be to have a random draw to determine the winner of the auction, and to o<er the cartel to pay to exclude one or more buyers from this lottery. It would then consist in n "reserve"-prices: r n = v <r n 1 <r n 2 < .... < r 2 <r 1 , where r i is the price to be paid for the item if the cartel decides that only i buyers participate the lottery.

In fact, there are some hints which suggest that such an auction mechanism might well be optimal. [START_REF] Graham | Collusive Bidder Behavior at Single-Object Second-Price and English Auction[END_REF] In order to implement that, so as to enable competition if buyers don't collude, we can just slightly modify a normal auction: First, a classical auction is conducted. Then, we look for the highest "reserve"-price r k such that more than k buyers have submitted valid bids for this reserve-price. If no reserve-price r k satis)es this condition, the item is not sold [START_REF] Hay | An Empirical Survey of Price Fixing Conspiracies[END_REF] . Otherwise, a lottery determines who gets the item among the k buyers who have submitted the highest bids, for the price that would have paid the buyer with the k th highest bid in the classical auction.

For example, if there are three potential buyers and r 3 =1 ,r 2 =3 , r 1 =4 . If the bids placed through a )rst price sealed-bid auction are 1.5, 3.2 and 4.1, the bid 4.1 wins and the winner pays 4.1 for the item. If the bids are 1.5, 3.2 and 3.9, a lottery is conducted between the two highest-bid buyers and the winner pays 3.2. If the bids are 1.5, 2.9 and 3.9, a lottery is conducted between the three buyers and the winner pays 1.5.

In fact, this could also be implemented sequentially. A )rst auction with reserve price r 1 is run.

If no buyer participates this auction, then a second auction with a lower reserve price r 2 is run, but the buyers are told that the item will be sold via a lottery to one of the two highest bidders, except if less than two bids are valid. In this case, a third auction with a lower reserve price r 3 is run, etc. This is why we talk about activity-dependant reserve prices and lotteries.

There has already been auctions using reserve-price depending on the number of participating

)rms, but this isn't enough to improve revenues if all buyers collude: they could just all participate in order to meet the number of participating )rms triggering a low reserve price, and place very low bids. Adding lotteries, whose allocation ine%ciency is higher when bids are low, is needed to give a cartel the correct incentive to place higher bids.

Conclusion

When collusion is suspected in auctions, the most recommended way to improve the seller's revenue is to set a high reserve price. Frequently, when the seller is a government, it is not possible as it is clear that it is willing to sell the item no matter what revenue he gets from it.

In this paper, we focused on the case where the seller has no way to deter collusion, for example because he has very few contacts with the cartel members as compared to the numerous interactions between them, and no entry from new buyers is possible. So we looked for the optimal way to accommodate collusion rather than )ghting it. We saw that, if a seller is bound to sell a single item and faces a strong cartel (able to make side-payments [START_REF] Mcafee | Auctions and Bidding[END_REF] among his members) he can't break, he can still improve his revenues by setting a reserve price below which a lottery occurs, and can't do any better. This is in contrast with his situation when he faces a weak cartel whose members don't communicate. In this case, while the cartel can still achieve some coordination by using bid rotation schemes with temporary exclusion of past winners, he can't fully extract the surplus attainable. This may paradoxically not be good news for the seller, as it limits his possibility to have the cartel pay for an e%cient allocation.

Otherwise, a )rst way to )ght collusion is to foster entry from new competitors. Still, there is the problem that the entrant could join the cartel, but it is classical that cartels are extremely di%cult to maintain as the number of its members grow.

However, sometimes entry is not possible, at least in the short run. Even then, there remains other ways to try and break the cartel, provided the seller interacts often enough with the cartel members.

What enforces a cartel is the fear that deviating from the agreement reached within the cartel, would trigger a competition war in further interactions. An interesting way to look for the optimal revenue generating mechanism when the cartel members frequently interact would be to combine both approaches: collusion accommodation and collusion deterrence. The idea would be to design an auction mechanism taking into account the possibility that for some valuations, buyers will choose to compete and break the cartel, and that for some other valuations they'll choose to collude. For example, one might design an auction so that buyers with high valuations have very high incentives to deviate, which, ampli)ed by a snowball e<ect, could be enough to break the cartel (it could lead buyers with intermediate valuations to wonder whether it's interesting for them to participate a cartel whose members only collude when they have low valuations). Of course, this would depend on the collusion mechanism designed by the cartel, which could itself depend on the auction mechanism. This is a problem that seems extremely complex to deal with, but it might perhaps be done by restricting one's attention to a particular class of auctions.

Auctions with activity-dependant reserve prices and lotteries, being a simple generalization of classical auctions, might be a good starting point to study this problem.

8 Appendix 1

Proof of proposition 1: As the cartel sets a mechanism inciting the buyers to perfectly coordinate their actions in order to maximize the total surplus, we can consider the seller faces a single agent: the cartel. The revelation principal (Myerson [20]) states that if there exists a Bayesian-Nash equilibrium for a particular mechanism, there exists a direct revelation mechanism [START_REF] Mcafee | Bidding Rings[END_REF] yielding the same expected revenue.

Thus, we will now restrict our attention to direct revelation mechanisms. We will denote

P i ( v 1 , v 2 )
the probability that buyer Bi gets the item if the cartel announces a valuation v 1 for buyer 1 and a valuation v 2 for buyer 2. We'll use T ( v 1 , v 2 ) as the corresponding expected payment (including both what buyer B1 and buyer B2 have to pay).

We're looking for the mechanism (P 1 ,P 2 ,T) which generates the highest expected revenue for the seller among those that satisfy the three constraints:

((v 1 ,v 2 ) , ( v 1 , v 2 )) S 2 v 1 P 1 (v 1 ,v 2 )+v 2 P 2 (v 1 ,v 2 ) T (v 1 ,v 2 ) v 1 P 1 ( v 1 , v 2 )+v 2 P 2 ( v 1 , v 2 ) T ( v 1 , v 2 ) (IC) v 1 P 1 (v 1 ,v 2 )+v 2 P 2 (v 1 ,v 2 ) T (v 1 ,v 2 ) 0 (IR) P 1 (v 1 ,v 2 )+P 2 (v 1 ,v 2 )=1 (allocation).
The (IC) constraint means that the agent has no better strategy than announcing the true valuations. The (IR) constraint means that whatever their valuations, the cartel will be willing to participate. The (allocation) constraint is necessary to ensure that the item will be sold whatever the buyers' valuations.

In the )rst steps of the proof, we'll work on these constraints to show that this problem can be rewritten as a one-dimensional problem. Then, following Myerson's methodology ( [20]), we'll express the expected revenue as a function of the allocation rules P 1 and P 2 , and solve the problem.

• Step 1 : Shows that if the (IR) constraint holds for the minimum valuations v 1 = v 2 = v , then it holds for any v 1 and v 2 .

Let v 1 and v 2 be given. The (IC) constraint implies that

v 1 P 1 (v 1 ,v 2 )+v 2 P 2 (v 1 ,v 2 ) T (v 1 ,v 2 ) v 1 P 1 (v,v)+v 2 P 2 (v,v) T (v,v) .
As P 1 (v,v) and P 2 (v,v) are positive and v i v, then

v 1 P 1 (v,v)+v 2 P 2 (v,v) T (v,v) vP 1 (v,v)+vP 2 (v,v) T (v,v) ,
so the (IC) constraints imply

v 1 P 1 (v 1 ,v 2 )+v 2 P 2 (v 1 ,v 2 ) T (v 1 ,v 2 ) vP 1 (v,v)+vP 2 (v,v) T (v,v) .
This shows that if the (IC) constraint holds everywhere, the (IR) constraint holds everywhere if and

only if it holds for v 1 = v 2 = v.
Now for a mechanism to be optimal, this constraint must be saturated at this point (otherwise the seller could slightly increase the payment T for every types of valuations without upsetting the (IC) and (allocation) constraints).

So, we can restrict our attention to mechanisms for which

vP 1 (v,v)+vP 2 (v,v) T (v,v)=0,
or equivalently

T (v,v)=v, (1) 
and don't pay anymore attention to the (IR) constraint.

•

Step 2: Shows that we can restrict our attention to direct revelation mechanisms which have the same allocation and payment rules everywhere inside any given line

v 1 v 2 = d.
Using the allocation constraint, the (IC) constraint implies that for any (v 1 ,v 2 ) and ( v 1 , v 2 ) belonging to S,

(v 1 v 2 ) P 1 (v 1 ,v 2 ) T (v 1 ,v 2 )+v 2 (v 1 v 2 ) P 1 ( v 1 , v 2 ) T ( v 1 , v 2 )+v 2 ,
or, equivalently

(v 1 v 2 ) P 1 (v 1 ,v 2 ) T (v 1 ,v 2 ) (v 1 v 2 ) P 1 ( v 1 , v 2 ) T ( v 1 , v 2 ) .
This inequality must also hold if we inverse v and v ,w h i c hg i v e s

( v 1 v 2 ) P 1 ( v 1 , v 2 ) T ( v 1 , v 2 ) ( v 1 v 2 ) P 1 (v 1 ,v 2 ) T (v 1 ,v 2 ) .
Combining these two inequalities implies that,

if v 1 v 2 = v 1 v 2 ,t h e n (v 1 v 2 ) P 1 (v 1 ,v 2 ) T (v 1 ,v 2 ) (v 1 v 2 ) P 1 ( v 1 , v 2 ) T ( v 1 , v 2 ) (v 1 v 2 ) P 1 (v 1 ,v 2 ) T (v 1 ,v 2 ) so that (v 1 v 2 ) P 1 (v 1 ,v 2 ) T (v 1 ,v 2 )=(v 1 v 2 ) P 1 ( v 1 , v 2 ) T ( v 1 , v 2 ) . (2) 
This shows that for a direct revelation mechanism, the cartel is indi<erent between announcing its true valuations, or announcing other valuations as long as the di<erence between the valuations announced remain equal to the di<erence between its true valuations. In other words, the cartel is indi<erent between the o<er which is designed for him and o<ers which are designed for other types on the same

line v 1 v 2 = cst.
Of course, among the o<ers designed to be chosen by the di<erent possible types of cartel on a line v 1 v 2 = cst, the seller prefers the ones corresponding to the higher payments T (v 1 ,v 2 ) .

Let T (d) be the higher limit of the T (v 1 ,v 2 ) on the line v 1 v 2 = d :

T (d)=sup{T (v 1 ,v 2 ) /v 1 v 2 = d} . Let P 1 (d) be such that for any (v 1 ,v 2 ) on the line v 1 v 2 = d,w eh a v e (v 1 v 2 ) P 1 (v 1 ,v 2 ) T (v 1 ,v 2 )=(v 1 v 2 ) P 1 (d) T (d) .
Changing all o<ers designed for types on the line

v 1 v 2 = d, from P 1 (v 1 ,v 2 ) to P 1 (d) and from T (v 1 ,v 2 ) to T (d)
, increases the expected revenue generated by the mechanism and does not violate the (IC) constraint (Indeed , if the (IC) constraint holds for a sequence of ( v 1 , v 2 ) , it must also hold at the limit). Moreover, we saw that the (IR) constraint is equivalent to T (v,v)=v, s ot h i sc h a n g e of rules would not have any incidence on the validity of the (IR) constraint either.

This shows that we can restrict our attention to direct revelation mechanisms which have the same allocation and payment rules (P 1 (d) ,T(d)) everywhere inside any given line v 1 v 2 = d.

•

Step 3: Proves that the IC constraints imply that P 1 must be increasing in d, and calculates the derivative of a function which is related to the cartel's expected surplus.

Now that we have converted our problem into a unidimensional one, we can apply Myerson's methodology ( [20]).

Whatever d and d belonging to S , the (IC) constraints imply

dP 1 (d) T (d) dP 1 d T d , (IC')
and, inverting d and d ,

dP 1 d T d dP 1 (d) T (d) .
Thus, we have

d(P 1 d P 1 (d)) T d T (d) d(P 1 d P 1 (d)), (3) 
which implies

0 d d (P 1 d P 1 (d)).
So, for the (IC) constraints to hold, P 1 has to be increasing in d.

Let's denote w the function de)ned by w(d)=dP 1 (d) T (d) . We now show that w is everywhere continuous, and di<erentiable except on an at most numerable number of points, with derivative P 1 .

From the inequality 3,

dP 1 (d) dP 1 d + d(P 1 d P 1 (d)) w(d) w( d) dP 1 (d) d(P 1 d + d(P 1 d P 1 (d)),
that is

(d d)P 1 d w(d) w( d) (d d)P 1 (d) ,
which proves that w is continuous and di<erentiable at every d for which P 1 is continuous (everywhere except on at most numerable set of points, as P 1 is increasing): If P 1 (.) is continuous at a point d , then w is di<erentiable at d ,a n dw (d )=P 1 (d) .

• Step 4: expresses the expected revenue with respect to the function P 1 (.) .

As we restricted our attention to mechanisms which attributed the same payment to all types of agents having the same di<erence d, we can express the expected revenue by integrating over the values of d : So,

E (T )= S T ( ) f ( ) d = S ( P 1 ( ) w ( )) f ( ) d = S P 1 ( ) f ( ) d S w ( ) f ( ) d .
As the function (.) F (.) is continuous, di<erentiable everywhere except on an at most numerable set of points, it is a generalized primitive of the function (.) f (.)+P 1 (.) F (.) and we can integrate by part the second integral. So, 

E (T )= S P 1 ( ) f ( ) d [w ( ) F ( )] v v v v + S P 1 
We will now look for the function P 1 which maximizes this expression, among the increasing functions taking their values in [0, 1] . This will enable us to evaluate the corresponding payment function T.

Finally, we'll check that the (IC) constraints hold for this solution.

• Step 5: Determines the optimal allocation.

Let L be the function de)ned by: L S R

d d + F (d) f (d) if d<0 d 1 F (d) f (d) if d 0
, so that expected revenue can be expressed as

E (T )= S L ( ) P 1 ( ) f ( ) d + v.
From our assumptions, L is continuous and non-decreasing on [0, v v] , and

L(0) < 0 L(v v)=v v > 0.
Moreover, it is easy to check that L is an odd function [START_REF] Marshall | Collusion and Antitrust Law[END_REF] The L function when buyers' valuations are independant and identically distributed according to an uniform distribution over [0, 1] . Here, t =1/3

Then an optimal increasing function P 1 will be such that, if d< t , P 1 (d)=0 ,a n di fd>t , P 1 (d)=1(maximizes their part of the integral without imposing any further constraint on the function P 1 on the remaining interval [ t, t]).

The most direct way to conclude is to note that whatever the increasing function P So it is direct calculation to show that if d< t or d>t,then T (d)=v + t/2, and that if t d t,then T (d)=v.

For this payment and allocation rule, the cartel will choose the o<er (P 1 =1,T = v + t/2) when

v 1 (v + t/2) v 1 +v 2 2 v v 1 (v + t/2) v 2 (v + t/2) ,
which occurs whenever

v 1 v 2 t.
Checking the valuations for which the cartel chooses the other o<ers shows that the (IC) constraints hold for this mechanism, which completes the proof.
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 1 Figure 1: Outcome of the optimal mechanism described in proposition 1

Figure 2 :

 2 Figure2: Allocative outcome of an auction with activity-dependant reserve price and lottery when two buyers compete. Ex-post revenue comparison with an auction with no reserve price for English or sealed-bid second-price auctions.
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  (whatever d belonging to S {0} ,L (d)= L( d)).Then from the above signs, there exists a t belonging to [0, v v] , such that L is negative on[v v, t] [0,t], and positive on [ t, 0] [t, v v].

1 ,P 1 (

 11 [ t,t] L ( ) P 1 ( ) f ( ) d = [ t,0] L ( ) P 1 ( ) f ( ) d + [0,t] L ( ) P 1 ( ) f ( ) d = [0,t] L ( u) P 1 ( u) f ( u) du + [0,t] L ( ) P 1 ( ) f ( ) d = [0,t] L (u) P 1 ( u) f (u) du + [0,t] L ( ) P 1 ( ) f ( ) d = [0,t] L ( )(P 1 ( ) P 1 ( ))f ( ) d 0, (as P 1 is increasing and negative on [0,t]) [ t,t] L ( )(1/2)f ( ) dSo one[START_REF] Milgrom | A Theory of Auctions and Competitive Bidding[END_REF] of the optimal P 1 is suchP 1 (d)=1/2 on [ t, t], P 1 (d)=0on [v v, t[ , and P 1 (d)=1on ]t, v v] .• Step 6: Finds the corresponding payment rules and check that (IC) constraints hold.For a direct revelation mechanisms, it must be true that:T (d)=dP 1 (d) w(d) = dP 1 (d) ) d + v.

  So the cartel's enforcement results from the trade-o< between what the cartel members loose if competition occurs instead of collusion in the future, and what a cartel member can gain now if he deviates from the cartel's recommendation.

So, trivially, one can )ght a cartel by trying to lower what cartel members gain from colluding, and to increase what they gain by competing in further rounds and by deviating from the cartel's recommendation now while others stick to them. Leniency programs and higher collusion control expenses do that. The mechanism we propose also does, by lowering collusion gains and increasing competition gains.

See Baldwin, Marshall, and Richard[START_REF] Baldwin | Bidder Collusion at Forest Service Timber Sales[END_REF], Comanor and Schankerman[START_REF] Comanor | Identical Bids and Cartel Behavior[END_REF], Cook[START_REF] Cook | Fact and Fancy on Identical Bids[END_REF], Graham and Marshall[START_REF] Graham | Collusive Bidder Behavior at Single-Object Second-Price and English Auction[END_REF], Hay and Kelley[START_REF] Hay | An Empirical Survey of Price Fixing Conspiracies[END_REF], Marshall and Meurer[START_REF] Marshall | Collusion and Antitrust Law[END_REF], Pesendorfer[START_REF] Pesendorfer | A Study of Collusion in First-Price Auctions[END_REF], Porter and Zona[START_REF] Porter | Ohio School Milk Markets: an Analysis of Bidding[END_REF], Phillips, Menkhaus and Coatney[START_REF] Phillips | Collusive Practices in Repeated English Auctions: Experimental Evidence on Bidding Rings[END_REF], Mund[START_REF] Mund | Identical Bid Prices[END_REF], Stigler[START_REF] Stigler | A Theory of Oligopoly[END_REF].

This is not the case in "open" auctions: If a cartel member decides to deviate from the cartel's assignment, other cartel members will see it and have the opportunity to react, thus lowering what the deviating member gains from deviating. In this sense, open auctions make collusion easier to sustain.

Another argument, is that not selling the item can be perceived as a failure of the government, which may appear politically unacceptable to it.

Note that the valuations are not necessarily independant.

One could wonder whether this is still veri)ed for distribution functions F deriving from most standard distributions of the valuations. Yet, we could relax this assumption, by only assuming that J equals 0 only for a )nite number of values, but this would make the exposition of our results more complex without giving more insight into our problem.

While the result is intuitive, the proof is not so obvious, and does not enable much interpretation.

The English auction just needs to be slightly modi)ed to enable buyers to continue bidding if all other buyers have dropped the auction.

If, as in the 2-buyers case, there exists an optimal aution mechanism which never uses a lottery, then one of this lottery-type auction mechanism is also optimal. This can be shown by symmetrising the deterministic mechanism.

This is just to ensure that a cartel could not achieve to choose whose buyer gets the item while paying the minimum price v .A srn = v, the item will always be sold.

As we saw in section 3, "side-payment" has to be taken in its larger sense, possibly including future pay-o< transfers.

that is, a mechanism asking the agents to reveal their values, such that truthfully revealing those values constitutes a Bayesian-Nash equilibrium.

This comes from the symmetry of the joint distribution which induces that f is an even fonction and that whatever d belonging to S , F (d)=1 F ( d) .

Note that all the P 1 functions remaining constant on [ t, t] are also optimal.

This is a bit long and can be shown using Milgrom and Weber's methodology[START_REF] Milgrom | A Theory of Auctions and Competitive Bidding[END_REF].

Appendix 2

In order to present the equilibrium strategies, it will be easier to consider that the auction mechanism is structured in the following equivalent way: First the buyers are asked whether or not they want to participate the auction with reserve price r. Then, if any buyer has agreed to participate the auction with reserve price r, this auction is run, otherwise the item is randomly allocated at price v.

The English auction implementation

Suppose buyer B1's strategy is to participate the auction with reserve price r, if and only if his valuation v 1 exceeds v , and to stay at the auction until either the other drops the auction or the price reaches v 1 . We'll show that Buyer B2's best response is to follow the same strategy.

If Buyer B2's valuation is less than r, he can't get a positive surplus from participating the auction with reserve price r, and so he does not. Suppose now v 2 r.

If Buyer B2 doesn't participate the auction with the reserve price r, he gets the item if and only if buyer B1 doesn't participate either (which happens when v 1 <v ) and he wins the lottery (with a probability 1/2 and for a price v). Thus his expected surplus if he doesn't participate the auction with reserve price is

If Buyer B2 participates the auction with the reserve price r,the classical analysis shows that his best strategy during this auction is to stay until the price reaches v 2 or buyer B1 drops the auction.

Following this strategy, his expected surplus if he participates the auction with reserve price is

If v 2 <v , buyer B2 thus prefers not to participate the auction with reserve price r (as

).I fv 2 = v , he is indi<erent between participating the auction with reserve price or not, with both giving him the same expected surplus (r v) F m (v ) . Finally, when v 2 >v , the derivative according to v 2 of the expected surplus when he doesn't participate

2

) is lower than the derivative according to v 2 of the expected surplus when he participates (F m (v 2 )). So participating the auction with the reserve price only when v 2 v is a best response of buyer 2 to buyer 1's strategy. Symmetry completes the proof.

The second-price sealed bid implementation

Suppose buyer B1's strategy is to participate the auction with the reserve price r, only if his valuation v 1 v , and then to bid his true valuation v 1 . We'll show that Buyer B2's best response is to follow the same strategy.

The proof is much similar to the English auction implementation case. The key point is to note that if buyer B2 participates the auction with reserve price r, his best action is then to bid his true valuation v 2 . So buyer B2's expected surplus, according to whether or not he participates the auction with reserve price r is the same as for the English auction implementation: Hence, Buyer B2

participates the auction with the reserve price r only when v 2 v .

The -rst-price sealed bid implementation

Here, we just give the idea of the proof.

Suppose buyer B1's strategy is to participate the auction with the reserve price r, only if his valuation v 1 v , and then to place the bid

(This function b is characterized as being the solution of the di<erential equation

It is easy to check that this function is nondecreasing).

If Buyer B2's valuation is less than r, he can't get a positive surplus from participating the auction with reserve price r, so he prefers not to: Thus he bene)ts from the lottery in case v 1 <v , which gives him a positive surplus equal to

If buyer B2 participates the auction with reserve price r and places a bid bo (greater than r). Then his expected surplus is

Deriving this with respect to bo gives If we admit that this )rst order condition is enough to characterize buyer B2's optimal bid [START_REF] Maskin | Optimal Auctions with Risk Averse Buyers[END_REF] ,t h i s proves that if buyer B2 participates the auction with reserve price r, his best bidding strategy is b(v)

If v 2 <v , his best bidding strategy if he decides to participate is to bid r , which gives him an expected surplus equal to (v 2 r) F m (v ) . Thus buyer B2 prefers not to participate when v 2 <v .

When v 2 v , participating and bidding b(v 2 ) gives him an expected surplus equal to

Thus when v 2 = v , he is indi<erent between participating or not.

Since the derivative according to v 2 of the expected surplus when he participates (F m (v 2 )) is higher than the derivative according to v 2 of the expected surplus when he doesn't ( F m (v )

2

), participating the auction with the reserve price only when v 2 v is a best response of buyer 2 to buyer 1's strategy.