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Abstract

The purpose of this project was to develop econometric models that will enable us to describe
and forecast the evolution of air fares and passenger numbers for the 7 largest U.S. carriers.
The principal data source was the Department of Transport’s DB1B database, which contains
extensive information on airline tickets sold in the US. The modelling was first conducted on the
basis of pure statistical models, and we later introduced variables with real economic data, such
as the air carrier’s financial situation and data on the U.S. economy and also information on the
individual route characteristics. Among other results, the statistical models reveal a significant
drop in fares, and often also passenger numbers, after the September 11 attacks as well as a
visible difference between the behaviour of Southwest Airlines , the only low-cost airline under
examination, and the other six major carriers. The selection and assessment of the models
in this project has been fully automated, using original code developed by the authors in the
ecenometric software package EViews6 and with Excel-VBA.
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1 Introduction

The aim of this project is to develop econometric models that are capable of describing and

forecasting the evolution of air fares and passenger numbers in the U.S. domestic market, for the

7 largest U.S. carriers, American Airlines, Continental Airlines, Delta Airlines, Northwest Airlines,

Southwest Airlines, United Airlines and US Airways. The main data source used here is the official

DB1B database which holds information on a large representative sample of tickets sold in the U.S.

from 1993 to 2009. For certain models we also use data collected from the airlines by the Bureau

of Transportation Statistics (the Form 41 Data), and data on the economic situation of the U.S.

economy from the Federal Reserve Bank of St. Louis.

The first step is to find the best model that is based purely on statistical data. We examine

several auto-regressive (integrated) moving average (AR(I)MA) models for both fares and passenger

numbers and identify the best model, which we validate and then use for short-term forecasting. In

a second step, we take the best AR(I)MA models and try to improve them by using data on the U.S.

economy, that is the GDP and data on the economic situation of the airlines such as fuel expenses

and operating profits. We then apply the developed models to illustrate routes, and also examine

the airline’s behaviour using a panel dataset and additional economic and market/route-specific

characteristics.

The structure of this project is as follows. Section 2 provides background information and key

features of the seven carriers of interest. Section 3 presents the core Department of Transport

datasets, the filtering assumptions that were made, and the method used to deflate nominal in real

prices. In section 4, we introduce the Box-Jenkins methodology for building statistical ARIMA

time-series models. This is applied to each of the carriers in turn, the models are carefully validated,

and used for short-term and dynamic forecasting. Section 5 discusses additional economic variables

that are used in an effort to improve the ARIMA models. Section 6 applies the modeling to several

illustrative routes. In Section 7, we build a number of purely economic models for fares, which are
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used for comparison and to aid intuition. Section 8 concludes the project. The Appendix contains

automated model selection output, the EViews 6 and Excel VBA code that was entirely written

by the authors during the project (for data treatment and analysis), and several Python codes for

initial treatment (cleaning, formatting, etc.) of the DB1B and economic data. The report was

written and compiled using the typesetting software WinEdt and the LaTeX language.
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2 Major U.S. airlines

2.1 American Airlines

American Airlines (IATA code AA) is one of the world’s largest airlines (in terms of traffic and

operating revenues).1 Established in 1930 in New York, the airline initially operated scheduled

services between Boston, New-York, Chicago, Dallas and Los Angeles. In 1979, one year after

the U.S. deregulation of the domestic network, American Airlines moved its headquarters to Fort

Worth in Texas.2 As a major carrier (defined as having more than $1 billion in annual operating

revenues), the airline chose to operate a hub-and-spoke network, with 3 main bases in San Jose

(California), Raleigh (North Carolina) and Nashville (Tennessee). During the 1980s and 1990s,

American Airlines largely expanded its network, throughout the domestic U.S., and internationally.

In 1999, the airline created the OneWorld global airline alliance with British Airways, Canadian,

Cathay Pacific and Quantas.3 In April 2001, American purchased the assets of the near-bankrupt

Trans World Airlines (TWA), at the same time acquiring its hub in Saint Louis. The September 11,

2001, terrorist attacks (2 of which involved American Airlines aircraft) had serious consequences

on the financial situation of the company.4 In July 2005, American Airlines announced its first

quarterly profit since September 2001. American Airlines is the only legacy carrier to survive

bankruptcy-free.

American Airlines is a subsidiary of the AMR corporation. Since 2004, the Chairman, President,

and Chief Executive Officer of AA and AMR has been Gerard Arpey. The airline is now based in

1See the 2009 economic report of the Air Transport Association. Refer to [2].
2For further information on U.S. deregulation of domestic traffic, refer to [4].
3This alliance was started by 5 of the world’s largest airlines at the time, with a driving strategy of expansion

of the international network of each of these airlines, through code-sharing and then an immunized alliance. For
American Airlines in particular, it was an opportunity for more efficient cooperation on Transatlantic routes with
British Airways and on Pacific routes with Quantas and Cathay Pacific.

4In fact, American airlines managed to reduce the immediate impact of the September 11 attacks. As a consequence
the airline did not file for bankruptcy, whereas Delta, Northwest, United and US Airways did and consequently
benefited from the help of the federal government. Therefore the airline found itself at a competitive disadvantage
compared to these 4 major airlines. See also [3].
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Dallas/Fort Worth and has 2 main bases at Chicago O’Hare International and Miami International.

Figure 1: Domestic traffic of American Airlines from Fort Worth International Airport (ENAC Air
Transport Data).

2.2 Continental Airlines

Continental Airlines (IATA code CO) is the fourth largest U.S. airline in terms of operating

revenues and revenue passenger miles (RPMs). Established in 1934, and based in Houston (Texas),

Continental offers domestic, regional and international flights. Created by Walter Varney (who also

founded United Airlines), Continental Airlines was originally a regional airline, smaller (in terms

of number of routes) than TWA, American Airlines and United. Under its CEO Robert Six, the

airline expanded significantly between 1959 and 1978, and was the first carrier to introduce the

Boeing 707 and then the Boeing 747 on its domestic routes. Six was also the first to introduce

an economy fare on the Chicago-Los Angeles route. Continental offered services from Denver to

Chicago, Seattle, Los Angeles and Honolulu. After deregulation, the carrier continued to expand

significantly, notably towards the Eastern coast of the U.S., into Miami and New York. However,
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its acquisition by the airline holding company Texas Air, and a series of reorganizations, led to

a first Chapter 11 bankruptcy filing from 1983 to 1986.5 In 1988, Continental Airlines formed

the first international alliance with the Scandinavian airline SAS. From 1990 to 1993, the airline

entered its second bankruptcy. Hired in 1993 in order to salvage the company, the new CEO of

Continental, Gordon Bethune, began to focus more on customer satisfaction than on fares, and

made the airline in 2004 the “most admired global airline” according to Fortune magazine.6 In the

same year, Continental entered the SkyTeam alliance between Air France and Delta Airlines, along

with Northwest and KLM. This alliance was initiated by Northwest, which at that moment had

the control over all decisions taken by Continental. After the acquisition of Northwest by Delta Air

Lines in 2008, Continental Airlines decided to withdraw from the SkyTeam alliance and join the

Star Alliance in order to cooperate with United Airlines.7 This change of alliance was effectively

completed in October 2009.

The CEO of Continental Airlines since 2004 has been Larry Kellner, following the retirement of

Gordon Bethune. Since the latter was a Boeing executive before managing the airline, from 1994

Continental Airlines has began to renew its fleet only with Boeing aircraft. The three main bases

of Continental Airlines are Houston, New York (Newark) and Cleveland.

2.3 Delta Air Lines

Delta Air Lines (IATA code DL), established in 1934, is currently the main U.S. major carrier, in

terms of traffic and operating revenues. The airline was created in Macon, Georgia, in 1924, as part

of the company Huff Daland Dusters. The headquarters was moved to Atlanta in 1941. Beginning

5Chapter 11 is a section of the United States Bankruptcy Code, which allows a company to reorganize rather than
be liquidated. This reorganization is performed by the debtor, to whom the U.S. government provides mechanisms for
it to restructure its business, especially the ability to acquire loans and financing from new lenders without clearing
its previous debts.

6Refer to [1].
7Indeed, Continental had several merger discussions with United Airlines between 2006 and 2008, and the CEO of

Continental stated on November 2009 that “We are watching Delta to see whether Delta outperforms us financially”
before reconsidering the merger with United [7].
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Figure 2: Domestic traffic of Continental Airlines from George Bush Intercontinental Airport
(ENAC Air Transport Data).

its passenger services on the West coast, the acquisition of Northeast Airlines in 1972 greatly helped

the expansion of the carrier in the Eastern U.S. In 1955, it was the first airline to implement the

hub-and-spoke system. In 1987, Delta merged with Western Airlines, acquiring the hubs of Salt

Lake City and Los Angeles (Los Angeles International Airport). However, the main acquisition

of Delta Airlines was its absorption of the bankrupt airline PanAm in 1991. In 2000, the carrier

founded the SkyTeam alliance with Air France, Aeromexico and Korean Air. Four years later,

Delta began an important restructuration of its services in an effort to improve profitability and

avoid bankruptcy. Despite these measures, the airline filed for Chapter 11 bankruptcy protection in

September 2005, and returned as an independent carrier in April 2007. In October 2008, Delta Air

Lines and Northwest Airlines (which was part of the SkyTeam alliance since 2004) merged under

the Delta identity.

The CEO of Delta is Richard Anderson. As for Continental Airlines, Delta only operates with
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Boeing aircraft.8 The carrier, based in Atlanta, has 3 main U.S. bases: Cincinnati, New York (JFK

Airport) and Salt Lake City.

Figure 3: Domestic traffic of Delta Air Lines from Hartsfield-Jackson Atlanta International Airport
(ENAC Air Transport Data).

2.4 Northwest Airlines

At the time of writing, Northwest Airlines (IATA code NW, established 1926) no longer exists

and the Northwest brand name will be phased out by 2010. However, as its merger with Delta

Airlines only took place in 2008, for the largest part of the time-frame in this study Northwest

Airlines existed as an independent carrier. As for most U.S. majors, Northwest has more than

50 years of history, that began at its present headquarter city Minneapolis/St.Paul. Besides

Minneapolis/St.Paul, Northwest operates two other U.S. hubs in Detroit and Memphis. Outside

of the U.S., Northwest has a strong presence at Tokyo Narita and Amsterdam. Amsterdam is

the hub airport for KLM Royal Dutch Airlines, with which Northwest pioneered the field of airline

alliances/cooperations by entering a joint-venture that includes revenue sharing and Frequent Flyer

8In 1997, Delta announced that the airline would buy only Boeing aircraft for the next 20 years, in order to
strengthen cooperation and as a consequence the flexibility and price advantages following from this [5].
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Program cooperation. Today, Northwest is, as its “predator” Delta, member of the SkyTeam

alliance. Northwest’s fleet ranges from DC9-30s with 100 seats to 747-400s with 403 seats. All the

aircraft are operated in a 2-class configuration with Economy and Business or First class. In 2008

it transported 65.5 million passengers and employed 34,400 people. Its net loss lay at $6.2 billion.

Figure 4: Domestic traffic of Northwest Airlines from Detroit Metro Airport (ENAC Air Transport
Data).

2.5 United Airlines

United Airlines (IATA code UA, established 1931) has developed to become one of the largest

airlines in the U.S. and also worldwide. In 1997 United was, together with Air Canada, Lufthansa,

SAS Scandinavian Airlines and Thai Airways, a founding member of Star Alliance, which is now

the world’s largest airline alliance. According to the Air Transport Association of America’s 2008

Annual Report, United Airlines was third largest carrier by revenue passenger miles (RPM). At

109.8 billion RPM it was about 20 billion RPM behind American Airlines and 30 billion ahead

of Continental Airlines. The airline is headquartered in Chicago, and operates hubs at Chicago
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O’Hare, Washington Dulles, San Francisco and Denver (the latter is purely domestic). From its

hubs it serves destinations on all continents except Africa. The first African destinations will be

Accra and Lagos in 2010. United operates 360 aircraft (2008) ranging from the Airbus A319 to the

Boeing 747-400 in a 3- or 4-class-layout. Its Economy product has recently been supplemented at

the top end and below Business/First Class with the introduction of the so-called “Economy Plus”

class which is available on all United aircraft. Several smaller airlines fly under the United Express

brand name to supplement United’s domestic network.

Figure 5: Domestic traffic of United Airlines from Chicago O’Hare International Airport (ENAC
Air Transport Data).

2.6 US Airways

US Airways (IATA code US, established 1939) is the smallest of the airlines we will look at in this

project. In 2008, its transport performance lay at 60.5 million RPM, trailing Southwest, and it

employed 32,700 people while posting a loss of $2.2 billion. Before its merger with America West

in 2005, US Airways mainly served the eastern part of the U.S. from its hubs in Philadelphia and

Charlotte. The 2005 merger with America West added America West’s Phoenix hub to the network.
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Since 2004, US Airways has been a member of Star Alliance and operates 349 aircraft (296 aircraft

fly with other airlines such as Mesa Air and PSA Airlines under the US Airways Express brand).

All aircraft are equipped with an Economy and Business or First class, the latter called “Envoy”

class. The airline is headquartered in Phoenix and mainly serves destinations in North America

and Europe.

Figure 6: Domestic traffic of US Airways from Charlotte Douglas International Airport (ENAC
Air Transport Data).

2.7 Southwest Airlines

Southwest (IATA code WN, established 1967) is the only low-cost carrier considered in this project.

However, even though it is low-cost and also the youngest among the carriers we examine, Southwest

is the largest by number of passengers transported (88.5 million in 2008). It is quite different

compared to the other large U.S. carriers. For example, Southwest Airlines posted a net profit

($0.18 billion) in 2008. The other main differences apart from its age and low-cost/low fare concept

are that it has a single-class 737-only fleet (namely 181 737-300 and 338 737-700 with 137 seats each

and 25 737-500 with 122 seats) and operates exclusively on U.S. domestic routes. Southwest is not

part of any larger alliance, and only has agreements with Canadian carrier Westjet and Mexico’s
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Volaris. Southwest is headquartered in Dallas. Its main bases are Las Vegas, Chicago, Phoenix,

Baltimore/Washington, Houston, Dallas, Denver, Oakland, Los Angeles and Orlando.

Figure 7: Domestic traffic of Southwest Airlines from Las Vegas McCarran International Airport
(ENAC Air Transport Data).
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3 Data description and preliminary analysis

3.1 Core data

In this project, we will make use of a number of rich statistical data sets from the American Bureau

of Transportation Statistics (BTS).9 We are particularly interested in the BTS Airline Origin and

Destination Survey (DB1B). This dataset is a 10% random sample of scheduled airline tickets from

reporting carriers. It gives information on domestic itineraries within the U.S. domestic market.

The data has been reported quarterly from 1993 to 2009 (we have access to reliable data until the

first quarter of 2009), giving us data over 65 quarterly time periods.

The survey is divided into 3 related databases: Market, Coupon, and Ticket. We will only use

the second and third for this project. In fact, the Market database mostly uses the data contained

in the Coupon and Ticket databases to report a new presentation of itineraries, displaying the

number of passengers, the fares, the time period, the ticketing, operating and reporting carriers

and the origin and destination airport for each segment of the flight.

3.1.1 DB1B Ticket data

This database gives, for each domestic itinerary reported by a reporting carrier, the origin and

destination of the flight, the nominal itinerary fare, the number of passengers per ticket, and the

length of the trip, among other variables. Figure 8 presents a small excerpt from this database,

highlighting the main variables that are of use to us.

• ItineraryID (ItinID): This variable links the DB1B databases Coupon and Ticket, and

allows us to compare and merge the data. One ticket has a unique “ItinID”, and it can

contain several coupons (segments) with that same ID.

9This agency, created in 1992, has been collecting data from any mode of transportation for more than 15
years, creating huge microeconomic and other databases in many areas (infrastructure, economic, financial, social,
demographic, energy, freight or passenger travel). Much data is freely available online.
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Figure 8: Excerpt from the DB1B Ticket database for 2009Q1, where FLL is Fort Lauderdale
Airport (IATA airport code), FL is Florida, WN is Southwest (IATA airline code), the itinerary
Fare is nominal (in U.S.$), and distance is measured in miles. In the text, we take a closer look at
the 3 highlighted itineraries.

• Number of Coupons: It is essential to know, for a given itinerary, the number of segments

contained in the itinerary. The minimal number of coupons is 1, and reaches 23. Figure 9

shows, for example, the distribution of the number of coupons bought by passengers on an

itinerary in 2008. We can see that the proportion of tickets with 7 coupons or more seems

negligible (it represents, in 2008, 0.25% of all tickets sold).

• Year and Quarter: Tickets are reported every quarter, and it would be very difficult to

obtain the exact date of the flight for each ticket (this is not available through DB1B),

which would add considerable complexity to the databases, although it would enable us to

model for example intraweek, weekly and monthly effects. From 1993Q1 to 2009Q2, there

are consequently 65 different periods in the database.
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Figure 9: Coupons bought by passengers on an itinerary in 2008, for all U.S. reporting carriers.
We observe that the proportion of tickets with 2 or 4 itineraries represents more than 66% of all
tickets sold. In fact, this graph does not give us the proportion of round trips or changes of planes,
so we cannot state whether the 4,250,000 4-coupon itineraries are one-stop returns or one-way trips
with 4 successive changes of plane.

Consider the number of passengers who took a flight during the year 2008 (Figure 10). We

can observe that the quarter when people travelled the most was the second quarter, with

500,000 more travellers than during the first quarter of 2008. About 2,800,000 passengers

travelled during 2008Q1 and a similar number during 2008Q4.

• Origin airport and state: We have the origin airport for each ticket. The DB1B Coupon

dataset will later provide the entire route followed by each passenger. Figure 11 shows, for

example, the distribution of the passengers having a trip in 2008 from a given state of origin.

We can see that the outgoing traffic comes mostly from California, Texas, New York, Florida,

Illinois and Pennsylvania, which are also the most populous U.S. states.10 As a consequence,

we could try to avoid this effect of the most populous states on the traffic results, by dividing

the number of passengers for a given state by the population of this state (Figure 12). We

102007 population estimates from the U.S. Census Bureau. See http://www.census.gov/.

http://www.census.gov/
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Figure 10: Number of passengers per quarter in 2008.

can see from this graph that this kind of concentration of the traffic is very high for the less

populous U.S. states, especially for the District of Columbia. In 2008, a number of passengers

equivalent to half the population of Washington D.C. left the capital of the United States for

domestic travel. We can also note the high percentage for Alaska, which can be explained by

the low population of the state and the difficulty for the inhabitants to make domestic trips

in the U.S. with other means of transportation than aircraft. The same arguments and the

high level of tourism for Hawaii can explain the high percentage calculated for the island.

For Nevada, the low population compared to the high traffic from Las Vegas and Reno also

explains the high percentage for the state. Returning to the first graph, we can also note the

very low outgoing traffic in Dakota, Wyoming and West Virginia, which are also among the

less populated U.S. states.

• Reporting carrier: The reporting carrier is the airline reporting the data of tickets and

coupons to the Bureau of Transportation. We can examine the distribution of the passengers

in 2008 by respective reporting carrier (Figure 13). We note that the largest reporting airlines

(in terms of number of passengers) are the 6 legacy carriers presented in the first part of this
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Figure 11: State of departure for 2008 itineraries.

project, and the low-cost carrier Southwest. These airlines are major carriers (as defined

above), and reported the tickets of more than 600,000 passengers in 2008. The largest carrier

on this graph is Southwest: we could consequently tend to think that the low-cost carrier was

the most important (reporting) carrier for domestic travel in the U.S. in 2008. Nevertheless

we have to keep in mind that the reporting carrier may not be the operating carrier, especially

when a carrier like the 6 other legacy carriers uses code-sharing to develop its hub-and-spoke

network. The code-sharing effects are very difficult to capture here, as the different alliances

between airlines can change over time.

We also observe that there are other significant reporting carriers in the U.S.: SkyWest,
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Figure 12: Number of passengers for 2008 itineraries as a percentage of the population estimates
by U.S. state.

AirTran and American Eagle. SkyWest is a regional airline headquartered in Utah, and has

recently secured a partnership with the low-cost carrier AirTran. This partnership will be

effective in February 2010, and may strengthen the position of these 2 airlines in the U.S.

domestic market. American Eagle is a subsidiary of American Airlines.

• Passengers: The number of passengers buying a ticket for a given route at a given price with

a given reporting carrier. This number can be sometimes very high (up to 1000 passengers

with the same ItinID: it does not mean that all these passengers know each other and bought

one ticket for 1000 individuals, but instead that 1000 passengers bought a similar ticket during

the quarter (the same route, with the same carrier(s), and at the same price), which enables

the DOT to compress the dataset to some extent.

• Itinerary fare: This is the nominal U.S.$ fare paid for the ticket. We saw, looking at the

database, that some fares appear unusual, as they seem to be very high for domestic travel, or
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Figure 13: Carrier reporting 2008 itineraries.

very low (for example, 7 euros for a 3-coupons itinerary from Texas with Southwest). Indeed a

passenger, even flying with a low-cost carrier such as Southwest, must pay some fees, charges

and taxes: in order to remove possible errors from the database, we decided to impose upper

and lower bounds on the fare data. We develop the computation of these bounds in section

3.1.3 below (Assumptions).

• Distance: The length of the route is expressed in miles. It may be interesting to see whether

we can relate this distance to the fares proposed by the airlines on specific routes.

We now take a general look at 3 illustrative itinerary IDs (highlighted in red on Figure 8).

• ItinID 200912901650: This line represents one ticket, an itinerary of 1 (number of coupons)

flight which took place during the first quarter of 2009. This itinerary began at Fort Lauderdale

Hollywood International Airport (FLL), in Dania Beach, in the South of Florida (FL). This
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ticket was reported by Southwest to the Bureau of Transportation. On this itinerary, 3

passengers bought a ticket at a nominal fare of $248 per passenger, and we see that they

covered 793 miles.

• Itin 200912901658: Starting from the same airport (FLL), in the same quarter, two other

passengers performed 2 flights (perhaps a round trip), covering an itinerary of 970 miles which

cost nominal $272 per passenger. This ticket was also reported by Southwest.

• Itin 200912901660: Another passenger, with the same initial conditions of time and place,

covered 1627 miles with 4 successive flights (perhaps a non-direct round trip). According to

the reporting carrier Southwest, this passenger paid a nominal fare $267 for this ticket.

3.1.2 DB1B Coupon data

We now consider the Coupon database. A small excerpt from the database (Figure 14) follows. As

for the Ticket database, we are particularly interested in the following variables:

• ItineraryID: See Ticket data description above.

• Sequence number and Coupons: For a given ticket, there can be several coupons, which

specify the number of separate flights in an itinerary.

• Year and quarter: See Ticket data description above.

• Origin/Destination airport and state: In the Coupon database, we again find the initial

airport of departure for the first coupon of an ItinID, which must be the same as the Origin

airport for the respective ticket. We can also see all the airports where the passenger landed,

and can therefore reconstitute the whole route.

• Break: This variable indicates whether the passenger stopped at a given airport (if the

variable is checked “x”) for a few hours or days. Thus if there is no break at a given destination
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Figure 14: Excerpt from the DB1B Coupon database for 2009Q1. As for the Ticket database, the
itinerary fare is nominal, in U.S.$, and distance is measured in miles. We will later take a closer
look at the 3 highlighted itineraries.

airport it means that it is only a short-stop for the passenger.

• Ticketing/Operating/Reporting carrier: The ticketing system can sometimes be very

complex, and the carrier which sells a flight is not necessarily the carrier which will operate it,

nor will it necessarily be the carrier that reports the ticket to the Bureau of Transportation.

Indeed, an itinerary containing several different coupons can be operated and sold by as many

different carriers. In order to make our future analysis easier, we chose to retain only the

operating carrier.

• Passengers: As for the Ticket database, we can see for a given coupon how many passengers

bought a similar ticket. As a consequence, there is always a unique number of passengers for

a given ItinID, in both databases. As for the Ticket database, this number can be very high,

as the DOT prefers to combine similar tickets (same itineraries, same fares, same carriers,...)
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in the quarter.

• Fare class: There are 6 different type of fare class defined by the DOT: split into restricted

and unrestricted, there are first (unrestricted: code F; restricted: code G), business (respec-

tively codes C and D) or coach class (Y or X) coupons. The DOT stresses that these classes

are defined by carriers and can differ from one airline to another. Consequently any analysis

of these fare classes should be interpreted with caution. For example, we can observe the

distribution of the passengers in 2008 by fare class (Figure 15): a first remark is that this graph

represents the fare class by coupons, and not by ticket, so the column axis represents number

of passengers multiplied by the number of coupons bought by each passenger. Nevertheless,

we can note that the proportion of passengers in the Business fare class only represents 1.13%

of all coupons bought in 2008, whereas the coach class tickets represents more than 84% of

all these coupons! This statistic shows in fact a characteristic of the U.S. domestic market,

where the business fare class is not proposed by carriers as often as it is in Europe. The

passenger discrimination is focused between 2 fare classes: the first class and coach class.

Figure 15: Fare class for coupons purchased in 2008. These fare class are defined by reporting
carriers.

• Distance: We also know the length of each flight operated, in miles, which we could
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also compute from the exact location of the airports of origin and destination (latitudes,

longitudes, giving the great-circle distance).

We selected 3 itineraries to illustrate this database (the 3 ItinId match the 3 examples taken

above for the Ticket database). As a consequence, the data contained in the coupons with a specific

ItinID should completely match the data for the corresponding ticket (that is indeed the case for

the number of coupons in the itinerary, the period of time, the origin airport, the reporting carrier,

the number of passengers and the distance). What can we learn from this database for our 3

examples?

• ItinID 200912901650: We learn from this ticket that the 3 passengers taking off from

Fort Lauderdale in Florida went with their single flight to Nashville International Airport, in

Tennessee, and that they chose to fly in the restricted first class.

• ItinID 200912901658: We also know that these passengers took a similar flight (as for

the passengers with the Ticket 200912901650), but instead of staying in Tennessee, their

second flight carried them to Birmingham-Shuttlesworth International Airport, in Alabama,

177 miles from Nashville. They flew in the unrestricted first class for the entire itinerary.

• Itin 200912901660: This last passenger also landed at Nashville airport with a similar

flight. He stayed there for an unknown period, after which he took his return flight to Fort

Lauderdale. This return flight unfolded with three legs, and this passenger landed successively

at Birmingham-Shuttlesworth International Airport and at Tampa International Airport (in

Florida) before reaching Fort Lauderdale.

To sum up, we can see that we are able to get considerable data about each ticket from the

Coupon database. Nevertheless, the likely most important and interesting information about the

itinerary, the fare of the ticket, is given only in the database Ticket (because we cannot of course

give a fare for each of the coupons bought by the passengers).
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3.1.3 Assumptions and inflation data

In order to obtain a reliable sample of data, and to avoid possible erroneous values in the Ticket

and Coupon databases, we need to make some additional assumptions:

• Passengers: We observed that on some itineraries there were fewer than 90 passengers

during a quarter. Given that the database represents 10% of all tickets sold in the U.S., there

were less than 900 passengers for some itineraries during a quarter, which is equivalent to 75

passengers per week. There may be some flights operated with these 75 passengers per week;

nevertheless, in order to delete what could be erroneous values in the database, we decided

to fix 90 passengers as a lower bound.

• Fares: Another possible source of erroneous values in the Coupon and Ticket databases can

be the fares. We make 2 additional assumptions:

1. Inflation: The tickets reported by the carriers to the DOT in 1993 have been reported

with the value of the dollar in 1993. Nevertheless, one dollar spent in 1993 does not

offer the same purchasing power for the U.S. citizens as one dollar spent today. We

consequently need to take into account the general rise in the level of prices (i.e. the

inflation rate), in order to be able to compare the fare of a ticket bought in 1993 with

the fare of a ticket bought in 2009. The usual method used to deal with this problem

is the Consumer Price Index (CPI).11 Below (Figure 16), we can see the monthly U.S.

Consumer Price Index between 1993 and 2009 (available on the BLS website), which

represents the increase in average prices over time. We note the sudden global decrease

of prices in 2008, a clear sign of the recent economic and financial global crisis. We also

observe that the Consumer Price Index is remarkably linear over the entire period.

A simple regression (using least squares estimation) gives an estimated coefficient of

11See the U.S. Bureau of Labor Statistics website for more details on the CPI (http://www.bls.gov/cpi/).

http://www.bls.gov/cpi/
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Figure 16: U.S. Consumer Price Index between 1993 and 2009.

1.126, meaning that there is an average increase of 1.126 in CPI per quarter, that is

to say an average increase of 45 in the CPI index over 10 years. The econometric

software EViews6 gives us a coefficient of R2 (which represents the “quality” of fit for

the regression) of 0.986, which is very high.

From these values, we can compute a “CPI deflator” value for each quarter, which will

be a multiplying factor between the fares reported by the carriers in a given quarter

and the real fares, taking into account the inflation of the prices between this quarter

and today. The last quarter in our database is the first quarter in 2009 (afterwards this

period will be written as 2009Q1), and our “original” value of the dollar will be the value

for the quarter 2009Q1. The “CPI deflator” for this period (CPIdef(2009Q1)) is set at

1. The CPI deflator for the quarter 2008Q4 (CPIdef(2008Q4)) can be computed as the

ratio between the quarterly average CPI of 2009Q1 (CPI(2009Q1)) and the quarterly
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average CPI of 2008Q4 (CPI(2008Q4)):

CPIdef(2008Q4) = CPIdef(2009Q1)× CPI(2009Q1)

CPI(2008Q4)
. (1)

As a consequence, the CPI deflator for a given quarter t is:

CPIdef(t) = CPIdef(t+ 1)× CPI(t+ 1)

CPI(t)
. (2)

Below (Figure 17), we see the Consumer Price Index deflators between 1993 and 2009

(dashed line), and the curve of the inflation of the quarterly average CPI (defined as the

ratio between successive quarterly average CPI). As the CPI is almost a linear curve,

therefore the CPI deflator curve is also approximately linear. On the other hand, the

inflation of the quarterly average CPI is highly variable, especially for the past 10 years,

reflecting the disturbance of the actual economy. We can note 3 major drops in quarterly

inflation after 1993, leading to a quarterly deflation of the U.S. economy: the first one

happened during 2001Q4, and is most likely to be a consequence of the September 11

attacks. The second one, which took place during 2006Q4, matches the beginning of the

subprime mortgage financial crisis, with the end of the U.S. housing bubble. Finally, the

third quarter of U.S. deflation, in 2008Q4, corresponded to the beginning of the current

global economic crisis. We can check that the CPI deflator is a decreasing curve, with

a minimum of 1 in the first quarter of 2009. The maximum value, 1.48, means as a

consequence that we need to multiply all fares reported in the first quarter of 1993 by

1.48 to get the real value of fare which would be sold today (and a value we can therefore

compare with the values of fares reported in the first quarter of 2009).

2. Zero-fare award coupons: Many U.S. airlines, and in our case each of the 7 carriers we

are interested in, have put in place “frequent flyer programs”: AAdvantage for American
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Figure 17: CPI deflators (dashed) and inflation estimates between 1993 and 2009.

Airlines, OnePass for Continental, SkyMiles for Delta and Northwest, Mileage Plus for

United, Dividend Miles for US Airways and Rapid Rewards for Southwest. Due to

these programs, some passengers can obtain tickets with zero-fare award coupons and

pay nothing else but some taxes. Other passengers may also “fly for free”: the carrier

employees. As we are not able to distinguish them from full-fare passengers in the

databases, we must fix a lower bound for the fares in order to be able to correctly assess

the real fares. This bound can also enable us to delete some other erroneous values.

Which bound should we fix? We need to fix a bound that will not delete true low-fare

tickets (offered by Southwest, for instance), but at the same time if this bound is too

low, we may probably keep frequent flyer award coupon without any monetary payment

but the air transport taxes.

3. Air transport taxes: All U.S. carriers are subject to taxes for each flight operated,

most of which are reflected in the passenger’s ticket fare. What are the usual taxes

paid by the passengers? The current aviation excise tax structure from the Federal
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Aviation Authorities (FAA) is attached in the Appendix.12 Nevertheless, the easiest

way to find the additional taxes contained in a ticket is to look at the carriers’ websites.

Searching for the cheapest ticket sold by Southwest (on 29 November 2009) we found the

following itinerary (Figure 18), from Kansas City to Milwaukee, at $59.60. According

Figure 18: Illustrative Southwest ticket from Kansas City to Milwaukee.

to Southwest, about $14.02 on the $59.60 of the ticket are Government Taxes and Fees,

made up with 7.5% (of the initial fare) for the Federal Excise Tax, accounting here

for $3.42 (most of time, especially for the 6 other carriers, this tax is included in the

initial fare proposed on the first booking screen), plus $3.60 of Federal segment fee (for

each flight segment of the itinerary), plus $2.5 of “Government-imposed September 11th

Security Fee” per segment (up to $5 for a one-way travel), and finally $4.5 of “Airport

assessed Passenger Facility Charge” (PFC) per landing (up to $18 for a round trip, but

12A good report on usual aviation taxes and fees is also available at http://assets.opencrs.com/rpts/RL33913_

20080421.pdf [8]

http://assets.opencrs.com/rpts/RL33913_20080421.pdf
http://assets.opencrs.com/rpts/RL33913_20080421.pdf
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the PFC can be lower than $4.5 for each segment, depending of the airport of origin

on this segment). Checking the websites of the 6 other major carriers of interest, we

observe that the additional taxes are the same as for Southwest.

As a consequence, we can assume that the minimal taxes paid for a one-way ticket

(between big airports for which the PFC costs $4.5) are $10.6. On the other hand, the

highest taxes, paid for a round trip with 4 successive segments, are up to $42.4! It

appears difficult to fix a reliable lower bound for fares, without losing some useful data

on low-fare travels. In order to try to remove a large number of erroneous values, but

without losing too much data, we decided to fix this lower bound at $20.

4. Very high fares: A final source of error can be some high fare values. We saw in the

database that some tickets are very expensive, and seem too expensive for domestic

travel. As a consequence we decided to fix a higher bound at $10,000 for the fares.

Once the lower and higher bounds for fares have been fixed, we can check in the database created

with these assumptions whether these bounds are correctly fixed. We chose to gather all tickets

bought by passengers in the same quarter for a round trip between the same airports and operated

by the same carrier. We also create a fare for this round trip, fixed as the passenger-weighted

average between all of the fares for this round trip during this quarter.

Do the assumptions for fares hold for this database?

We can see that our assumptions are quite realistic: we observe that the lowest real average

fare in this database is $60, and the highest fare is $1801 (for round trips to the Island of Guam,

in the western Pacific Ocean, i.e. more than 6000 miles from Los Angeles, compared to less than

3000 miles maximum for travel between the Pacific coast and the Atlantic cost of the U.S.!). These

limits are easily contained in the interval fixed with the previous assumptions for fares.
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4 Model construction and estimation

Here (Figure 19) we can see the quarterly average fares for round trips for the 7 carriers we are

interested in, followed (Figure 20) by the quarterly number of passengers carried by these airlines for

round trips between 1993 and 2009. We observe from these two figures a clear difference between

Figure 19: Quarterly average fares for round trips (unit: real 2009 US$). The data for the airline
Southwest in the DB1B database, for round trips, is given by the DOT only from the third quarter
of 1998. Before this quarter Southwest did not report round trips.

the low-cost model and the model for state airlines. Indeed, Southwest clearly has the lowest

average fares, and is the largest airline in terms of passengers. In this section, we attempt to build

rigorous forecasting models for the series displayed in these figures, from the simplest univariate

time series models to more complicated regressions including both statistical and economic data.
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Figure 20: Number of passengers carried per quarter (round trips). As for the fares, data from
Southwest is only available from the third quarter of 2008.

4.1 Fares

4.1.1 Simple linear regressions

One of the most straightforward ways to develop a model for the quarterly average fares, between

1993 and 2009, for a given carrier, is by a linear regression:

Fare(t) = α0 + α1 × t, (3)

where t is time. The limit of the fitted fares will be either −∞, +∞ or α0 if α1 = 0, which is

obviously very restrictive for any analysis and forecasting. In Table 1 we can see the estimated

coefficients α̂0 and α̂1. First, we can observe that the Student’s t-statistics are all greater (in

absolute value) than 1.96, which means that we reject at the 95% level of confidence the hypothesis

that a coefficient would be individually equal to 0.

It is interesting to see that the trend for all carriers is to decrease their fares, except for Southwest

(this is apparent in the sign of the coefficient α̂1, which is positive only for the low-cost carrier).
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Carriers AA CO DL NW UA US WN

α̂0 602.86 479.13 493.94 559.32 540.30 476.91 198.28
α̂1 -3.769 -1.144 -2.567 -3.010 -2.123 -2.319 0.919

ŝe(α̂0) 9.678 9.761 10.166 4.816 9.241 7.767 5.017
ŝe(α̂1) 0.261 0.263 0.274 0.130 0.245 0.209 0.112

t− stat(α̂0) 62.29 49.084 49.586 116.13 58.466 61.399 39.521
t− stat(α̂1) -14.45 -4.349 -9.365 -23.178 -8.656 -11.076 8.196

R2 0.768 0.231 0.582 0.895 0.551 0.661 0.621

Table 1: The carriers are denoted by their IATA airline codes. “se(αi)” stands for the standard error
of the coefficient αi, and “t − stat(αi)” stands for the Student’s t-statistic, which asymptotically
follows a standard normal distribution. “R2” is the coefficient of determination of the regression,
which is a measure of the global fit of the model.

Nevertheless, in absolute value, Southwest is the most “stable” carrier in terms of variability of

average fares.

Another interesting feature is the coefficient of determination of the regression, which appears

to be very high for American Airlines and even moreso for Northwest Airlines. These coefficients

can be interpreted as significant evidence for these two carriers to decrease their fares since 1993. It

could be related to the difficult financial situation of the two airlines, since we know that Northwest

airlines was forced to merge with Delta Airlines in 2008. For American Airlines, we can observe (see

Figure 19) that the carrier was the “most expensive” after 2001. Following the successive political

and economic crisis since 2001, a strategy to align the fares with the other airlines in a more

competitive market may explain (more than the financial situation of the carrier) this decreasing

trend for the fares of American Airlines since 1993.
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4.1.2 ARMA models

Even if the linear model can explain a trend in the fares, it remains a very simple model and does

not catch all the variations of fares since 1993. As a consequence, we could try a different approach

to model the fare: the autoregressive moving average (ARMA) models. These models are often

used for the analysis of statistical data. The main idea is to assume that the fare today will depend

on the fares in previous periods (this is the autoregressive part of the model, also called the AR

component), and on the shocks in these past fares altering the “average” value of the model (the

moving average (MA) component of the model). An ARMA(p, q) model (combining AR(p) and

MA(q) terms) can be written as follows:

Fare(t) = α0 + α1 × Fare(t− 1) + α2 × Fare(t− 2) + ...+ αp × Fare(t− p)

+ε(t) + β1 × ε(t− 1) + β2 × ε(t− 2) + ...+ βq × ε(t− q).
(4)

We could imagine that the higher are p and q, the better the model could match reality. Nevertheless,

by increasing the number of variables p and q, we decrease the number of available observations

for our model and risk “overfitting”. Given that our databases only have 65 quarterly observations

from 1993 to 2009, we decided to limit p and q to 4, which correspond to one year of information

for fares. These 4 past data also allow us to ignore for the moment possible seasonality effects on

fares. As a consequence, we obtain for each carrier 25 new models (p and q =0,1,2,3,4).

We can also assume that the fares of these 7 carriers may also depend on the time period, and

that there may be a trend in the fares to decrease or increase over time. In order to model this

trend, we can add a variable of time in the regression of the fares. This new variable leads to 50

possible models of regression for the fares.

Moreover, another interesting variable to include in these regressions is a variable that could

take into account what we can call a shock for the fares of the carrier (as a sudden and unexpected

variation of the fares), caused by a major major external event such as an economic or political
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crisis, or an event such as the U.S. terrorist attacks of September 11, 2001. For example, looking

at the curve of the fares for American Airlines (Figure 21), we can see that there is a visible gap

between the average fares before and after the quarter 35, i.e. between July 2001 and September

2001 (included). This gap was the most important decrease of in average fares for American Airlines

since 1993 (a drop of more than $64 between the second and the third quarter of 2001), and was

very likely caused by the terrorist attacks in New-York and the 3 days of non-activity imposed by

the U.S. government after these events. Consequently, we can assume that we may need to take

Figure 21: Quarterly average fares for American Airlines ($ against time).

this shock into account in our model for fares. We chose to try to see the impact of this drop with

the insertion of a dummy variable in our regression. How can we choose this dummy variable? In

order to observe the change in the regression, we can insert a variable that takes value of 0 before

the quarter 35, 0.22 for this quarter and 1 thereafter.13 This dummy variable DummyD(t) can be

13The coefficient 0.22 was also used by Guzhva and Pagiavlas (2004) [9]. It represents the ratio 20/92 (20 days in
the quarter 35 after 9/11 and 92 days total in this quarter).
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expressed as follows :

DummyD(t) = 0 for t < 35; 0.22 for t = 35; 1 for t ≥ 35. (5)

Thus we obtain 100 possible models for each airline.

4.1.3 Selecting the best ARMA model (theory)

So how can we choose the best among all these models? (that is, a reliable statistical and forecasting

model which can also provide some interesting insights into the airlines’ fare setting behaviour?)

Many studies have been written on this subject, and methods have been proposed to find the best

possible model for ARMA regressions. The classic approach is the Box-Jenkins methodology.14

According to this procedure, one of the most important features to consider is the stationarity

(stability) of a model. A model is said to be covariance-stationary if the mean, variance and

covariance are finite and are invariant with respect to time. We can observe that some of the

fares seem to decrease over time, and due to this “trend” we created models including a time

variable. This variable can be a solution to “detrend” the regression and make this model trend-

stationary. Nevertheless, even if we include a variable of time in the equation, the model can still

be nonstationary. We can have a look, for example, at the following model AR(1) :

Fare(t) = α0 + α1 × Fare(t− 1) + ε(t). (6)

We can easily infer from this equation that if we know Fare(t0), we get for all t ≥ t0 :

Fare(t) = α0 × (1 + α1) + α2
1 × Fare(t− 2) + α1 × ε(t− 1) + ε(t), (7)

14See for example http://economics.uwaterloo.ca/2007-Winter/603notes3.pdf for more information about this
methodology, and Hamilton (1994) [10].

http://economics.uwaterloo.ca/2007-Winter/603notes3.pdf
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and so

Fare(t) = α0 × (1 + α1 + α2
1 + ...+ αt−11 ) + αt1 × Fare(t0)

+αt−11 × ε(t0) + ...+ α1 × ε(t− 1) + ε(t)

(8)

⇒ Fare(t) = α0 ×
t−1∑
i=t0

(αi1) + αt1 × Fare(t0) +

t−1∑
i=t0

(αi1 × ε(t− i)). (9)

What is the expected limiting behavior of Fare(t) as t → +∞ ? If we assume that εt ∼ D(0, σ2),

then limt→∞E[
∑t−1

i=t0
(αi1 × ε(t − i))] = 0, where E[.] is the expectation operator, D(.) is some

distribution and Fare(t0) = 0 is assumed. and we can observe that:

• if |α1| < 1 : limt→∞E[Fare(t)] = α0
1−α1

• if |α1| = 1 : limt→∞ Fare(t) =∞ if α0 6= 0 , limt→∞ Fare(t) = 0 if α0 = 0

• if |α1| > 1 : limt→∞ Fare(t) =∞ ,

and so the AR(1) model is not explosive if and only if |α1| < 1. In fact, we can find a general rule

for all ARMA models, which determines a condition in the α terms to get a finite limit for a model

and because of that the stationarity (stability) of this model. To establish this condition, we need

to rewrite the ARMA(p,q) models as:

Fare(t) = α0 + α1 × Fare(t− 1) + α2 × Fare(t− 2) + ...+ αp × Fare(t− p)

+β1 × ε(t− 1) + β2 × ε(t− 2) + ...+ βq × ε(t− q).
(10)

Let Li be the lag operator, which transforms Fare(t) into Fare(t− i). Then we can write the model

ARMA(p,q) as follows:

Fare(t) =

p∑
i=0

(αi × Lp)× Fare(t) +

q∑
i=1

(βi × Lq)× ε(t) (11)
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or

(1−
p∑
i=1

(αi × Lp))× Fare(t) = α0 +

q∑
i=1

(βi × Lq)× ε(t), (12)

and if we denote

A(L) := 1−
p∑
i=1

(αi × Lp) (13)

B(L) :=

q∑
i=1

(βi × Lq) (14)

then

A(L)× Fare(t) = α0 +B(L)× ε(t). (15)

The stability condition for the ARMA(p,q) model is the following: under the assumption that

ε(t) ∼ D(0, σ2) (meaning that ε follows an independent, identically distributed, or White Noise

distribution), a model is stationary if all the roots of the real polynomial αZ = 1−
∑p

i=1(αi × Zp)

are greater than 1 in absolute value (or in norm for complex roots).

If this stability condition holds, then we can invert the polynomial αZ (which can be done

thanks to the convolution formula), and in the same way we get the inverse of the polynomial

A(L), A(L)−1, and thus we can “solve” the equation Fare(t):

Fare(t) = α0 ×A(L)−1 +A(L)−1 ×B(L)× ε(t). (16)

As α0 is a constant, in fact we can prove that α0×A(L)−1 = α0×A(1)−1 , so the limit of the fares

is:

lim
t→∞

Fare(t) = α0 ×A(1)−1. (17)

The model is therefore stationary, as we know that the limit of the fares is finite.
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EViews6 can provide us with the “inverted” roots of the AR polynomial A(L), in the estimation

output of an ARMA model. These roots are in fact the inverted roots of the polynomial αZ .

Indeed, we can prove that the stability conditions is equivalent to having these inverted roots lower

in absolute value (or in norm) than 1. So we can check, for each model, whether the stability

condition holds. However, we can observe that in some cases the roots are below (but very close

to) 1. This proximity to the limit value of stability can be a problem as it makes it very difficult to

find A(L)−1, and such values can be a sign that the model is not as stable as we would wish. Some

tests can allow us to solve this problem and determine a critical value under which we may expect

to have stationarity with a certain amount of confidence. One of the tests we can perform with

EViews6 is the Augmented Dickey-Fuller (ADF) test, which checks whether a unit root is present

or not in the model. The ADF test uses the following regression, with the difference operator

notation ∆Fare(t− p) := Fare(t− p)− Fare(t− p− 1):

∆Fare(t) = α0 × Fare(t− 1) + α1 ×∆Fare(t− 1) + α2 ×∆Fare(t− 2) + ...

+αp ×∆Fare(t− p) + ε(t)

. (18)

We can add to this equation a constant term, and a time trend, to check the stationarity of these

models too. Then what we want to test is whether α0 = 0. The other ∆Fare(t − i) terms behind

are used to avoid possible autocorrelation effects of the residuals in the regression. This regression

allow us to compute the t-statistic for the coefficient α0. Then we reject the hypothesis of the null

for this coefficient (and so we reject the nonstationarity hypothesis for the model) if this computed

t-statistic is greater than the critical value at a certain level of confidence.

If we find, thanks to the ADF test, that a model is still nonstationary, then there is a common

tool used in econometrics, which is to apply an initial differencing step to the model, and to

transform the ARMA model into an autoregressive integrated moving average (ARIMA) model.

In this ARIMA model we consequently do not estimate Fare(t) but ∆Fare(t − 1), which may
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“stationarize” the regression.15 We may need to difference the data several times (using ∆Fare(t−2)

or ∆Fare(t − 3) as the dependent variable for the regression) to get stationarity, but this method

can sometimes create additional problems if the differencing is taken “too far”, and so we will try

to stay at the first-order of differencing. We can also evaluate, with the Dickey-Fuller test, whether

the ARIMA models have unit roots or not, and thus we can check the stationarity of these models

too.

Once we obtain a stationary model, we also need to perform other tests on the regression output

to select the best one. We first need to check that all the coefficients of the regression are significant

(considering the Student’s t-statistics of all coefficients). Then we need to check that the residuals

have nice distributional properties (checking that they follow a White Noise distribution), and that

they are not autocorrelated (the Durbin-Watson statistic must be close to 2).16 The autocorrelation

of the residuals can also be checked using the correlograms and the Ljung-Box Q-statistic. Indeed,

we can observe on the correlograms the (partial) autocorrelation functions of the residuals, which

represent the dependence between a value of the fares at the time period t (Fare(t)), and the value

of these fares s periods before t (Fare(t− s)). If the value of this dependence is too high, it means

that there is a strong dependence between the fares at these two periods of time, and therefore our

model may have missed an important correlation in the regression. Thus we need to check whether

there is a spike in the correlograms, and if such a spike exists what is the probability of dependence

between the two fares (thanks to the Q-statistic).

Finally, how can we choose, among these good models, the best one? The Schwarz Information

Criterion (SIC) can be a solution to select the model which best fits the model. The SIC is

asymptotically consistent for ARMA(p,q) models, i.e. given a “large enough” sample and a set of

p and q that includes the true p,q, the SIC will select the correct lag-order. The criterion is given

15See http://www.duke.edu/~rnau/411arim.htm#les for details.
16See http://en.wikipedia.org/wiki/Durbin-Watson_statistic for further information on the Durbin-Watson

statistic.

http://www.duke.edu/~rnau/411arim.htm#les
http://en.wikipedia.org/wiki/Durbin-Watson_statistic
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by

SIC =
−2 ∗ lnL

T
+
k ∗ lnT

T
, (19)

where L is the maximized log-likelihood (estimated), T is the effective sample size, and k is the

number of estimated parameters. The best ARMA model is chosen by minimizing the SIC across

various ARMA(p,q) models, e.g. p, q = 0, 1, 2, 3, 4.

4.1.4 Application of ARMA models to 7 U.S. carriers

If we run a first series of regressions for the seven carriers, and keep the best model among these

regressions according the Schwarz Information Criterion, we get the following results:

• American: The best ARMA model for American Airlines seems to be an ARMA(3,0), that

is to say an AR(3). It would mean that the best ARMA regression for the airline would be:

Fare(t) = α0 + α1 × Fare(t− 1) + α2 × Fare(t− 2) + α3 × Fare(t− 3) + ε(t). (20)

The Student’s t-statistics for the coefficients of the regression are greater (in absolute value)

than 1.96, so they are individually significant. The coefficient R2 is equal to 0.918, which is

very high. The Durbin-Watson statistic is equal to 2.015, close to 2, meaning that the residuals

of the regression do not appear to be autocorrelated. The Jarque Bera statistic is quite low

(1.390), so we can assume that these residuals are approximately normally distributed.

However, the very high coefficient of determination R2 is a sign that there may be a problem

hidden behind these apparently good results. Looking at the inverse roots of the AR polynomial,

we see that one root is equal to 0.968, which is very close to 1. There may consequently be

a problem of nonstationarity for this model (the model is unstable). This hypothesis is

confirmed by the unit root test.

Thus, we can try to difference this equation to remove this nonstationarity: the ARMA model
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ARMA(3,0) with first-order differencing leads to an ARIMA(3,1,0):

Fare(t)− Fare(t− 1) = α0 + α1 × (Fare(t− 1)− Fare(t− 2))

+α2 × (Fare(t− 2)− Fare(t− 3)) + α3 × (Fare(t− 3)− Fare(t− 4)) + ε(t).

(21)

In order to get the best differenced models for our regressions, we consequently keep the

ARIMA model minimizing the Schwarz criterion.

For American Airlines, the result of this differencing appears to be the ARIMA(2,1,0) model

(i.e. ARMA(2,0) with first-order differencing). Nevertheless, we can observe that, even

though the inverted roots of the AR polynomials are here far from 1 in absolute value, the

other statistics are worsened by the differencing. The R2 coefficient is only equal to 0.11

(meaning that the model would explain roughly 11% of the data for fares), and, for one

coefficient, we do not reject at the 95% level of confidence the hypothesis that it is equal to

0. These results tend to say we may have missed an important characteristic in our model

for this airline.

We can first try to see if there is a change in the trend of the airline for its average fares after

September 11, 2001. We run the following regression:

Fare(t) = α0 + α1 ×D(t) + α2 × t+ α3 ×D(t)× t+ ε(t). (22)

From the results of this regression (Figure 22), we can see that the intercept dummy variable

appears to be very important and reveals a drop of about $100 in the average fares for the

airline during the September 11 attacks. We can also observe that there is a trend in the

fares (we reject the hypothesis of the null for the time trend variable), but this trend does

not seem to change after 2001, as the variation of this coefficient is very low ($0.37, with a

standard error of 0.75, hence we do not reject the null hypothesis for this coefficient at the
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95% level of confidence). So maybe we could include this dummy variable, with a trend, in a

Figure 22: American Airlines - regression on quarterly average fares: @trend stands for the
regression of the results over time, and dummy stands for the dummy variable previously presented.

ARMA model, and get the best ARMA model according to the Schwarz criterion. Here is the

result of this new regression: EViews6 indicates that the best model with these requirements

is an ARMA(0,2) (Figure 23), which can be written:

Fare(t) = α0 + α1 × t+ α2 ×D(t) + ε(t) + β1 × ε(t− 1) + β2 × ε(t− 2). (23)

Indeed we can see that this model is much better than the previous ones: all coefficients are

individually significant, and jointly significant (the F-statistic is very high). The inverted

MA roots are lower than 1 in absolute value, so the model is invertible, and also stationary

(confirmed by the unit root test). The Jarque-Bera statistic is equal to 6.68 (not present in

the Figure), so we reject the normality of the residuals. The Durbin-Watson statistic is equal

to 2.176 so there is no autocorrelation either in these residuals, and there are no significant

spikes in the autocorrelation function (ACF) or the partial autocorrelation function (PACF),
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so the residuals of this regression are similar to White Noise, and there seem to be no other

significant patterns left in the data. To sum up, we can notice that the quarterly average

Figure 23: American Airlines - final regression on quarterly average fares.

fares for American Airlines (for round trips) fell substantially after the September 11 terrorist

attacks, by about $90 on average. There is also a trend for these fares to decrease over time,

by about $1.64 per quarter.

Remark: these regressions were executed with a lower bound in the database. Indeed, we

decided to keep only the flights with more than 90 passengers. Nevertheless, we observe that

the results are the same if we consider the non-filtered data, and the model ARMA(0,2), with

a dummy variable and a trend in the fares, remains the best model for this carrier. We can

also observe that the Schwarz criterion is lower for the non-filtered data, so the use of this

bound may not be that relevant for American Airlines. Thus we choose to work with the

regression output of the non-filtered data (Figure 24).
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Figure 24: American Airlines - final regression on quarterly average fares (non filtered data).

• Continental: We apply the same methodology as for American Airlines: the same initial

process used for the quarterly average fares for Continental leads to the ARMA model

ARMA(1,0), as the best ARMA model we can get according to the Schwarz criterion (see

Figure 25). This model seems to be quite good, as the AR root is equal to 0.77, so the model

is stationary. All the coefficients are individually significant, and jointly significant according

to the F-statistic. Nevertheless, we can observe that the coefficient of determination is quite

low (R2 = 0.66), and more importantly, the Durbin-Watson statistic is also quite low (1.83),

which could mean that there is a positive autocorrelation in the residuals. This is confirmed

by the correlograms of the regression, in which we can see a spike of autocorrelation in the

PACF function for the fourth lag (see Figure 26). As a consequence, we may need to reconsider

our regression. This autocorrelation may be caused by a seasonality in the average fares of

Continental, but it could also be caused by a shock to the fares.
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Figure 25: Continental Airlines - regression on quarterly average fares.

Indeed, if we look at the figure of the fares (Figure 27), we observe 2 major breaks in the

fares, a sudden drop in the fares between the periods 5 and 8 (from the second quarter of

1994 to the first quarter of 1995), and a second one in period 35. This first drop is probably

related to the period of troubles faced by the carrier in 1994 and the fact that Continental

was only just emerging from bankruptcy that year. In the same period, we can observe a

major increase in the number of passengers carried by the airline (Figure 52), so the drop

in fares may be part of the strategy of the airline at the time. It could consequently be a

mistake to consider that this drop in fares is caused by an event independent from the airline

(as the terrorist attacks of 2001). The second drop happened during the terrorist attacks in

2001, so we could try to include a dummy variable in our regression as we did for American

Airlines.

In fact, it turns out that if we include the same dummy variable used for American Airlines,

we get a totally different model, a ARMA(0,2) with a dummy variable (see Figure 29). We
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Figure 26: Continental Airlines - residual correlograms of the regression in Figure 25.

can observe that the model is better according to the Schwarz Information Criterion (lower for

this second regression). The R2 is also higher than for the first regression. All the coefficients

are still significant, the model is stationary, and the Durbin-Watson statistic exceeds 2, which

could mean that there is negative autocorrelation in the residuals. Checking the correlograms

(Figure 30), we observe that there is no remaining autocorrelation in the residuals at the 95%

level of confidence. We can observe that including a trend in this model does not improve

the fit. The t-statistic for this trend (the trend coefficient being equal to 0.45 according to
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Figure 27: Quarterly average fares for Continental Airlines ($ against time).

Figure 28: Number of passengers carried by Continental Airlines per quarter.
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Figure 29: Continental Airlines - regression on quarterly average fares.

EViews6) is equal to 0.66, so we do not reject the hypothesis that this coefficient is null at

the 95% level of confidence.

Moreover, if we use the non-filtered data (without the lower bound for the flights with more

than 90 passengers), we observe that the best ARMA model is also the ARMA(0,2) model

with a dummy variable. The coefficient of determination R2 is equal to 0.73, all the coefficients

are individually significant, and the model is stationary. The Durbin-Watson statistic is also

higher than 2. Moreover the SIC criterion is lower for this regression than for the regression

with the filtered data, and so we can infer that this model better fits the data.

In order to improve our model, we could then try to catch possible seasonality in the fares as

seen in the first regression (with autocorrelation at the fourth lag) for the model ARMA(1,0).

If we include an autoregressive term of order 4 in our regression, which would “capture” the

autocorrelation of the fourth lag, we can see that this solution does not improve the model.
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Figure 30: Continental Airlines - residual correlograms of the regression in Figure 29.

We get the model ARMA(0,2) with a AR(4) term and our dummy variable (Figure 31), which

can be written:

Fare(t) = α0 + α1 ×Dummy(t) + α2 × Fare(t− 4) + ε+ β1 × ε(t− 1) + β2 × ε(t− 2). (24)

There is no problem of autocorrelation for this model. The coefficient for the fourth lag is

significant at the 97% level of confidence. All the other coefficients also remain individually

significant. The coefficient of determination R2 for this regression is equal to 0.71. It was
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Figure 31: Continental Airlines - regression on quarterly average fares.

about 0.73 for the previous regression, so we do not lose much significance with this new

model, but as for the filtered data, the SIC criterion is higher with this additional term than

for the model in Figure 29, so we decide to keep the previous model (ARMA(0,2) with a

dummy variable).

• Delta: For Delta Airlines, the same methodology leads to an ARMA(3,2) model with a

trend variable for the filtered data (see Figure 32), and the model ARMA(4,3) for the whole

database. Nevertheless, these models are very complex, and show possible problems of non-

stationarity in the AR roots (very close to 1), even if all the coefficients are significant. If

we include a dummy variable in the regression, to catch possible external effects from the

September 11, 2001, we observe that the model looks simpler, as we obtain a ARMA(0,3)

with a dummy variable. All the coefficients remain significant, the R2 statistic is higher than
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Figure 32: Delta Airlines - regression on quarterly average fares.

for the first regression, but the SIC criterion has been increased. Looking at the fares, we

can observe that including a dummy variable in the regression at period 35 seems to be a

good idea as we can observe a drop in the fares at this period (Figure 33). However, could

this drop reflect a more global decreasing trend in the fares of the airline? In fact we can

observe that, if we include a trend in our model, we get quite a good model with a low SIC

criterion, for the filtered data. For the whole database, this variable seems to add complexity

to the model rather than improving it (we get a ARMA(4,1) model, with autocorrelation

problems). For the filtered data, we get a ARMA(1,1) with the trend variable (see Figure

34). 34). This model is stationary, and all the coefficients seem to be significant in the

regression (looking at the Student’s t-statistics). The trend coefficient is equal to −1.83. The

coefficient of determination for this regression is equal to 0.91, and the SIC is equal to 8.83,
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Figure 33: Quarterly average fares for Delta Airlines ($ against time).

which is a little higher than for the first models for the airline, but much lower than with a

dummy variable in the regression.

• Northwest: Looking at the graph of the quarterly fares for Northwest Airlines (Figure

35), a clear trend appears as the fares seem to continuously decrease over the 15 last years.

This trend may also explain the recent merger between Northwest and Delta (completed in

2008), as Northwest airlines has tried to reduce its costs and expenses since 2001. Indeed, we

can observe that the establishment of a statistical model for the fares of the airline is rather

complicated without a coefficient of trend, for the filtered data (we get the model ARMA(3,1)

or non-filtered data (we get the model ARMA(2,3)). Moreover these models show problems

of stationarity and autocorrelation. When we include a trend in the model, we get a better

model for these fares. The non-filtered data and the filtered data give us an ARMA(4,3)

model. This model has a coefficient of determination R2 equal to 0.95 (0.96 without the
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Figure 34: Delta Airlines - regression on quarterly average fares.

filter). There is no stationarity problem according to the unit root test, and the residuals are

not correlated. Looking at the Schwarz criterion, we can observe that this statistic is lower

for the non-filtered data, so we decide to keep this model (Figure 36). If we include a dummy

variable in the regression, we can observe that the autocorrelation problems remain in the

regression (we get the model ARMA(0,2)).

• United: For United Airlines (real fares in Figure 37), we find with the same methods used

before that the model ARMA(0,2) with a dummy variable (to take into account a drop of the

fares at the period 35) seems to be the best for this carrier (Figure 38) for the filtered data.

The model is stable, the coefficients are all individually significant, and the correlograms

of the regression do not show any spikes in the autocorrelation coefficients, so this model

seems to be quite a good one. The coefficient of determination of the regression is equal
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Figure 35: Quarterly average fares for Northwest Airlines ($ against time).

to 0.85, which is quite high. The dummy variable is significant in the model ARMA(0,2),

and reveals a drop of about $78 in the fares at the time of the U.S. terrorist attacks. For

the non-filtered data, EViews6 gives the model ARMA(1,2) with our dummy variable as the

best model. This model is also stationary, and seems to be a good one. Nevertheless, the

Schwarz criterion is higher for this regression than for the filtered data. Thus we can keep

the filtered model for our analysis. If we do not include a dummy variable in the regression,

the best model (according to the Schwarz Information Criterion) appears to be ARMA(3,2)

for the filtered data, and ARMA(3,0) without the filter. These models appears to be good

models too, but the use of a dummy variable decreases the SIC criterion. The use of a trend

also could improve the model, but it leads to problems of autocorrelation with a quite low

Durbin-Watson statistic.

• US Airways: For US Airways (real fares in figure 39), the same methods lead to the model

ARMA(0,2) with a trend for the filtered data. This model seems to be stable, with nice t-
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Figure 36: Northwest Airlines - regression on quarterly average fares.

statistics for all coefficients, and there are no spikes in the correlogram graphs. The coefficient

of determination here is equal to 0.88 (see Figure 40). Without the use of this trend variable,

the best ARMA model we get is ARMA(3,2), which is also a good, but more complicated

model. Moreover the use of a dummy variable is less relevant here than for United Airlines

(according to the Schwarz Criterion). The use of the whole database leads to the model

ARMA(3,3), and is not improved by the use of a dummy variable or a trend.

• Southwest: For the low-cost airline (real fares in Figure 41), the best ARMA model given

by EViews6 according to the Schwarz criterion is an ARMA(0,3) with dummy variable and

the trend variable for the filtered and non-filtered data. As for United and US Airways, the
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Figure 37: Quarterly average fares for United Airlines ($ against time).

Schwarz criterion is higher for the non-filtered data, thus we will keep the regression output

for the filtered data (Figure 142). The coefficient of determination is equal to 0.84, the model

is stable, all the coefficients matter in the regression, and there is no spike in the correlogram

graphs (despite a quite low Durbin-Watson statistic, equal to 1.63).

The use of simple ARMA models leads here to the AR(1) model as the best one for the filtered

or non-filtered data. These models are transformed into ARMA(0,1) if we include a dummy

variable or a trend coefficient in the regressions, but these models have a lower SIC criterion

than the ARMA(0,3) model with a dummy variable and a trend. We can notice that the MA

roots for this model are very close to 1, which could lead to problems of non-invertibility for

the fares of Southwest.
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Figure 38: United Airlines - regression on quarterly average fares.

Figure 39: Quarterly average fares for US Airways ($ against time).
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Figure 40: US Airways - regression on quarterly average fares.

Figure 41: Quarterly average fares for Southwest Airlines ($ against time).
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Figure 42: Southwest Airlines - regression on quarterly average fares.
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4.1.5 Summing up

Table 2 below summarizes the “best” models we get from our statistical regressions in EViews6.

We can observe that there is no need for any carrier to use the differencing process to get the best

model. The ARMA(0,2) model seems to be adopted by 4 carriers: American Airlines, Continental

Airlines, United Airlines and US Airways. Among these carriers, the average fares of American

Airlines seem to decrease since 1993, by about $16.5 every 10 years, which is not so much for air

transport fares. In addition to this trend, and as for the 3 other carriers, the fares of American

Airlines seem to have been influenced by the terrorist attacks of September 11, 2001. Indeed,

EViews6 shows a drop in these fares, at the time of these attacks, of about $88 for American,

$52 for Continental, $78 for United and $65 for US Airlines. We can assume that for the other

carriers, they may have been less affected by these attacks than American Airlines, or may have

had a different strategy than its rival.

We can explain the use of ARMA(0,q) models by the use of a trend variable in many models,

which reduces the importance of an autoregressive component in these models. These trends for the

fares to decrease or increase over a period of 15 years may in part be explained by macroeconomic

data. We will see that below. Indeed, we can observe that there is a trend for the fares of

Northwest to decrease (by about $29 every ten years), which may explain the situation of crisis

recently undergone by the carrier before it was merged with Delta Airlines. On the contrary,

here we can notice the obvious difference between the legacy carriers and Southwest, which is the

only airline to progressively increase its fare (by about $14 every ten years), even if the low-cost

airline also suffered a sudden drop of its fares in 2001 (but of only $16, in comparison with $88 for

American Airlines, for example).

All these models are stable, with no problems of autocorrelation in the residuals, high significance

of each coefficient of the regressions and also high significance of all coefficients (given with the

F-statistic of the regressions which follows a t-statistic). The Jarque-Bera statistic is also quite
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Carriers AA CO DL NW UA US WN

use of filter on data no no yes no yes yes yes
AR degree 0 0 1 4 0 0 0
MA degree 2 2 1 3 2 2 3
differencing no no no no no no no

ARIMA model (0,0,2) (0,0,2) (1,0,1) (4,0,3) (0,0,2) (0,0,2) (0,0,3)
trend variable yes no yes yes no yes yes

value of trend coefficient -1.65 -1.83 -2.87 -2.06 1.32
dummy variable at period 35 yes yes no no yes no yes
value of dummy coefficient -88 -52 -78 -16

R2 0.93 0.73 0.91 0.96 0.85 0.88 0.84
Schwarz criterion 9.20 9.22 8.83 8.21 9.12 8.90 6.84

Durbin-Watson statistic 2.22 2.20 1.98 1.89 1.98 2.15 1.63
Jarque-Bera statistic 4.99 2.13 0.71 2.51 4.49 0.20 0.40

F-statistic 214 56 197 161 110 155 40

Table 2: The carriers are reported with their IATA airline codes.

low for all the models, meaning that the residuals of all the models approximately follow a normal

distribution.
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4.1.6 Forecasting

Once we get these 7 ARIMA models for our carriers, we may wonder if we are able to infer the

future average fares for an airline? A first idea in order to ensure the reliability of our model could

be to “forecast the past” (in-sample). Indeed, we could try to apply our “best” model for each

airline at a past period of time (for example from the first quarter in 2007), as if it was our last

period of data, and compare this model for 2 years (until 2009) to the data we have for these 2 years.

We get the following graphs (see Figure 43): we can observe 4 curves on these graphs, between

quarter 58 and quarter 65: the real data, plotted for all the periods of observation (65 quarters),

the best model for these fares (dashed curve), and around this forecast, the possible distribution of

these fares at the 95% level of confidence around the value of the modelled fares. This distribution

is computed as follows: at a given period t, for our model, and at a given level of confidence α, we

have

F̂are(t)− (t− statα(n) ∗ ε(t)) ≤ Fare(t) ≤ F̂are(t) + (t− statα(n) ∗ ε(t)) (25)

, where t− statα(n) is the t-statistic at the α level of confidence for 2-tailed testing. Here, since

n = 65, t− statα(n) ≈ 2. F̂are(t) is the estimated fare at time t according to the best model for

our regression.

We can observe that the trend for all the fares is quite well represented by our forecast. The

real data are caught within the bounds of the standard errors for this model. However, in most

cases, the model is not able to catch the short spikes in the real data and the forecast softens quite

quickly.

We can also use this method to forecast the fares after the 65 periods of observations (out-of-

sample). If we use the best model for each carrier and apply this model during 8 periods after the

period 65, we get the following graphs (Figure 44). As we saw in 43, the forecast quickly softens

after 3 or 4 quarters of modelled fares. This is a consequence of the stationarity of our models.
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We can observe that the model foresees decreasing trends of the fares for American Airlines, Delta

Air Lines, Northwest Airlines and US Airways. For Continental Airlines and United Airlines, the

fares seems to converge to a limit (about $420 for both carriers). And as we saw in the regressions

for Southwest airlines, the model for the low-cost airline predicts an important increasing trend for

the average fares.
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Figure 43: In-sample dynamic forecasts of average fares from quarter 58 to quarter 65. Forecast
1 refers to American, forecast 2 refers to Continental, 3 refers to Delta, 4 refers to Northwest, 5
refers to United, 6 refers to US Airways and 7 refers to Southwest.
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Figure 44: Out-of-sample dynamic forecasts of average fares from quarter 65 to quarter 73. Forecast
1 refers to American, forecast 2 refers to Continental, 3 refers to Delta, 4 refers to Northwest, 5
refers to United, 6 refers to US Airways and 7 refers to Southwest.
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4.2 Passengers

We can now try to find models for the number of passengers (for domestic round trips in the U.S.)

of these same 7 airlines. We first look at the graphs of this statistic (Figure 45). We notice that

Figure 45: Number of passengers carried per quarter (on round trips) from 1993 (quarter 1) to
2009 (quarter 65).

the number of passengers for these airlines seems to include a quarterly component of seasonality.

Indeed, we saw in the first part of the report that the number of passengers flying during the second

quarter of the year is significantly higher than during the first or the fourth quarter of the year.

A good model will need to take that into account. In order to catch this seasonality of fares for

several airlines, we can add a seasonal autoregressive component in the regressions. Consider for

example an ARMA(2,2) model :

Fare(t) = α0 + α1 × Fare(t− 1) + α2 × Fare(t− 2) + ε(t) + β1 × ε(t− 1) + β2 × ε(t− 2). (26)

This model can also be written, using the lag operator L,

A(L)× Fare(t) = α0 +B(L)× ε(t). (27)
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Then, the insertion of a seasonal autoregressive lag of order 4 (SAR(4)) can be included:

A(L) ∗ (1− γ0 × L4)× Fare(t) = α0 +B(L)× ε(t). (28)

The parameter γ0 is associated with the seasonal component of the process. This method can also

be used for the MA part of the model, with the use of a seasonal moving average component of order

4 (SMA(4)) in the regression, using the product of the polynomial B(L) with the lag polynomial

1 + δ0×L4. The use of a lag of order 4 for the seasonal component of the models seems to be here

the most natural solution for our models, as the period of seasonality for the number of passengers

appear to be one year (4 quarters).

If we run a first series of simple ARMA regressions, allowing our program in EViews6 to use

a seasonal AR component of order 4 if it can reduce the Schwarz Information Criterion and, as a

consequence, maybe improve our model, we get the following results:

• American: For American Airlines, even if the number of passengers appears to be seasonal

(Figure 46), EViews6 chooses an ARMA(2,1) model without a seasonal component as the

best model it can find (Figure 47). Nevertheless, we can observe from the regression

output that this model is non-stationary and non-invertible, with an AR root higher than

1 in absolute value and a MA root equal to 1 in absolute value. If we include our seasonal

component SAR(4) (Figure 48), even if the Schwarz Information Criterion is higher than for

the first regression, this new coefficient AR(4) leads to a stationary and invertible model.

Nevertheless, not all the coefficients in the regression appear to be individually significant.

The Durbin Watson statistic is also quite low (1.92), and we can observe from the correlograms

that there is some autocorrelation between the residuals of the regression. The R2 statistic

is also quite low (0.59), so we can infer that this model can be improved. We saw that it is

also possible to use a seasonal MA component (also of order 4) in our models. If we include
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Figure 46: Quarterly number of passengers carried by American Airlines on round trips.

a SMA(4) coefficient in the regression, we obtain a non-stationary and maybe non-invertible

model (Figure 49). If we impose the use of the seasonal component AR(4), and run the

program in order to keep the model with the lowest SIC, we obtain an ARMA(0,2) model

(with the seasonal component SAR(4)) (Figure 50). We can observe that all the coefficients

are individually and jointly significant, and that the model is invertible and stationary. The

Durbin Watson statistic is still quite low, but we can check on the correlograms that there is

no autocorrelation in the residuals at the 95% level of confidence. We obtain an R2 statistic

equal to 0.62.

Remark: As for the regressions on the quarterly average fares of the airline, these regressions

on the number of passengers use the filtered data of our database. However, if we use the non-

filtered data, the result appears to be an ARMA(0,2) with the seasonal component SAR(4)

too (Figure 51). The R2 statistic and the SIC are nonetheless not as good as for the regression

with the filtered data.
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Figure 47: American Airlines - regression on the quarterly number of passengers (filtered data).

• Continental: Using the same methodology, we also find out that if we do not impose the

use of the coefficient SAR(4) in our regression, the model we get (an ARMA(3,4) with our

dummy variable and without the coefficient SAR(4)) is non-stationary and non-invertible (for

the filtered and non-filtered data). However, we notice that, even if we include an SAR(4)

variable or SMA(4) variable, we still have problems of stationarity for both databases.

Looking at the graph of the number of passengers for the carrier (Figure 52), we can observe

that there seems to be a gap in the number of passenger in the period 35 (presumably related

to the September 11 attacks). Thus if we try to impose the use of our dummy variable in

the model for Continental Airlines, the model we get with the filtered data appears to be

very complex (an ARMA(2,4) with a dummy variable and a seasonal component SAR(4)).

However, if we use the complete database, we get an ARMA(0,2) model with our dummy
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Figure 48: American Airlines - regression on the quarterly number of passengers (filtered data).

variable and the seasonal component SAR(4) (see Figure 53), which appears to be quite a

good model. This model is stationary, so we can infer that the use of this dummy variable

is a good solution for Continental Airlines. Indeed, we can observe that all the coefficients

are significant, with a coefficient for the dummy variable equal to −4,8710, which means that

according to this model the number of passengers dropped by about 50,000 in the period of

the U.S. terrorist attacks. The Durbin Watson statistic is quite low, but there is no apparent

spike in the correlograms of the regressions, so the residuals appear not to be autocorrelated.

The R2 statistic is very high (0.81) compared to the statistic we get with the model for

American Airlines.

• Delta Air Lines: For Delta Air Lines, the use of seasonal components in the regression
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Figure 49: American Airlines - regression on the quarterly number of passengers (filtered data).

appears to make the model unstable, and EViews6 does not manage to find a stationary

ARMA model with a seasonal component. If we look at the graph of the number of passengers

for the airline (Figure 54), we can observe that, as for Continental Airlines, there was an

important drop in the number of passengers carried by Delta in period 35. Thus, as we could

expect according to this graph, if we do not use the seasonal coefficients in our regression,

EViews6 gives the model AR(3) with a dummy variable as the best model according to the

Schwarz Information Criterion, for the filtered data (Figure 55). For the non-filtered data,

EViews6 gives a ARMA(2,1) with a dummy variable and a trend variable (Figure 56).

Both models are stationary, but the model for non-filtered data is not invertible, so we may

keep the regression output for the filtered data. All coefficients are individually significant,
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Figure 50: American Airlines - regression on the quarterly number of passengers (filtered data).

with a high coefficient of determination for both regressions. The Durbin-Watson statistic is

quite low as for the previous airlines, but there are no spikes to indicate possible problems of

autocorrelation in the correlograms. For the model obtained with the filtered data, we can

notice that the drop in the number of passengers after the period of the U.S. terrorist attacks

is about 135,000 passengers, which is roughly much 30% of the total number of passengers

carried by Delta in period 34!

• Northwest Airlines: It also appears difficult to avoid the problems of stationarity for the

number of passengers carried quarterly by Northwest Airlines (Figure 57). The best model

we can obtain with all the possible parameters in our program is an ARMA(2,1) with a

dummy variable and no correction for possible seasonality of the fares. However, this model

appears to be non-stationary. If we do not filter the data, EViews6 proposes the same model
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Figure 51: American Airlines - regression on the quarterly number of passengers (non-filtered data).

as the best one (according to the SIC), but with a seasonal coefficient SAR(4) (Figure 58).

This model is stationary, but non-invertible. All coefficients are individually significant, the

R2 statistic is quite high (0.80), but there are still some problems of autocorrelation in the

residuals (we can observe a spike in the correlograms at the 6th lag).

• United Airlines: For United Airlines (quarterly number of passengers plotted in Figure

59), EViews6 gives the ARMA(0,2) with a dummy variable, a trend variable and the seasonal

variable SAR(4) (here equal to the variable AR(4) as there is no other AR lag in the regression)

(Figure 60). For the non-filtered data, EViews6 adds an AR lag of order 1 to the regression

to find the best model for the number of passengers of the airline (Figure 61). Both models

seem to be quite good: all coefficients are individually (and jointly) significant, stationary,

invertible, with no problems of autocorrelation. The R2 statistic is quite high (0.93 and 0.94),



76

Figure 52: Number of passengers carried by Continental Airlines per quarter.

the Schwarz criterion is a little lower for the regression on the filtered data (the different

number of explanatory variables in the regression can explain that the SIC is higher for the

regression on the whole database). These regressions show an important trend for the number

of passengers of the airline to decrease over time, by more or less 4000 passengers per quarter.

United Airlines also suffered an important drop in its number of passengers in 2001, of about

59,000 passengers for the filtered database and 70,000 passengers without the lower bound on

the data (lower bound for all flights with less than 90 passengers, which explains the difference

between the coefficients of the dummy variables).

• US Airways: For US Airways (quarterly number of passengers plotted in Figure 62), the

best model we get is an ARMA(2,1) with a dummy variable, for the filtered data (Figure 63).

We can observe that this regression also has problems with stationarity. In order to make

our model stationary, we include in the model the seasonal coefficient SAR(4). According

to the SIC, the best model we can then get is an ARMA(1,2) with a dummy variable, the
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Figure 53: Continental Airlines - regression on the quarterly number of passengers (non-filtered
data).

seasonal coefficient SAR(4) and a seasonal moving average component SMA(4) (Figure 64).

For the non-filtered data, the best model with a seasonal component is the same model with

a trend variable (this coefficient shows a trend of about −1922 passengers carried by the

airline per quarter). This model is still non-invertible, but it is stationary. All the coefficients

are individually significant, and the R2 statistic is equal to 0.94. The SIC criterion is again

higher for the more complicated model (regression with the trend variable), so we will keep

the results for the filtered data.

• Southwest: For Southwest, there are some problems with stationarity for many models, so it

is very difficult to compare an important number of regressions with our program. Looking at

the graph of the number of passengers for the low-cost airline, we can observe that there is a
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Figure 54: Number of passengers carried by Delta Air Lines per quarter.

Figure 55: Delta Air Lines - regression on the quarterly number of passengers (filtered data).
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Figure 56: Delta Air Lines - regression on the quarterly number of passengers (non-filtered data).

significant trend for this statistic to increase over time (see Figure 65). Thus we can infer that

we need to consider a model which takes into account this trend. Then we can first try to run

a basic regression with a constant and a trend to observe the correlograms of the regression.

We get the following regression output (Figure 66) and the associated correlograms (Figure

66). We can observe that the use of the trend is very important in this model, as we do not

reject the coefficient at the 99% level of confidence. This trend is equal to +6533 passengers

per quarter for the airline: this is clearly a sign of the strength of the low-cost airline in the

U.S. domestic market, where almost all its “rivals” have faced a roughly stable or decreasing

number of passengers over the past 15 years. The correlograms of the regression show a high

autocorrelation with the fourth lag of the regression. We can assume that this is perhaps a
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Figure 57: Number of passengers carried by Northwest Airlines per quarter.

sign of seasonality for the fares, so we can try to include a coefficient SAR(4) in the regression

(Figure 68). We can see in the regression output that this model is better than the previous

one (a higher R2 statistic and a lower SIC). This model remains stationary, and is invertible.

Nevertheless, there is an important spike which appeared in the correlograms (for the first

lag of the residuals), so there are problems of autocorrelation in this regression, which does

not include any ARMA term. In fact, we can observe that if we try to run our program with

these coefficients of trend and seasonality, EViews6 is not able to find a better model than

this one. The same problems also remain with the non-filtered data.
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Figure 58: Northwest Airlines - regression on the quarterly number of passengers (non-filtered
data).
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Figure 59: Number of passengers carried by United Airlines per quarter.

Figure 60: United Airlines - regression on the quarterly number of passengers (filtered data).
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Figure 61: United Airlines - regression on the quarterly number of passengers (non-filtered data).
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Figure 62: Number of passengers carried by US Airways per quarter.

Figure 63: US Airways - regression on the quarterly number of passengers (filtered data).
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Figure 64: US Airways - regression on the quarterly number of passengers (non-filtered data).
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Figure 65: Number of passengers carried by Southwest Airlines per quarter.

Figure 66: Southwest Airlines - regression on the quarterly number of passengers (filtered data).
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Figure 67: Southwest Airlines - correlograms of the residuals for the regression in Figure 66.

Figure 68: Southwest Airlines - regression on the quarterly number of passengers (filtered data).
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4.2.1 Summing up

Table 3 below summarizes the “best” models we get from our statistical regressions in Eviews6.

We can again observe that there is no need for any carrier to use the differencing process to get

the best model. The ARMA(0,2) model seems again to be adopted by 4 carriers, as it was the

most adopted model for the regressions on fares, and for the same models: American Airlines,

Continental Airlines, United Airlines. Here we found that the regressions for US Airways also need

an autoregressive component to best fit the data. For Delta Air Lines and Northwest Airlines,

we found an important autoregressive part in the model for the number of passengers. For Delta,

this autoregressive component can also be related to the absence of seasonality coefficient in its

regression, which leads to a stronger dependence from the closest past lags rather than from the

usual quarterly number of passengers in a given quarter of the year. This may perhaps be explained

by a higher volatility in the number of passengers carried by the airline.

We can see that 5 of the carriers underwent an important drop of their number of passengers

after September 11, 2001, especially for Delta Air Lines and US Airways. The line “drop of number

of passengers after period 34” (equal to the ratio between the dummy variable and the number of

passengers carried during the period 34) shows the percentage decrease of the fares after period 34

which we can attribute to the consequences of the September 11, 2001 attacks. We can also observe

that there seems to be a trend for the number of passengers flying with United Airlines to decrease

by about 4370 passengers per quarter. On the contrary, as we saw for the fares, the low-cost carrier

Southwest continuously increases its number of passengers by about 5460 per quarter, whereas the

other airlines are stable or try to keep their passengers!

All these remarks should be qualified by the relative quality of these regressions. Even if these

models are stationary and invertible, the low values of the Durbin-Watson show that it is difficult

to find good models with no autocorrelation. We can partly explain this by the fact that, contrary

to the fares, the number of passengers carried by an airline is more subject to volatility and depends
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Carriers AA CO DL NW UA US WN

use of filter on data yes no yes no yes yes yes
AR degree 0 0 3 2 0 1 0
MA degree 2 2 0 1 2 2 0
differencing no no no no no no no

ARIMA model (0,0,2) (0,0,2) (3,0,0) (2,0,1) (0,0,2) (1,0,2) no
seasonal AR variable yes yes no yes yes yes yes
seasonal MA variable no no no no no yes no

trend variable no no no no yes no yes
value of trend coefficient no no no no -4370 no 5460

dummy variable at period 35 no yes yes yes yes yes no
value of dummy coefficient no -48700 -134600 -43100 -58500 -126800 no

passengers at period 34 233841 450327 246746 355741 295224
drop of number of passengers 21% 30% 17% 16% 43%

after period 34

R2 0.62 0.81 0.93 0.80 0.93 0.92 0.76
Schwarz criterion 23.2 22.1 23.2 22.5 22.8 22.9 24.5

Durbin-Watson statistic 1.77 1.41 1.79 1.80 2.04 1.89 0.79
Jarque-Bera statistic 0.77 2.07 1.54 9.83 0.10 0.31 3.10

F-statistic 31 59 183 44 140 104 58

Table 3: The carriers are reported with their IATA airline codes.

more on other economic, political and social parameters than the fares of a carrier.
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4.2.2 Forecasting

With these 7 models, as for the fares, we could try to forecast the number of passengers for 1 on 2

years in the future. To ensure the reliability of our model, we can try to “forecast the past”, as we

did for the fares. We get the following graphs (see Figure 69), the real data plotted for all periods

of observation (65 quarters), the best model for these data (dashed curve), and around this model,

the possible distribution of the number of passengers at the 95% level of probability around the

modelled value. We can see that, as expected, these models are not as good as the regressions for

the fares of the airline, and hardly stabilize (especially for American Airlines). We also emphasize

the small number of observations used for these regressions, which makes it very difficult to fit data

correctly. However, we can again try to use this method to forecast the number of passengers after

the 65 periods of observations. If we use the best model for each carrier and apply this model over

8 periods after period 65, we get the following graphs (Figure 70). We can also notice that the

recent economic crisis also undergone by the U.S. airlines has led to a recent drop in the number

of passengers for several airlines. As a consequence, our stationary models forecast for American

Airlines, Continental Airlines, Delta and Northwest, an increase in passenger numbers for the next

2 years. On the contrary, United Airlines is here expected to continuously lose some passengers,

following a global decreasing trend for the traffic of the carrier. For US Airways, this number of

passengers may remain constant for the next 2 years, at around 150,000 passengers per quarter.
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Figure 69: In-sample dynamic forecasts of the number of passengers carried from quarter 58 to
quarter 65. Forecast 1 refers to American, forecast 2 refers to Continental, 3 refers to Delta, 4
refers to Northwest, 5 refers to United, 6 refers to US Airways and 7 refers to Southwest.
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Figure 70: Out-of-sample dynamic forecasts of the number of passengers carried from quarter 65
to quarter 73. Forecast 1 refers to American, forecast 2 refers to Continental, 3 refers to Delta, 4
refers to Northwest, 5 refers to United, 6 refers to US Airways and 7 refers to Southwest.
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5 Insertion of economic data

In order to improve the reliability of our models, we could then try to include some economic data

in these regressions, especially for the regressions on fares.

5.1 Economic Data

5.1.1 Form 41 Financial Data

To implement real world economic data on the airlines into our models we use the so-called “Form

41 Financial Data” collected by the Bureau of Transport Statistics.17 This dataset covers various

financial and other core data of U.S. airlines with an annual operating revenue of more than $20

million. We use the “Schedule B-1” table out of which we only take the accrued salaries in every

quarter, the “Schedule P-10” table containing information on the number of people employed by

each airline in every year, the “Schedule P-12” table which gives quarterly information on different

financial facts and the “Schedule P-12A” with data on each airline’s monthly fuel consumption

and expenses. In order to be able to properly include all financial information into the models,

adjustments for the inflation effects have to be made. This is carried out as described in Section

3.1.3. The treatment of the raw data is carried out with Excel and the help of programs written in

VBA which can be found in Appendix A.3.

5.1.2 B-1 Table Data

The only variable out of this table that we want to use is ACCR SALARIES. Unfortunately for this

variable there is no information available after 2006, and for Northwest even the 2006Q4 datapoint

is missing. Delta Airline’s graph, as seen in Figure 71, shows between 1997 and 2002 a very high

level of salary expenses which seems odd and for which we cannot find an explanation. It can be

17The data is available on the Bureau’s website: http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=

135&Link=0.

http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=135&Link=0
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=135&Link=0
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assumed though that such behaviour will not help when trying to model the development of Delta’s

fares using this variable.

Figure 71: Accrued Salaries of the 7 airlines between 1993 and 2006, i.e. quarter no. 1 is 1993Q1
and quarter no. 55 is 2006Q4.

5.1.3 P-10 Table Data

Out of all the variables available in the table, we decided to download and examine the following:

• GENERAL MANAGE

• PILOTS COPILOTS

• OTHER FLT PERS

• PASSENGER HANDLING

• TRANSPORT RELATED
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• TOTAL

The employee data was available for every year until 2008, so in order to get quarterly data

that could be used in the model we use a simple linear regression between the figures for two

years. Out of all the variables several turn out not to be usable. For GENERAL MANAGE,

i.e. the number of general management staff, the definition between the carriers seemed to vary

considerably, so for example in 2005 Southwest Airlines reported 1809 general managers whereas US

Airways reported only 12. Three other variables, OTHER FLT PERS, PASSENGER HANDLING

and TRANSPORT RELATED were largely incomplete and thus we remove them as well. This

leaves us with the following variables:

• PILOTS COPILOTS: Figure 72 shows the number of pilots and co-pilots employed by the

companies. As Southwest did not report any employee numbers in 1998 we approximated the

missing figure through a simple linear regression using the figures for 1997 and 1999.

• TOTAL: This variable shows the total number of employees for each company. The data for

Southwest in 1998 is missing here as well so we apply the same method as for the pilots to

approximate a likely amount. Figures 73 and 74 show the variable’s graph before and after

the conversion into quarterly data.
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Figure 72: Number of pilots and co-pilots in the original yearly format.

Figure 73: Total number of employees in the original yearly format.
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Figure 74: Total number of employees after the expansion to quarterly data through linear
regression.
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5.1.4 P-12 Table Data

Out of all the variables available in the table, we decided to download and examine the following:

• AIRCFT SERVICES

• DEPREC AMORT

• FLYING OPS

• GENERAL ADMIN

• GENERAL SERVICES

• INCOME PRE TAX

• INCOME TAX

• INTEREST EXP OTH

• INTEREST LONG DEBT

• MAINTENANCE

• NET INCOME

• NON OP INCOME

• OP EXPENSES

• OP PROFIT LOSS

• OP REVENUES

• PAX SERVICE
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• PROMOTION SALES

• PUB SVC REVENUE

• RES CANCEL FEES

• TRANS REV PAX

• TOTAL MISC REV

• TRANS EXPENSES

• TRANS REVENUE

• UNIQUE CARRIER NAME

All variables were reported separated into operational regions. Here, only the figures of the

airline as a whole are interesting, and so we combine all regions to form a single datapoint per

airline and quarter for every variable.

Several of the variables can at first glance be omitted as their content is obviously largely

incomplete. This leaves us with the following variables:

• AIRCFT SERVICES: This variable contains the airlines’ expenses for aircraft and traffic

servicing. The graphs in Figure 75 show a steady increase for most of the airlines most of the

time. Only US Airways reports a longer period of decreasing aircraft servicing costs.

• DEPREC AMORT: Depreciation and amortization of the airlines’ assets. Figure 76 shows

several peaks for various airline during the sample period, the reason for which remains

unclear. These peaks could result from high one-time payments (or data errors) but a

validation of these peaks certainly requires further research.
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Figure 75: Aircraft and traffic servicing expenses.

• FLYING OPS: The airlines expenses for their flight operations are contained here. The

graph in Figure 77 shows an increasing increase of operating costs which drop sharply just

before our observation period ends. This is probably due to the price for fuel which had

a similar development in the last years and expenses for aircraft fuel are one of the major

drivers of operations costs.

• GENERAL ADMIN: GENERAL ADMIN displays general and administrative expenses.

Figure 78 shows several peaks that give the impression of being rather random and further

analysis would have to be carried out to determine whether the peaks are real or errors.

Especially the negative values found for US Airways and Continental in quarters 35 and 42

and the zero value for US in quarter 50 must raise doubts concerning the credibility of this

statistic as expenses should normally not be negative. It is therefore also unlikely that this

variable will be able to explain the development of the fares in our models.
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Figure 76: Expenses for depreciation and amortization.

• GENERAL SERVICES: This variable will not undergo further examination since too

much data is missing to form a dataset that could be used in the models.

• INCOME PRE TAX: The income before payment of income tax is depicted in Figure 79

and the corresponding variable. As with the administrative expenses variable, this variable

also shows some very strong peaks. The most notable one is the low and high peak of the

United Airlines data in 2005Q4 and 2006Q1 respectively. In February 2006, United Airlines

left bankruptcy protection and the peaks are likely have something to do with that event.

Two other peaks that are worth noting are those of Northwest and Delta in quarter 61 which

almost coincides with the announcement of the merger of the two companies. All other peaks

would require further research as we were not able to find any obvious explanations.

• INCOME TAX: The INCOME TAX variable shows the income tax paid by the airline in

the respective period. The large number of peaks in the graphs in Figure 80 and the very
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Figure 77: Flying operations expenses.

random appearance of the graphs indicate that the development of this variable will most

likely not have a great explanatory effect on the fare models. Further research would be

required though to identify whether the peaks are real or errors. The large number of gaps

in the database for this variable will not help either.

• INTEREST EXP OTH: This variable (Figure 81) shows all interest expenses that are

not interest expenses for long term debts. In general, if a company needs to borrow money

on a short-term basis (which is usually more expensive than long term loans) this is not a

good sign for the company’s financial health. On the other hand, it is probably not a very

important factor and thus, as with the income tax variable, due to the very high volatility of

the development, explanatory power of this variable would be surprising.

• INTEREST LONG DEBT: Due to the expensive equipment (i.e. aircraft) needed in

aviation, and due to the often low availability of cash money for purchases of aircraft, many
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Figure 78: General and administrative expenses.

large carriers have to finance their planes through loans. Low-Cost carriers are often in a

better situation and Southwest is no exception here. As one can see in Figure 82 Southwest

clearly has to pay less interest than the other large carriers. The graphs feature a small

number of peaks. Most of them require further research, only the US peak in quarter 55 is

most probably a sign error as expenses should by definition be negative and the affected value

would, multiplied by -1, fit into the graph very well.

• MAINTENANCE: This variable shows the expenses for aircraft maintenance.

• NET INCOME: The net income graph (Figure 84) features similar characteristics to the

pre tax income graph and has the same peak pattern which means that the UA double peak

in 2005/2006 is likely a result of the end of the Chapter 11 bankruptcy protection for the

carrier and the peak of DL and NW in quarter 61 coincides with the companies’ merger.
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Figure 79: Income before income tax.

• NON OP INCOME: The non operating income visible in Figure 85 pretty much follows

the net income and pre tax income graphs as well, which, together with the fact that the

peaks do not appear in the OP REVENUE and OP PROFIT LOSS variables (see Figures 88

and 87), supports the hypothesis that the peaks are related to accounting issues and financial

business of the airline rather than having anything to do with the airline’s actual operations.

• OP EXPENSES: This variable seen in Figure 86 is similar to the graph in Figure 77, the

effect of the oil price does not seem as severe, though, as in the flying operations graph

because the OP EXPENSES variable comprises more accounts than just those that directly

deal with the flight operations.

• OP PROFIT LOSS: The operating profit and loss graph in Figure 87 features a clear

seasonal effect which is introduced through the operating revenues, i.e. the revenues that with

these carriers mainly come from the passengers whose numbers underly a seasonal periodicity.
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Figure 80: Income tax.

In this graph, certain effects in the airline economy like the September 11 attacks and the

resulting losses and the losses due to high oil prices in 2008 are clearly visible.

• OP REVENUES: The revenues of the airlines (Figure 88) are a direct result of the number

of passengers flying and the fares these passengers are paying. Of course in the year 2001

effects of the terror attacks are visible, but also the financial crisis shock which reaches its

peak in early 2009, after the high peak of the operating expenses due to high fuel prices which

was in 2008.

• PAX SERVICE: The airlines’ expenses for passenger services seen in Figure 89 are far less

volatile than other expenses, after 2001 they stayed relatively constant, despite increasing

passenger numbers. The only exception is Southwest.

• PROMOTION SALES: This variable shows the amount of money spent by the airline
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Figure 81: Other interest expense.

for promotion and sales. The graphs in Figure 90 suggest that the airlines have reduced

their expenditure here in 2001, possibly due to their worsened financial situation and tighter

budgets.

• PUB SVC REVENUE, RES CANCEL FEES, TOTAL MISC REV,

TRANS REV PAX: These variables will not undergo further examination as too much

data is missing to form a dataset that could be used in the models.

• TRANS EXPENSES: All transport related expenses are included in this variable and it

is therefore not surprising that its graph in Figure 92 is quite similar to the operating and

flying operations expenses.

• TRANS REVENUE: All transported related expenses are included in this variable. Only

the Southwest figures seem a little small by a factor of possibly around 100, which looks like
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Figure 82: Interest on long-term debt and capital leases.

a reporting error. This should not have a very large effect on the models though. 2 minor

corrections to the data have been made as well. Firstly, Southwest’s figures for quarters 30

and 62 have been missing and were approximated through linear regression. Secondly, Delta

Airlines reported a negative figure for quarter one, and as negative revenue would more or less

mean that Delta paid its passengers for flying instead of getting paid, which seems unlikely,

and since the absolute term of the figure fit very well to the figures in the quarter before and

after we assumed that the mistake could be corrected by making the value positive.

• UNIQUE CARRIER NAME: This field identifies the airline that reported the number

in the respective row of the database. In order to give every airline a unique name, numbers

are added to the name should one name be used by different companies.
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Figure 83: Aircraft maintenance.

Figure 84: Net income.
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Figure 85: Nonoperating income and expenses.

Figure 86: Total Operating Expenses.
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Figure 87: Operating profit or loss.

Figure 88: Total operating revenues.
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Figure 89: Passenger service.

Figure 90: Expenses for promotion and sales.
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Figure 91: Passenger transport revenues.

Figure 92: Transport related expenses.
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Figure 93: Transport related revenues.
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5.1.5 P-12A Table Data

The P-12 table contains data about the airlines’ total fuel consumption and their expenses for fuel.

Detailed data for each airline is unfortunately only available for the years since 2000. From this

database we downloaded the following four variables:

• TDOMT GALLONS: This variable shows the fuel consumption for all domestic operations

of an airline in gallons. The graph in Figure 94 shows the variable’s graph.

Figure 94: Domestic fuel consumption.

• TOTAL GALLONS: This variable shows the fuel consumption for all domestic operations

of an airline in gallons. The graph in Figure 95 shows the variable’s graph.

• TDOMT COST: This variable, graphed in Figure 96 shows the amount of money paid by

each airline for its fuel used in its domestic operations. As the fuel price has a large impact

on this variable, the oil price bubble in 2008 and the oil price drop in 2009 are clearly visible.
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Figure 95: Total fuel consumption.

• TOTAL COST: This variable, graphed in Figure 97 shows the amount of money paid by

each airline for its fuel used in its domestic operations. As the fuel price has a large impact

on this variable, the oil price bubble in 2008 and the oil price drop in 2009 are clearly visible.
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Figure 96: Domestic fuel expenses.

Figure 97: Total fuel expenses.
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5.1.6 GDP

One of the most general macro economic variables we can have on the U.S. economy is the Gross

Domestic Product of the country.18 Consider for example the variation of the Gross Domestic

Product (annual percent change) against time, between 1993 and 2008 (Figure 98). If we compare

Figure 98: Real Gross Domestic Product (GDPCA) (% of annual variation against time).

this statistic with the variation of the fares of airlines over time (Figure 99), we can observe that

the GDP and the airline average fares seem to be related: the same trends appear to connect the

data, especially in the first periods of regression. Indeed, as the GDP statistic is the variation of the

GDP from one year to another (and the GDP statistic being given at January the 1st), a spike at

a given period means that the GDP had greatly increased during the year before this period. That

can explain the apparent time lag between the variation of the GDP and the variation of the fares

18The GDP and other macroeconomic data are available on http://research.stlouisfed.org.

http://research.stlouisfed.org
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for the airlines, for the first periods of regression. On the contrary, this lag seems to be reversed in

2001 and for the periods of the U.S. terrorist attacks and the actual economic crisis. We can then

assume that in 2001, the drop in GDP compared to the GDP in 2000 may be explained by the bust

cycle of the dot-com bubble which happened during that year. The U.S. recession we can observe

in Figure 98 can then be a combination of the end of the dot-com bubble and the terrorist events

of September 11. In 2007, we can also see the beginning of the financial crisis, which has become

the current economic crisis where the airlines, as many other U.S. industries, have faced financial

problems.
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Figure 99: GDPCA (scaled to appear with the average fares of the airlines), and the quarterly
average fares of the airlines (fare1 is for American, 2 is for Continental, 3 for Delta, 4 for Northwest,
5 for United, 6 for US Airways, 7 for Southwest).
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5.2 Insertion of economic data into ARIMA models for fares

We can notice that in our ARIMA models, the use of dummy variables or trend was a tool to

proxyh macroeconomic variables in our regressions. In fact, we can assume that these 2 effects can

also be found in the economic data of the carrier, such as its operational profits, revenues, expenses,

the price and consumption of fuel, the net income.

If we run some regressions using our best models for average fares (as computed above) and

including economic data such as the fuel, we can observe that models for the fares deteriorate:

many variables become insignificant, and not necessarily the economic data. In fact, we can try to

explain these results by the fact that the dummy variable or trend variable also try to take into

account macroeconomic trends, thus there may be some autocorrelation between these 2 variables

and the economic data we want to include.

Now if we run these regressions using our best models for fares without the dummy and trend

variables, we can have interesting results. As for the ARIMA models, we decided to run all the

possible regressions (using our best ARIMA model with one economic variable), and retained the

best model for each carrier according to the Schwarz Information Criterion.

• American: For American Airlines, we observe that all the regressions have insignificant

coefficients if we include the trend variable in the model. If not, then we can observe that

the best model we can get with EViews6 is the model with no trend variable and the variable

of operational expenses (Figure 100). The R2 statistic is very high for this regression (0.93),

all the coefficients are individually significant, the model is stable and not autocorelated.

Thus we can infer that the fare setting for American Airlines is highly correlated with the

operational expenses of the carrier, which seems to be quite logical. If we consider the variable

of operational revenues, transport expenses or transport revenues instead of this variable, the

result is very similar and confirms this trend for the airline to determine its average fares

with the operational expenses.
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Figure 100: American Airlines - regression on quarterly average fares. eco1 13 stands for the
variable of Operational Expenses.

• Continental: For Continental Airlines, EViews6 gives as the best regression for fares (Figure

101) the model which includes the variable of the total number of employees in the airline! It

appears to be quite unlikely that the average fares of an airline can be connected to the total

number of employees. However, we could imagine that if the number of employees increases,

it is an additional expense for the airline, and as these new employees may improve the quality

of the service offered to the passenger, this latter would consequently be less reluctant to pay

more if there are more people taking care of him during his travel!

If we do not include the dummy variable in our regression, then we get the variable of

transport expenses as the best variable explaining the data of fares for the carrier (Figure

102). As for Continental Airlines, we can observe that the sign of the economic coefficient is

negative, which would mean that the greater the transport expenses are, the lower the fares
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Figure 101: Continental Airlines - regression on quarterly average fares. eco2 21 stands for the
variable of the total number of employees.

become. The sign does not change if we include the transport revenues variable instead of

the first one (as the transport expenses and revenues will not be so different for given airline).

Indeed, we can assume that the transport revenues or expenses are a sign of the strength and

development of the airline, and a larger airline (in terms of demand) will maybe have more

ability to set lower fares than a startup company.

• Delta: For Delta Air Lines, the best model we get is the model with the variable of Passenger

Services (Figure 103). This variable is indeed similar to the variable Operational Expenses,

as the cost of the passenger services is a component of the operational expenses. So the sign

of the coefficient for this regression (negative) is coherent with the above explanations for

the model of Continental Airlines. Here again, the R2 statistic (0.91) is very high, and our

regression consequently seems to explain a important part of the fares.
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Figure 102: Continental Airlines - regression on quarterly average fares. eco2 24 stands for the
variable of Transport Expenses.

• Northwest: For Northwest, we get very different behaviour than for the other airlines, as

we can observe that it is difficult to find a reliable and coherent model for the fares if we do

not include the trend variable in the regression. This may be explained by the difficulties of

the airline and the fact that it has recently been forced to merge with Delta Air Lines.

If we consider the entire model with the trend variable, EViews6 gives the model with the

Flying Operations as the best regression (Figure 104). All the coefficients are here again

significant at the 95% level, and the regression explains more than 96% of the fare data

according to the R2 statistic.

• United: For United Airlines, again the best economic variable we may include in the

regression seems to be the Passenger Services. The sign of the coefficient is negative as

we found for the regression for Delta, and the coefficient of determination R2 is equal to 0.83.
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Figure 103: Delta Air Lines - regression on quarterly average fares. eco3 16 stands for the variable
of Passenger Services.

• US Airways: The best model we find is a regression with the variable of the Transport

Expenses, as for Continental and American Airlines (for the latter it is the Operational

Expenses). We can check that the coefficient is negative as for the 2 other airlines, and the

model explains almost 87% of the data on fares for the airline.

• Southwest: Finally, for the low-cost airline, we found as the best economic variable the

Transport Revenue variable. Nevertheless, we can notice that here the sign for the economic

coefficient is positive, which is contrary to the sign we expected for the other airlines (as we

stressed that the variable of revenues and expenses are quite similar here). In fact we can try

to explain this positive sign by the traditional strategy of a low-cost airline. For a traditional
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Figure 104: Northwest Airlines - regression on quarterly average fares. eco4 4 stands for the variable
of Flying Operations.

airline, an increase in operational revenue strengthens the airline, which can then lower its

fares and attract more passengers, maybe in order to catch a part of the passengers of the

low-cost airlines. On the other hand, the well-known strategy of a low-cost airline is to charge

the passenger for any additional service he wants to get. Thus we can assume that an increase

in the operational expenses/revenues causes/is caused by an increase of the passenger fares

(that is to say, an increase of the passenger service).
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Figure 105: United Airlines - regression on quarterly average fares. eco5 16 stands for the variable
of Passenger Services.
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Figure 106: US Airways - regression on quarterly average fares. eco6 24 stands for the variable of
Transport Expenses.
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Figure 107: Southwest Airlines - regression on quarterly average fares. eco7 26 stands for the
variable of Transport Revenue.
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6 Regressions for specific routes

It is interesting to see whether our “global” models for average fares and passengers for the entire

domestic network in the U.S. could be used for specific round trips that are proposed by the 7

carriers examined in this project.

We can infer that on a specific route in the U.S. domestic market, the fares proposed by the

airline would depend upon the competition between these airlines, the characterics of the route

(distance, population data, airport data,...). In this section we want to assess how well a simple

ARIMA model can work for a “given” route.

6.1 Chicago (ORD) - Atlanta (ATL)

The airports of Chicago O’Hare International (IATA airport code ORD) and Hartsfield-Jackson

Atlanta International (IATA airport code ATL) were, in 2008, the 2 biggest airports in the U.S. in

terms of enplanements. Indeed, we can assume that if we choose big airports, we will be able to

get more general data, and not be stopped with specific characteristics we could have in smaller

airports. We can also assume that the concentration of the market may be lower in these big

airports.

We observe that the route between these 2 airports is only served by 3 carriers among the

7 airlines we study: American Airlines, Delta Air Lines, and United Airlines (see Figure 108).

The other airlines may also propose some flights between Chicago O’Hare and Hatrsfield-Jackson

Atlanta, but either they use code-sharing to do these flights, or they have not reported these flights

to the DOT. We try to apply our best models (according to Section 4) to these average fares. We

get the following regression outputs for the 3 carriers (Figures 109 to 111): we observe that these

models do not seem to be the best regressions we can get to fit the fares between the 2 airports.

The ARMA component of the model seems to be good, but the coefficients of trend or the dummy

variable are insignificant for all regressions, according to the Student’s t-statistics. As we said, this
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Figure 108: Quarterly average fares between Chicago (ORD) and Atlanta (ATL) ($ against time).

does not necessarily mean that our models are bad, but they seems to be too global to be able to

capture the specificity of this particular route.

We may also assume that these global trends for the fares to decrease for these carriers, as well

as the dummy variable modeling the impacts of September 11, 2001, may have been less important

for the behaviour of the airlines between Chicago and Atlanta than between other U.S. cities such

as New-York.

If we run the regressions for our best models for the number of passengers, we get the following

results (Figures 112 to 114): curiously, as our models for these statistics on passengers appeared to

be less accurate and precise than the best global regressions for average fares, we can see that these
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Figure 109: American Airlines - regression on quarterly average fares.

models for American Airlines and for United Airlines are quite good. For the model for American

Airlines, the model is stationary, all the coefficients are individually and jointly significant, the

Durbin Watson statistic is quite low but there is no spike in the correlograms, the R2 statistic

is even higher than the coefficient of determination we have for the global regression (0.65 here

against 0.62 for the regression on all passengers data).

For United Airlines, as we reject the dummy variable for the regression on fares, this coefficient

is not very significant for our regression (but it remains significant at the 88% level of confidence,

which is better than for the model for the average fares). All the other coefficients are individually

significant at the 95% level of confidence.

For Delta Air Lines, our model does not seem to be the best one for the statistic on passengers

for the airline. In fact, we can notice that in our regression on the number of passengers for Delta

Air Lines, we did not consider any seasonality effect for the airline in our best model according
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Figure 110: Delta Air Lines - regression on quarterly average fares.

to the SIC. Here we can see that the coefficients AR(1) and AR(2) do not seem to be significant,

but this result could also mean that the data would better fit a seasonal autoregressive component

rather than individual AR variables. In fact, if we try to find the best model for the number of

passengers of Delta between these airports, we find with EViews6 an ARMA(2,1), with a seasonal

variable SAR(4) and a trend variable (see Figure 115). This result seems to be quite a good model,

except for the invertibility of the regression. All coefficients are significant, the Durbin-Watson

statistic is higher than 2, there is no sign of autocorrelation in the correlograms, the model is

stationary, and the R2 statistic is very high (0.90). As a consequence, we can confirm that the

seasonality of the number of passengers really matters in the models for the number of passengers.
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Figure 111: United Airlines - regression on quarterly average fares.
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Figure 112: American Airlines - regression on the number of passengers per quarter.
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Figure 113: Delta Air Lines - regression on the number of passengers per quarter.
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Figure 114: United Airlines - regression on the number of passengers per quarter.



137

Figure 115: Delta Air Lines - regression on the number of passengers per quarter.
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6.2 Los Angeles (LAX) - New-York (JFK)

We now consider 2 other big airports, Los Angeles International (IATA airpot code LAX) and John

F Kennedy International (IATA airport code JFK), in Los Angeles and New-York respectively. The

same airlines as for the previous route are competing between these 2 airports (see Figure 116). If

Figure 116: Quarterly average fares between Los Angeles (LAX) and New-York (JFK) ($ against
time).

we run the same regressions as for the previous route for the fares of the 3 airlines (Figure 117 to

119), we can then observe that the conclusions are not the same as for the previous route: we can

observe that all the coefficients are significant for the regression of United. For Delta Airlines, the

trend variable also seems to be significant, as the dummy variable is for American Airlines. The

model for United even seems to be a good one, but the low R2 statistic may be a sign that this
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ARMA model does not explain all the variations of the data.

Figure 117: American Airlines - regression on quarterly average fares.

For the regressions on the number of passengers (Figure 120 to 122), the results are also

different from the previous conclusions. We get quite a good model for American Airlines, as all the

coefficients of the regression are significant. There is no problem of stationarity or autocorrelation,

and the coefficient of determination R2 is also higher than for the global regression on passengers

(0.70 here). For Delta Airlines, again we may infer that the seasonality of the number of passengers

is the cause of the rejection of the variable AR(2) and AR(3), and the model is consequently not

as good as the global regression. On the contrary, for United Airlines, the model seems to reject

the seasonality of the number of passengers, whereas we kept this variable for the route between

Chicago and Atlanta. Again it stresses the importance of taking into account local effects and the

characteristics of the routes in order to better fit the data we have from our databases. Here we

notice that the dummy variable seems to be important in the regression, whereas this coefficient
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Figure 118: Delta Air Lines - regression on quarterly average fares.

was not significant on the first route studied.
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Figure 119: United Airlines - regression on quarterly average fares.



142

Figure 120: American Airlines - regression on the number of passengers per quarter.
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Figure 121: Delta Air Lines - regression on the number of passengers per quarter.
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Figure 122: United Airlines - regression on the number of passengers per quarter.
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6.3 Baltimore (BWI) - Seattle (SEA)

What about the low-cost airline Southwest? Its specificity may also lead to disruption of our models

for fares and passengers in case of competition with the major airlines. Consider for example the

route between Baltimore/Washington International Airport (BWI) and Seattle-Tacoma International

Airport. This route has been offered by the 2 major carriers Northwest, United since 1993, and

also by Southwest If we consider the fares for this route (Figure 123), we can observe that there

seems to be a trend for the fares to continuously decrease after 1993 probably to align with the

fares proposed by the low-cost airline. In addition we can also observe the trend for the fares of

Northwest to keep on decreasing below the fares of Southwest, following the global decreasing trend

of fares we observed in the previous part for Northwest. If we try to run the regressions on the

,

Figure 123: Quarterly average fares between Baltimore (BWI) and Seattle (SEA) ($ against time).
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fares for these 3 airlines, we get the following results (Figures 124 to 126): we can observe similar

results as for the previous routes studied: we can see that the coefficient of trend is significant for

the regression on the fares of Northwest Airlines, as is the the dummy variable for United Airlines.

Figure 124: Northwest Airlines - regression on quarterly average fares.

These 2 regressions remain stationary and do not show problems of autocorrelation in the

residuals, but we may assume that again an ARIMA model is not sufficiently able to represent the

behaviour of passenger fares on a route.

For Southwest Airlines, the model reveals the increasing trend for the fares, and a dummy

variable after the terorist events of September 2001 (however this possible impact is quite low in
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Figure 125: United Airlines - regression on quarterly average fares.

comparison with the global impact we observed for the major airlines). Nevertheless, it appears

difficult to find a quite good model with all the coefficients remaining significant.

The same conclusions can be drawn for the statistic on the number of passengers: we can

observe that the dummy variable and trend variable appear to be insignificant for most airlines,

and the R2 statistics are very low for all the regressions.
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Figure 126: Southwest Airlines - regression on quarterly average fares.
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7 Purely economic models

We saw in the previous sections some time series models for quarterly average fares for our 7

airlines. However, we can suppose that the fares proposed by an airline on a given route also

depend on the characteristics of the market, and are not purely caused by the economic state of the

airline. The fares may also be a function of the length of the route, the kind of route (e.g. route

for leisure or business travellers), the population living at the endpoints of the route, and so on.

The IENAC06TE study led by Jonathan Cobb and Nico Metzger, “Entry Strategy for Southwest

Airlines”, tries to find the models which could explain the fares of the low-cost airline for a specific

route.19

We would like to observe whether it is possible to add some of the variables used in that study

on Southwest to some basic panel data, taking into account the possible trend on the fares and the

impacts of September 11, 2001 (with our dummy variable). Then we have to estimate, for a given

carrier, the following equation:

Fare(t) = α0 + α1 × t+ α2 ×D(t) + α3 × distance + α4 × distance + α5 × population

+α6 × leisure + α7 × business + α8 ×GDP + ε(t),

(29)

where “distance”, “population” and “GDP” are discrete variables chosen by Jonathan Cobb and

Nico Metzger to model the characteristics of the market around the endpoints of the route. D(t) is

a dummy variable used to model the U.S. terrorist attacks in 2001 (equal to 1 at and after period

35, and 0 otherwise), and “leisure” and “business” are also dummy variables, taking the value 1 if

the route can be considered (according to the criteria developed in the study of Cobb and Metzger)

as a “leisure” or “business” route. Here, we also include the variable of time in the regression to

capture possible trends.

19Research Project “Entry Strategy for Southwest Airlines”, by Jonathan Cobb and Nico Metzger, supervised by
Steve Lawford [6].
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We get the following regression output from EViews6: we can observe that in fact these models

are quite good! Most of coefficients of the 7 regressions are individually and jointly significant at

the 95% and very often at the 99% levels, except for the population variable for Southwest and

Northwest, and the Business or Leisure variable for Continental Airlines and Northwest.

Figure 127: American Airlines - economic regression on quarterly average fares.

We note that if we do not include these variables in the regression, we only get significant

variables in all our models. The R2 statistics of the models are quite high. Indeed, the R2 statistic

for American Airlines is equal to 0.47, meaning that these variables already explain 47% of the fare

setting behaviour for this carrier! This statistic is equal to 0.31 for Continental, 0.36 for Delta,

0.17 for Northwest, 0.54 for United,0.22 for US Airways and 0.52 for Southwest Airlines.

Again, we can observe a clear difference between the trend variable for the major carriers and

Southwest: whereas the coefficient for the trend variable is lower than −1.70 dollars per quarter for

all the major carriers but Continental, this coefficient is equal to 0.81 for Southwest. This trend
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Figure 128: Continental Airlines - economic regression on quarterly average fares.

shows the competition between these 2 models of airlines, and we may suggest according to these

statistics, that there is a trend for the difference of fare setting between a low-cost airline and a

major one, to be reduced.

The coefficient of the route length is positive for all the airlines: indeed, we can assume that

the fares will be higher on a longer route.

We can observe that the coefficient for the population variable is negative, meaning that the

fares tend to be higher between less populated areas. Indeed, it seems logical that in more populated

areas, where demand and competition between airlines is higher, the fares will decrease. However

we can observe that we reject this coefficient for Southwest Airlines, which can also be interpreted

as a characteristic for the low-cost airline, to use secondary airports, and point-to-point services

rather than hub-and-spoke networks. Using these secondary airports, Southwest also serves less

populated areas in the neighbourhood of big cities where major airlines develop their hub airports.
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Figure 129: Delta Air Lines - economic regression on quarterly average fares.

The “leisure” and “business” variables show the trend for major airlines to decrease their

fares on specific leisure routes, and increase these fares on business routes. For Southwest again,

the traditional strategy for the low-cost airline is to not discriminate between business or leisure

travellers but offer them the lower fare for their trip. Consequently, we can observe that the low-cost

airline is the only airline with both coefficients negative for the variables leisure and business.

Again the low-cost airline is traditionaly not supposed to take into account the GDP on a given

region to fix a higher or lower fare than for another U.S. region. Thus we can see that the coefficient

for GDP is almost equal to 0 for Southwest. On the contrary, as this coefficient is definitely positive

for the major airlines, we can assume that they seem to use this statistic in their fare setting to

propose enforce higher fares in richer regions of the USA!

The impact of the terrorist attacks in September 11 may be one of the only coefficients with a

similar impact on the low-cost airline and the legacy carriers. These events seem to have forced the
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Figure 130: Northwest Airlines - economic regression on quarterly average fares.

airlines to adapt their fares to a decreasing demand. This decrease of the fares appears to be very

high for American Airlines and United Airlines (minus $87 and $89 respectively for the average

fares of the 2 airlines), whereas Delta and Southwest seem to have been able to lower the impact of

the terrorist attacks on their fare strategy (which can also be explained by the fact that Southwest

in particular already had the lowest fares among these airlines before September 2001).
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Figure 131: United Airlines - economic regression on quarterly average fares.

Figure 132: US Airways - economic regression on quarterly average fares.
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Figure 133: Southwest Airlines - economic regression on quarterly average fares.
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8 Concluding remarks

The objective of this project was to conduct research into the modelling of the dynamic strategic

behaviour of U.S. major carriers since 1993. The first step consisted in filtering the data that we

were able to get from the U.S. Department of Transportation on the coupons and tickets bought

by U.S. travellers. In particular, we decided to use the quarterly average fares proposed by the

airlines for all round trips inside the U.S. domestic market, and the quarterly number of passengers

which travelled on these routes since 1993. The data treatment and descriptive analysis formed an

important first step of the work.

Then we supposed that the fares set by the airlines may depend on the past evolution of fares,

and on the impact of economical or political events such as the U.S. terrorist attack in 2001. We

built software to select and test rigorous time series models, we observed that we were able to

capture a large amount of the fare setting strategies for these airlines. In particular, these models

enabled us to clarify and quantify the different strategies between legacy airlines and a low-cost

carrier such as Southwest Airlines. We also saw the impact that the September 11, 2001, had on

each of the carriers, and the possible trends for these fares to decrease (especially for Northwest

Airlines), or to increase as they seem to do for Southwest. These time series models also enabled

us to make some robust static and dynamic forecasts on a short-term horizon, as to how fares may

behave in the next 1 to 2 years, and how the number of passengers may evolve. This analysis has

been fully automated using customized code, which formed a significant part of the modelling work,

before we could begin interpretation of the results. It would also be a vital part of a repeated model

estimation procedure, such as is often found in the private sector and other business settings.

Then we attempted to see whether the economic state of the carriers could be correlated with

their fare setting behaviour. Using our best time series models, we included financial variables such

as operational revenues or expenses, the cost of passenger services or the total number of employees

in a given airline, and saw that these variables can in fact explain most of the trends and drops
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observed in the purely statistical models.

Finally, we wished to see whether purely economic models could be used to explain the fare

setting. Using variables on route characteristics such as distance, whether the route is used more

for business or leisure purposes, and the characteristics of the population and the GDP at the

endpoints of this route, we saw that we could explain 30 to 40% of what is happening on these

routes!

However, none of these models can be perfect. They could be improved in a number of ways.

For example, it would be interesting to model more carefully the competition between the major

airlines, to capture more realistically the strategy of the airlines in the U.S. market. It could be

very revealing to observe what competitors do on a given route and to include the entry decisions

of competitors. One of the difficulties we noticed with the major airlines is that there are also

many existing and nascent code-sharing agreements between these carriers and smaller ones, which

allow the carriers to extend their networks without necessarily being involved in the fare setting,

nor in the strategy of these smaller carriers. These code-sharing effects are very difficult to capture

as these agreements are temporary, but they may also have an impact on the behaviour of airlines

and on their competition with other airlines.
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A Appendix

A.1 ARIMA models (automated outputs)
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American       p =  3.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  381.0909  1.056713 -0.415496  0.319092

se_alpha  123.3027  0.124757  0.175544  0.118374
t-stat(alpha)  3.090693  8.470207 -2.366904  2.695630
|AR roots|  0.968016  0.574139  0.574139
|MA roots|

R²  0.917633 SIC  9.328462          max P[Q-stats]  0.629000             P[Q-stats(1)]  0.108000
D-W  2.015383 JB  1.389676           min P[Q-stats]  0.108000             P[Q-stats(2)]  0.241000

            P[Q-stats(3)]  0.415000
Continental       p =  1.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  431.1574  0.773432
se_alpha  14.35092  0.070481

t-stat(alpha)  30.04388  10.97355
|AR roots|  0.773432
|MA roots|

R²  0.660123 SIC  9.380507          max P[Q-stats]  0.881000             P[Q-stats(1)]  0.751000
D-W  1.837109 JB  5.986324           min P[Q-stats]  0.029000             P[Q-stats(2)]  0.881000

            P[Q-stats(3)]  0.029000
Delta       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  379.8326  0.836018 -0.811370  0.769838  0.426887  0.849721

se_alpha  26.79139  0.107980  0.131557  0.099230  0.109506  0.097860
t-stat(alpha)  14.17741  7.742305 -6.167449  7.758092  3.898309  8.683040
|AR roots|  0.928530  0.928530  0.892909
|MA roots|  0.921803  0.921803

R²  0.905418 SIC  8.799172          max P[Q-stats]  0.935000             P[Q-stats(1)]  0.026000
D-W  1.898956 JB  9.078859           min P[Q-stats]  0.026000             P[Q-stats(2)]  0.085000

            P[Q-stats(3)]  0.103000
Northwest       p =  3.000000       q =  1.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  316.1128  1.381132 -0.807099  0.404651 -0.743569
se_alpha  90.23796  0.150503  0.191624  0.124109  0.130852

t-stat(alpha)  3.503102  9.176753 -4.211901  3.260439 -5.682511
|AR roots|  0.978919  0.642935  0.642935
|MA roots|  0.743569

R²  0.917107 SIC  8.765514          max P[Q-stats]  0.000000             P[Q-stats(1)]  0.000000
D-W  2.047965 JB  2.857827           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.000000

            P[Q-stats(3)]  0.000000
United       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  447.2741  0.677871 -0.740817  0.770504  0.459692  0.826295

se_alpha  22.55935  0.099997  0.103584  0.093980  0.106240  0.096300
t-stat(alpha)  19.82655  6.778885 -7.151852  8.198566  4.326906  8.580440
|AR roots|  0.946938  0.946938  0.859274
|MA roots|  0.909008  0.909008

R²  0.834814 SIC  9.179854          max P[Q-stats]  0.976000             P[Q-stats(1)]  0.096000
D-W  2.055159 JB  1.985714           min P[Q-stats]  0.096000             P[Q-stats(2)]  0.174000

            P[Q-stats(3)]  0.261000
US       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  373.3178  0.882953 -0.949198  0.880449  0.128578  0.951685
se_alpha  31.05663  0.060565  0.033259  0.060679  0.017726  0.016278

t-stat(alpha)  12.02055  14.57853 -28.53930  14.50994  7.253694  58.46315
|AR roots|  0.985331  0.985331  0.906859
|MA roots|  0.975543  0.975543

R²  0.843318 SIC  9.019546          max P[Q-stats]  0.020000             P[Q-stats(1)]  0.001000
D-W  2.031955 JB  1.525157           min P[Q-stats]  0.001000             P[Q-stats(2)]  0.003000

            P[Q-stats(3)]  0.003000
Southwest       p =  1.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  242.5268  0.812377
se_alpha  7.462084  0.092025

t-stat(alpha)  32.50122  8.827793
|AR roots|  0.812377
|MA roots|

R²  0.660816 SIC  7.252009          max P[Q-stats]  0.999000             P[Q-stats(1)]  0.242000
D-W  1.796068 JB  0.559358           min P[Q-stats]  0.242000             P[Q-stats(2)]  0.391000

            P[Q-stats(3)]  0.505000
Av. fares       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  331.8736  0.837578 -0.820563  0.813071  0.203911  0.933839
se_alpha  29.42788  0.073421  0.051561  0.063025  0.030858  0.028717

t-stat(alpha)  11.27752  11.40794 -15.91456  12.90081  6.608099  32.51844
|AR roots|  0.943393  0.943393  0.913573
|MA roots|  0.966353  0.966353

R²  0.906410 SIC  8.007179          max P[Q-stats]  0.877000             P[Q-stats(1)]  0.054000
D-W  1.754899 JB  1.075718           min P[Q-stats]  0.054000             P[Q-stats(2)]  0.121000

            P[Q-stats(3)]  0.210000

Figure 134: Best ARMA models for filtered data.
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American       p =  3.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  378.9510  1.015036 -0.359443  0.307679

se_alpha  138.4105  0.125448  0.173427  0.117651
t-stat(alpha)  2.737878  8.091277 -2.072591  2.615185
|AR roots|  0.971148  0.562868  0.562868
|MA roots|

R²  0.918852 SIC  9.294522          max P[Q-stats]  0.742000             P[Q-stats(1)]  0.120000
D-W  1.997686 JB  1.594823           min P[Q-stats]  0.120000             P[Q-stats(2)]  0.284000

            P[Q-stats(3)]  0.466000
Continental       p =  1.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  434.2499  0.756818
se_alpha  12.84776  0.073189

t-stat(alpha)  33.79967  10.34066
|AR roots|  0.756818
|MA roots|

R²  0.632982 SIC  9.301369          max P[Q-stats]  0.684000             P[Q-stats(1)]  0.614000
D-W  1.847370 JB  3.407983           min P[Q-stats]  0.026000             P[Q-stats(2)]  0.684000

            P[Q-stats(3)]  0.026000
Delta       p =  4.000000       q =  3.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  362.4295  1.419925 -1.121853  1.119001 -0.458336 -0.408297  0.424080 -0.981864

se_alpha  16.44449  0.124404  0.163324  0.161361  0.112397  0.054459  0.041062  0.044931
t-stat(alpha)  22.03957  11.41379 -6.868886  6.934751 -4.077817 -7.497300  10.32773 -21.85263
|AR roots|  0.941583  0.877047  0.877047  0.632820
|MA roots|  0.997486  0.997486  0.986820

R²  0.935396 SIC  8.853235          max P[Q-stats]  0.770000             P[Q-stats(1)]  0.037000
D-W  1.815138 JB  1.689929           min P[Q-stats]  0.037000             P[Q-stats(2)]  0.112000

            P[Q-stats(3)]  0.219000
Northwest       p =  2.000000       q =  3.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  265.0175  0.510736  0.466547  0.386968 -0.584644 -0.794109
se_alpha  95.22052  0.144505  0.140729  0.111886  0.081452  0.090959

t-stat(alpha)  2.783197  3.534392  3.315209  3.458577 -7.177800 -8.730397
|AR roots|  0.984587  0.473851
|MA roots|  0.997417  0.892281  0.892281

R²  0.943088 SIC  8.432495          max P[Q-stats]  0.002000             P[Q-stats(1)]  0.002000
D-W  2.394593 JB  3.759989           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.002000

            P[Q-stats(3)]  0.000000
United       p =  3.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  451.2816  1.015383 -0.335958  0.217294

se_alpha  32.65618  0.112540  0.129389  0.090678
t-stat(alpha)  13.81918  9.022379 -2.596497  2.396330
|AR roots|  0.908804  0.488977  0.488977
|MA roots|

R²  0.835812 SIC  9.264390          max P[Q-stats]  0.191000             P[Q-stats(1)]  0.002000
D-W  2.148459 JB  2.908669           min P[Q-stats]  0.002000             P[Q-stats(2)]  0.010000

            P[Q-stats(3)]  0.027000
US       p =  3.000000       q =  3.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  314.7620  0.470643  0.937356 -0.436102  0.424501 -0.980222 -0.437103
se_alpha  39.46172  0.166977  0.029355  0.145251  0.183268  0.046190  0.146426

t-stat(alpha)  7.976390  2.818616  31.93220 -3.002413  2.316281 -21.22161 -2.985151
|AR roots|  0.973354  0.966352  0.463641
|MA roots|  0.997491  0.970443  0.451549

R²  0.864778 SIC  9.202308          max P[Q-stats]  0.007000             P[Q-stats(1)]  0.002000
D-W  1.813794 JB  0.458602           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.001000

            P[Q-stats(3)]  0.002000
Southwest       p =  1.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  247.7865  0.808502
se_alpha  7.438368  0.092221

t-stat(alpha)  33.31195  8.767014
|AR roots|  0.808502
|MA roots|

R²  0.657712 SIC  7.295035          max P[Q-stats]  1.000000             P[Q-stats(1)]  0.188000
D-W  1.754773 JB  0.638795           min P[Q-stats]  0.188000             P[Q-stats(2)]  0.347000

            P[Q-stats(3)]  0.493000
Av. fares       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  341.0616  0.829496 -0.815538  0.809642  0.208508  0.930264
se_alpha  29.44685  0.074183  0.053686  0.063342  0.034310  0.031935

t-stat(alpha)  11.58228  11.18170 -15.19086  12.78216  6.077257  29.13037
|AR roots|  0.943006  0.943006  0.910468
|MA roots|  0.964502  0.964502

R²  0.906978 SIC  8.076970          max P[Q-stats]  0.536000             P[Q-stats(1)]  0.012000
D-W  1.887630 JB  1.110087           min P[Q-stats]  0.012000             P[Q-stats(2)]  0.024000

            P[Q-stats(3)]  0.058000

Figure 135: Best ARMA models for non filtered data.



163

American       p =  3.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  378.9510  1.015036 -0.359443  0.307679

se_alpha  138.4105  0.125448  0.173427  0.117651
t-stat(alpha)  2.737878  8.091277 -2.072591  2.615185
|AR roots|  0.971148  0.562868  0.562868
|MA roots|

R²  0.918852 SIC  9.294522          max P[Q-stats]  0.742000             P[Q-stats(1)]  0.120000
D-W  1.997686 JB  1.594823           min P[Q-stats]  0.120000             P[Q-stats(2)]  0.284000

            P[Q-stats(3)]  0.466000
Continental       p =  1.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  434.2499  0.756818
se_alpha  12.84776  0.073189

t-stat(alpha)  33.79967  10.34066
|AR roots|  0.756818
|MA roots|

R²  0.632982 SIC  9.301369          max P[Q-stats]  0.684000             P[Q-stats(1)]  0.614000
D-W  1.847370 JB  3.407983           min P[Q-stats]  0.026000             P[Q-stats(2)]  0.684000

            P[Q-stats(3)]  0.026000
Delta       p =  4.000000       q =  3.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  362.4295  1.419925 -1.121853  1.119001 -0.458336 -0.408297  0.424080 -0.981864

se_alpha  16.44449  0.124404  0.163324  0.161361  0.112397  0.054459  0.041062  0.044931
t-stat(alpha)  22.03957  11.41379 -6.868886  6.934751 -4.077817 -7.497300  10.32773 -21.85263
|AR roots|  0.941583  0.877047  0.877047  0.632820
|MA roots|  0.997486  0.997486  0.986820

R²  0.935396 SIC  8.853235          max P[Q-stats]  0.770000             P[Q-stats(1)]  0.037000
D-W  1.815138 JB  1.689929           min P[Q-stats]  0.037000             P[Q-stats(2)]  0.112000

            P[Q-stats(3)]  0.219000
Northwest       p =  2.000000       q =  3.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  265.0175  0.510736  0.466547  0.386968 -0.584644 -0.794109
se_alpha  95.22052  0.144505  0.140729  0.111886  0.081452  0.090959

t-stat(alpha)  2.783197  3.534392  3.315209  3.458577 -7.177800 -8.730397
|AR roots|  0.984587  0.473851
|MA roots|  0.997417  0.892281  0.892281

R²  0.943088 SIC  8.432495          max P[Q-stats]  0.002000             P[Q-stats(1)]  0.002000
D-W  2.394593 JB  3.759989           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.002000

            P[Q-stats(3)]  0.000000
United       p =  3.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  451.2816  1.015383 -0.335958  0.217294

se_alpha  32.65618  0.112540  0.129389  0.090678
t-stat(alpha)  13.81918  9.022379 -2.596497  2.396330
|AR roots|  0.908804  0.488977  0.488977
|MA roots|

R²  0.835812 SIC  9.264390          max P[Q-stats]  0.191000             P[Q-stats(1)]  0.002000
D-W  2.148459 JB  2.908669           min P[Q-stats]  0.002000             P[Q-stats(2)]  0.010000

            P[Q-stats(3)]  0.027000
US       p =  3.000000       q =  3.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  314.7620  0.470643  0.937356 -0.436102  0.424501 -0.980222 -0.437103
se_alpha  39.46172  0.166977  0.029355  0.145251  0.183268  0.046190  0.146426

t-stat(alpha)  7.976390  2.818616  31.93220 -3.002413  2.316281 -21.22161 -2.985151
|AR roots|  0.973354  0.966352  0.463641
|MA roots|  0.997491  0.970443  0.451549

R²  0.864778 SIC  9.202308          max P[Q-stats]  0.007000             P[Q-stats(1)]  0.002000
D-W  1.813794 JB  0.458602           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.001000

            P[Q-stats(3)]  0.002000
Southwest       p =  1.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  247.7865  0.808502
se_alpha  7.438368  0.092221

t-stat(alpha)  33.31195  8.767014
|AR roots|  0.808502
|MA roots|

R²  0.657712 SIC  7.295035          max P[Q-stats]  1.000000             P[Q-stats(1)]  0.188000
D-W  1.754773 JB  0.638795           min P[Q-stats]  0.188000             P[Q-stats(2)]  0.347000

            P[Q-stats(3)]  0.493000
Av. fares       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  341.0616  0.829496 -0.815538  0.809642  0.208508  0.930264
se_alpha  29.44685  0.074183  0.053686  0.063342  0.034310  0.031935

t-stat(alpha)  11.58228  11.18170 -15.19086  12.78216  6.077257  29.13037
|AR roots|  0.943006  0.943006  0.910468
|MA roots|  0.964502  0.964502

R²  0.906978 SIC  8.076970          max P[Q-stats]  0.536000             P[Q-stats(1)]  0.012000
D-W  1.887630 JB  1.110087           min P[Q-stats]  0.012000             P[Q-stats(2)]  0.024000

            P[Q-stats(3)]  0.058000

Figure 136: Best ARMA models for non filtered data.
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American       p =  1.000000       q =  1.000000       d =  0.000000       b =  0.000000     t =  1.000000
alpha  593.2849 -3.535029  0.671194  0.346384

se_alpha  25.50689  0.648158  0.112386  0.144313
t-stat(alpha)  23.25979 -5.453966  5.972250  2.400232
|AR roots|  0.671194
|MA roots|  0.346384

R²  0.917817 SIC  9.335251          max P[Q-stats]  0.728000             P[Q-stats(1)]  0.728000
D-W  1.985877 JB  6.799107           min P[Q-stats]  0.095000             P[Q-stats(2)]  0.155000

            P[Q-stats(3)]  0.247000
Continental       p =  2.000000       q =  1.000000       d =  0.000000       b =  0.000000     t =  1.000000

alpha  548.5347 -2.653741  1.624996 -0.665562 -0.973604
se_alpha  35.87851  0.749739  0.084832  0.083826  0.020826

t-stat(alpha)  15.28867 -3.539552  19.15547 -7.939819 -46.74857
|AR roots|  0.815820  0.815820
|MA roots|  0.973604

R²  0.716003 SIC  9.376505          max P[Q-stats]  0.525000             P[Q-stats(1)]  0.006000
D-W  2.015614 JB  1.977543           min P[Q-stats]  0.006000             P[Q-stats(2)]  0.017000

            P[Q-stats(3)]  0.040000
Delta       p =  1.000000       q =  1.000000       d =  0.000000       b =  0.000000     t =  1.000000
alpha  462.6359 -1.826865  0.705859  0.493513

se_alpha  26.48296  0.656994  0.085449  0.122755
t-stat(alpha)  17.46919 -2.780643  8.260588  4.020321
|AR roots|  0.705859
|MA roots|  0.493513

R²  0.907808 SIC  8.832874          max P[Q-stats]  0.378000             P[Q-stats(1)]  0.267000
D-W  1.983053 JB  0.712007           min P[Q-stats]  0.053000             P[Q-stats(2)]  0.130000

            P[Q-stats(3)]  0.252000
Northwest       p =  4.000000       q =  3.000000       d =  0.000000       b =  0.000000     t =  1.000000

alpha  553.6550 -2.885838 -0.538583 -0.462829 -0.433866  0.431158  1.402154  1.267999  0.832599
se_alpha  8.213074  0.210083  0.133407  0.129631  0.123906  0.123118  0.089774  0.126274  0.074805

t-stat(alpha)  67.41143 -13.73663 -4.037131 -3.570361 -3.501584  3.501986  15.61875  10.04164  11.13032
|AR roots|  0.978652  0.955920  0.955920  0.482131
|MA roots|  0.976703  0.923287  0.923287

R²  0.954315 SIC  8.404671          max P[Q-stats]  0.966000             P[Q-stats(1)]  0.158000
D-W  1.895132 JB  5.503595           min P[Q-stats]  0.158000             P[Q-stats(2)]  0.334000

            P[Q-stats(3)]  0.393000
United       p =  0.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  1.000000
alpha  539.7353 -2.123812  1.052495  0.567186

se_alpha  15.30335  0.397397  0.107265  0.107329
t-stat(alpha)  35.26909 -5.344314  9.812121  5.284543
|AR roots|
|MA roots|  0.753117  0.753117

R²  0.836502 SIC  9.192407          max P[Q-stats]  0.131000             P[Q-stats(1)]  0.062000
D-W  1.858286 JB  1.109041           min P[Q-stats]  0.013000             P[Q-stats(2)]  0.058000

            P[Q-stats(3)]  0.046000
US       p =  0.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  1.000000

alpha  465.1703 -2.064267  1.007156  0.611885
se_alpha  12.42576  0.327728  0.073972  0.053711

t-stat(alpha)  37.43596 -6.298722  13.61534  11.39222
|AR roots|
|MA roots|  0.782231  0.782231

R²  0.884305 SIC  8.898536          max P[Q-stats]  0.514000             P[Q-stats(1)]  0.514000
D-W  2.147299 JB  0.198258           min P[Q-stats]  0.011000             P[Q-stats(2)]  0.171000

            P[Q-stats(3)]  0.275000
Southwest       p =  0.000000       q =  1.000000       d =  0.000000       b =  0.000000     t =  1.000000

alpha  198.7432  0.905507  0.542742
se_alpha  6.502989  0.144790  0.138208

t-stat(alpha)  30.56182  6.253938  3.927000
|AR roots|
|MA roots|  0.542742

R²  0.733806 SIC  7.120740          max P[Q-stats]  0.990000             P[Q-stats(1)]  0.134000
D-W  1.722143 JB  1.609048           min P[Q-stats]  0.134000             P[Q-stats(2)]  0.221000

            P[Q-stats(3)]  0.288000
Av. fares       p =  0.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  1.000000

alpha  472.9621 -2.552314  1.566027  0.994654
se_alpha  15.18855  0.309422  0.062126  0.083156

t-stat(alpha)  31.13939 -8.248660  25.20711  11.96123
|AR roots|
|MA roots|  0.997323  0.997323

R²  0.912782 SIC  7.871818          max P[Q-stats]  0.404000             P[Q-stats(1)]  0.115000
D-W  2.335391 JB  0.254937           min P[Q-stats]  0.072000             P[Q-stats(2)]  0.072000

            P[Q-stats(3)]  0.123000

Figure 137: Best ARMA models for filtered data with the use of a trend variable.
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American       p =  3.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000
alpha  536.0348 -130.2807  1.533481 -1.283428  0.491185 -1.014149  0.637580

se_alpha  9.954581  12.95449  0.142610  0.195948  0.109847  0.168547  0.154672
t-stat(alpha)  53.84805 -10.05680  10.75293 -6.549824  4.471542 -6.017027  4.122128
|AR roots|  0.836501  0.836501  0.701960
|MA roots|  0.798486  0.798486

R²  0.936769 SIC  9.263774          max P[Q-stats]  0.778000             P[Q-stats(1)]  0.040000
D-W  1.799072 JB  11.11698           min P[Q-stats]  0.040000             P[Q-stats(2)]  0.104000

            P[Q-stats(3)]  0.141000
Continental       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000

alpha  463.9405 -51.42751  0.940090  0.567324
se_alpha  9.934567  13.91948  0.077616  0.083775

t-stat(alpha)  46.69962 -3.694642  12.11209  6.771970
|AR roots|
|MA roots|  0.753209  0.753209

R²  0.739066 SIC  9.350545          max P[Q-stats]  0.000000             P[Q-stats(1)]  0.000000
D-W  2.121524 JB  2.325072           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.000000

            P[Q-stats(3)]  0.000000
Delta       p =  0.000000       q =  3.000000       d =  0.000000       b =  1.000000     t =  0.000000
alpha  432.7783 -53.97678  1.407549  1.154829  0.477618

se_alpha  12.39488  15.94027  0.106491  0.119544  0.093838
t-stat(alpha)  34.91588 -3.386190  13.21755  9.660275  5.089788
|AR roots|
|MA roots|  0.812360  0.812360  0.723741

R²  0.912791 SIC  9.009704          max P[Q-stats]  0.383000             P[Q-stats(1)]  0.010000
D-W  2.010130 JB  0.045651           min P[Q-stats]  0.010000             P[Q-stats(2)]  0.032000

            P[Q-stats(3)]  0.061000
Northwest       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000

alpha  501.4677 -88.03957  1.072845  0.635667
se_alpha  8.857004  12.31818  0.079830  0.079407

t-stat(alpha)  56.61821 -7.147122  13.43907  8.005211
|AR roots|
|MA roots|  0.797287  0.797287

R²  0.898308 SIC  8.987061          max P[Q-stats]  0.118000             P[Q-stats(1)]  0.118000
D-W  1.800074 JB  10.11324           min P[Q-stats]  0.006000             P[Q-stats(2)]  0.006000

            P[Q-stats(3)]  0.015000
United       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000
alpha  506.1110 -77.86129  1.064661  0.673172

se_alpha  9.798012  13.35465  0.092880  0.092301
t-stat(alpha)  51.65446 -5.830275  11.46275  7.293217
|AR roots|
|MA roots|  0.820470  0.820470

R²  0.847939 SIC  9.119888          max P[Q-stats]  0.668000             P[Q-stats(1)]  0.256000
D-W  1.981516 JB  4.486529           min P[Q-stats]  0.129000             P[Q-stats(2)]  0.344000

            P[Q-stats(3)]  0.324000
US       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000

alpha  428.2453 -64.92823  0.998443  0.605259
se_alpha  8.702984  12.14641  0.068964  0.052229

t-stat(alpha)  49.20672 -5.345468  14.47768  11.58860
|AR roots|
|MA roots|  0.777984  0.777984

R²  0.869696 SIC  9.017450          max P[Q-stats]  0.506000             P[Q-stats(1)]  0.348000
D-W  2.157277 JB  1.029562           min P[Q-stats]  0.071000             P[Q-stats(2)]  0.295000

            P[Q-stats(3)]  0.477000
Southwest       p =  0.000000       q =  1.000000       d =  0.000000       b =  1.000000     t =  0.000000

alpha  227.4043  14.78263  0.665652
se_alpha  4.465926  5.285021  0.119385

t-stat(alpha)  50.91985  2.797081  5.575668
|AR roots|
|MA roots|  0.665652

R²  0.582633 SIC  7.570481          max P[Q-stats]  0.858000             P[Q-stats(1)]  0.004000
D-W  1.370375 JB  1.442743           min P[Q-stats]  0.004000             P[Q-stats(2)]  0.017000

            P[Q-stats(3)]  0.016000
Av. fares       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000

alpha  405.9984 -59.84282  1.184851  0.747980
se_alpha  8.703842  9.674431  0.102280  0.095803

t-stat(alpha)  46.64588 -6.185668  11.58440  7.807508
|AR roots|
|MA roots|  0.864859  0.864859

R²  0.898424 SIC  8.024214          max P[Q-stats]  0.122000             P[Q-stats(1)]  0.122000
D-W  2.113458 JB  4.476622           min P[Q-stats]  0.006000             P[Q-stats(2)]  0.053000

            P[Q-stats(3)]  0.110000

Figure 138: Best ARMA models for filtered data with the use of a dummy variable at period 35.
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American       p =  3.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  381.0909  1.056713 -0.415496  0.319092

se_alpha  123.3027  0.124757  0.175544  0.118374
t-stat(alpha)  3.090693  8.470207 -2.366904  2.695630
|AR roots|  0.968016  0.574139  0.574139
|MA roots|

R²  0.917633 SIC  9.328462          max P[Q-stats]  0.629000             P[Q-stats(1)]  0.108000
D-W  2.015383 JB  1.389676           min P[Q-stats]  0.108000             P[Q-stats(2)]  0.241000

            P[Q-stats(3)]  0.415000
Continental       p =  1.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  431.1574  0.773432
se_alpha  14.35092  0.070481

t-stat(alpha)  30.04388  10.97355
|AR roots|  0.773432
|MA roots|

R²  0.660123 SIC  9.380507          max P[Q-stats]  0.881000             P[Q-stats(1)]  0.751000
D-W  1.837109 JB  5.986324           min P[Q-stats]  0.029000             P[Q-stats(2)]  0.881000

            P[Q-stats(3)]  0.029000
Delta       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  379.8326  0.836018 -0.811370  0.769838  0.426887  0.849721

se_alpha  26.79139  0.107980  0.131557  0.099230  0.109506  0.097860
t-stat(alpha)  14.17741  7.742305 -6.167449  7.758092  3.898309  8.683040
|AR roots|  0.928530  0.928530  0.892909
|MA roots|  0.921803  0.921803

R²  0.905418 SIC  8.799172          max P[Q-stats]  0.935000             P[Q-stats(1)]  0.026000
D-W  1.898956 JB  9.078859           min P[Q-stats]  0.026000             P[Q-stats(2)]  0.085000

            P[Q-stats(3)]  0.103000
Northwest       p =  3.000000       q =  1.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  316.1128  1.381132 -0.807099  0.404651 -0.743569
se_alpha  90.23796  0.150503  0.191624  0.124109  0.130852

t-stat(alpha)  3.503102  9.176753 -4.211901  3.260439 -5.682511
|AR roots|  0.978919  0.642935  0.642935
|MA roots|  0.743569

R²  0.917107 SIC  8.765514          max P[Q-stats]  0.000000             P[Q-stats(1)]  0.000000
D-W  2.047965 JB  2.857827           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.000000

            P[Q-stats(3)]  0.000000
United       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  447.2741  0.677871 -0.740817  0.770504  0.459692  0.826295

se_alpha  22.55935  0.099997  0.103584  0.093980  0.106240  0.096300
t-stat(alpha)  19.82655  6.778885 -7.151852  8.198566  4.326906  8.580440
|AR roots|  0.946938  0.946938  0.859274
|MA roots|  0.909008  0.909008

R²  0.834814 SIC  9.179854          max P[Q-stats]  0.976000             P[Q-stats(1)]  0.096000
D-W  2.055159 JB  1.985714           min P[Q-stats]  0.096000             P[Q-stats(2)]  0.174000

            P[Q-stats(3)]  0.261000
US       p =  0.000000       q =  5.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  392.7677  0.843125  0.639845  0.672718  1.078298  0.542170
se_alpha  10.90251  0.083821  0.030867  0.053818  0.044884  0.079565

t-stat(alpha)  36.02544  10.05858  20.72897  12.49986  24.02425  6.814178
|AR roots|
|MA roots|  0.997421  0.997421  0.927401  0.927401  0.633642

R²  0.892250 SIC  8.955838          max P[Q-stats]  0.048000             P[Q-stats(1)]  0.014000
D-W  1.758185 JB  0.535803           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.048000

            P[Q-stats(3)]  0.000000
Southwest       p =  1.000000       q =  0.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  242.5268  0.812377
se_alpha  7.462084  0.092025

t-stat(alpha)  32.50122  8.827793
|AR roots|  0.812377
|MA roots|

R²  0.660816 SIC  7.252009          max P[Q-stats]  0.999000             P[Q-stats(1)]  0.242000
D-W  1.796068 JB  0.559358           min P[Q-stats]  0.242000             P[Q-stats(2)]  0.391000

            P[Q-stats(3)]  0.505000
Av. fares       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000

alpha  331.8736  0.837578 -0.820563  0.813071  0.203911  0.933839
se_alpha  29.42788  0.073421  0.051561  0.063025  0.030858  0.028717

t-stat(alpha)  11.27752  11.40794 -15.91456  12.90081  6.608099  32.51844
|AR roots|  0.943393  0.943393  0.913573
|MA roots|  0.966353  0.966353

R²  0.906410 SIC  8.007179          max P[Q-stats]  0.877000             P[Q-stats(1)]  0.054000
D-W  1.754899 JB  1.075718           min P[Q-stats]  0.054000             P[Q-stats(2)]  0.121000

            P[Q-stats(3)]  0.210000

Figure 139: Best ARMA models for filtered data (allowing 5 lags for p,q in ARMA(p,q)).
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American       p =  2.000000       q =  0.000000       d =  1.000000       b =  0.000000     t =  0.000000
alpha -3.203286  0.079277 -0.330758

se_alpha  2.359659  0.122920  0.117912
t-stat(alpha)-1.357521  0.644952 -2.805135
|AR roots|  0.575116  0.575116
|MA roots|

R²  0.120584 SIC  9.280247          max P[Q-stats]  0.656000             P[Q-stats(1)]  0.116000
D-W  2.024401 JB  0.267391           min P[Q-stats]  0.116000             P[Q-stats(2)]  0.269000

            P[Q-stats(3)]  0.378000
Continental       p =  1.000000       q =  1.000000       d =  1.000000       b =  0.000000     t =  0.000000

alpha -0.444827  0.576384 -0.807316
se_alpha  1.574538  0.190875  0.147504

t-stat(alpha)-0.282513  3.019697 -5.473176
|AR roots|  0.576384
|MA roots|  0.807316

R²  0.106457 SIC  9.435288          max P[Q-stats]  0.707000             P[Q-stats(1)]  0.280000
D-W  1.880401 JB  2.018102           min P[Q-stats]  0.056000             P[Q-stats(2)]  0.056000

            P[Q-stats(3)]  0.098000
Delta       p =  1.000000       q =  2.000000       d =  1.000000       b =  0.000000     t =  0.000000
alpha -0.070278  0.722343 -0.689018 -0.634288

se_alpha  3.021233  0.039780  0.155433  0.154649
t-stat(alpha)-0.023261  18.15837 -4.432886 -4.101462
|AR roots|  0.722343
|MA roots|  1.212250  0.523232

R²  0.455961 SIC  8.593528          max P[Q-stats]  0.117000             P[Q-stats(1)]  0.012000
D-W  2.188764 JB  1.353955           min P[Q-stats]  0.009000             P[Q-stats(2)]  0.041000

            P[Q-stats(3)]  0.018000
Northwest       p =  3.000000       q =  1.000000       d =  1.000000       b =  0.000000     t =  0.000000

alpha -2.871007 -0.758006 -0.544163 -0.685309  0.733168
se_alpha  1.091501  0.108750  0.119173  0.092606  0.120323

t-stat(alpha)-2.630330 -6.970141 -4.566161 -7.400299  6.093337
|AR roots|  0.947275  0.850560  0.850560
|MA roots|  0.733168

R²  0.525940 SIC  8.467463          max P[Q-stats]  0.621000             P[Q-stats(1)]  0.208000
D-W  1.934719 JB  0.507886           min P[Q-stats]  0.075000             P[Q-stats(2)]  0.096000

            P[Q-stats(3)]  0.192000
United       p =  1.000000       q =  2.000000       d =  1.000000       b =  0.000000     t =  0.000000
alpha -1.907227  0.589190 -0.570465 -0.412980

se_alpha  0.558330  0.125946  0.146020  0.145502
t-stat(alpha)-3.415951  4.678132 -3.906761 -2.838309
|AR roots|  0.589190
|MA roots|  0.988324  0.417859

R²  0.212440 SIC  9.231869          max P[Q-stats]  0.052000             P[Q-stats(1)]  0.003000
D-W  1.999970 JB  4.964875           min P[Q-stats]  0.003000             P[Q-stats(2)]  0.010000

            P[Q-stats(3)]  0.025000
US       p =  1.000000       q =  2.000000       d =  1.000000       b =  0.000000     t =  0.000000

alpha -2.075390  0.369489 -0.641213 -0.355389
se_alpha  0.303624  0.145543  0.152563  0.173626

t-stat(alpha)-6.835406  2.538687 -4.202940 -2.046857
|AR roots|  0.369489
|MA roots|  0.997494  0.356281

R²  0.261398 SIC  9.125922          max P[Q-stats]  0.011000             P[Q-stats(1)]  0.002000
D-W  1.873029 JB  0.582535           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.006000

            P[Q-stats(3)]  0.007000
Southwest       p =  0.000000       q =  2.000000       d =  1.000000       b =  0.000000     t =  0.000000

alpha  0.902712 -0.460501 -0.535261
se_alpha  0.119819  0.144173  0.141872

t-stat(alpha)  7.533984 -3.194086 -3.772847
|AR roots|
|MA roots|  0.997242  0.536741

R²  0.249560 SIC  7.152773          max P[Q-stats]  0.985000             P[Q-stats(1)]  0.080000
D-W  1.688208 JB  1.560897           min P[Q-stats]  0.080000             P[Q-stats(2)]  0.154000

            P[Q-stats(3)]  0.192000
Av. fares       p =  0.000000       q =  3.000000       d =  1.000000       b =  0.000000     t =  0.000000

alpha -2.576300  0.573635 -0.571335 -0.930671
se_alpha  0.497620  0.043487  0.032299  0.053338

t-stat(alpha)-5.177241  13.19084 -17.68901 -17.44854
|AR roots|
|MA roots|  0.979554  0.974729  0.974729

R²  0.431063 SIC  7.981590          max P[Q-stats]  0.374000             P[Q-stats(1)]  0.011000
D-W  2.375552 JB  0.213731           min P[Q-stats]  0.011000             P[Q-stats(2)]  0.027000

            P[Q-stats(3)]  0.062000

Figure 140: Best ARMA models for differentiated dependant variable (i.e. best ARIMA(p,1,q)
models) in filtered data.
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American       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  1.000000
alpha  574.6830 -88.83975 -1.640269  0.882115  0.385701

se_alpha  13.56196  21.54177  0.589527  0.095828  0.093419
t-stat(alpha)  42.37462 -4.124070 -2.782348  9.205166  4.128723
|AR roots|
|MA roots|  0.621048  0.621048

R²  0.934305 SIC  9.217373          max P[Q-stats]  0.850000             P[Q-stats(1)]  0.358000
D-W  2.176079 JB  6.687768           min P[Q-stats]  0.358000             P[Q-stats(2)]  0.595000

            P[Q-stats(3)]  0.425000
Continental       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000

alpha  463.9405 -51.42751  0.940090  0.567324
se_alpha  9.934567  13.91948  0.077616  0.083775

t-stat(alpha)  46.69962 -3.694642  12.11209  6.771970
|AR roots|
|MA roots|  0.753209  0.753209

R²  0.739066 SIC  9.350545          max P[Q-stats]  0.000000             P[Q-stats(1)]  0.000000
D-W  2.121524 JB  2.325072           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.000000

            P[Q-stats(3)]  0.000000
Delta       p =  3.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  379.8326  0.836018 -0.811370  0.769838  0.426887  0.849721

se_alpha  26.79139  0.107980  0.131557  0.099230  0.109506  0.097860
t-stat(alpha)  14.17741  7.742305 -6.167449  7.758092  3.898309  8.683040
|AR roots|  0.928530  0.928530  0.892909
|MA roots|  0.921803  0.921803

R²  0.905418 SIC  8.799172          max P[Q-stats]  0.935000             P[Q-stats(1)]  0.026000
D-W  1.898956 JB  9.078859           min P[Q-stats]  0.026000             P[Q-stats(2)]  0.085000

            P[Q-stats(3)]  0.103000
Northwest       p =  0.000000       q =  4.000000       d =  1.000000       b =  1.000000     t =  1.000000

alpha -6.635491 -6.108298  0.196231 -0.602622 -0.945106 -0.271605  0.826250
se_alpha  0.652090  0.978022  0.033076  0.097917  0.104691  0.094669  6.93E-05

t-stat(alpha)-10.17573 -6.245564  5.932793 -6.154409 -9.027595 -2.868982  11916.88
|AR roots|
|MA roots|  0.997494  0.997494  0.911266  0.911266

R²  0.653362 SIC  8.336151          max P[Q-stats]  0.082000             P[Q-stats(1)]  0.050000
D-W  1.799905 JB  2.102372           min P[Q-stats]  0.002000             P[Q-stats(2)]  0.033000

            P[Q-stats(3)]  0.004000
United       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000
alpha  506.1110 -77.86129  1.064661  0.673172

se_alpha  9.798012  13.35465  0.092880  0.092301
t-stat(alpha)  51.65446 -5.830275  11.46275  7.293217
|AR roots|
|MA roots|  0.820470  0.820470

R²  0.847939 SIC  9.119888          max P[Q-stats]  0.668000             P[Q-stats(1)]  0.256000
D-W  1.981516 JB  4.486529           min P[Q-stats]  0.129000             P[Q-stats(2)]  0.344000

            P[Q-stats(3)]  0.324000
US       p =  0.000000       q =  2.000000       d =  0.000000       b =  0.000000     t =  1.000000

alpha  465.1703 -2.064267  1.007156  0.611885
se_alpha  12.42576  0.327728  0.073972  0.053711

t-stat(alpha)  37.43596 -6.298722  13.61534  11.39222
|AR roots|
|MA roots|  0.782231  0.782231

R²  0.884305 SIC  8.898536          max P[Q-stats]  0.514000             P[Q-stats(1)]  0.514000
D-W  2.147299 JB  0.198258           min P[Q-stats]  0.011000             P[Q-stats(2)]  0.171000

            P[Q-stats(3)]  0.275000
Southwest       p =  0.000000       q =  3.000000       d =  0.000000       b =  1.000000     t =  1.000000

alpha  191.2149 -15.54111  1.321151  0.507582 -0.485910 -0.900402
se_alpha  2.219953  2.749888  0.084972  0.040512  0.032115  0.054744

t-stat(alpha)  86.13462 -5.651542  15.54803  12.52921 -15.13021 -16.44746
|AR roots|
|MA roots|  0.966255  0.966255  0.964392

R²  0.844654 SIC  6.844582          max P[Q-stats]  0.840000             P[Q-stats(1)]  0.043000
D-W  1.629990 JB  0.399937           min P[Q-stats]  0.043000             P[Q-stats(2)]  0.075000

            P[Q-stats(3)]  0.149000
Av. fares       p =  1.000000       q =  3.000000       d =  0.000000       b =  1.000000     t =  1.000000

alpha  437.6050 -46.32937 -1.011687  0.545707  0.414444 -0.365279 -0.972371
se_alpha  7.892496  7.343300  0.223626  0.151554  0.037636  0.033268  0.062872

t-stat(alpha)  55.44571 -6.309066 -4.524019  3.600737  11.01198 -10.97989 -15.46599
|AR roots|  0.545707
|MA roots|  0.997463  0.997463  0.977325

R²  0.934901 SIC  7.829682          max P[Q-stats]  0.855000             P[Q-stats(1)]  0.164000
D-W  2.026326 JB  0.953751           min P[Q-stats]  0.164000             P[Q-stats(2)]  0.174000

            P[Q-stats(3)]  0.265000

Figure 141: Best ARIMA models for filtered data (with possible use of a trend variable and a
dummy variable).
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American       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  1.000000
alpha  580.3625 -87.85106 -1.650983  0.860514  0.370623

se_alpha  13.18745  21.04902  0.574834  0.094353  0.092009
t-stat(alpha)  44.00870 -4.173642 -2.872104  9.120151  4.028100
|AR roots|
|MA roots|  0.608788  0.608788

R²  0.934410 SIC  9.195063          max P[Q-stats]  0.841000             P[Q-stats(1)]  0.268000
D-W  2.220186 JB  4.988802           min P[Q-stats]  0.268000             P[Q-stats(2)]  0.517000

            P[Q-stats(3)]  0.358000
Continental       p =  0.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000

alpha  466.3134 -51.89094  0.926233  0.548353
se_alpha  9.208430  12.92411  0.076501  0.083744

t-stat(alpha)  50.63983 -4.015049  12.10751  6.547973
|AR roots|
|MA roots|  0.740508  0.740508

R²  0.734066 SIC  9.222188          max P[Q-stats]  0.506000             P[Q-stats(1)]  0.212000
D-W  2.202367 JB  2.128731           min P[Q-stats]  0.046000             P[Q-stats(2)]  0.046000

            P[Q-stats(3)]  0.098000
Delta       p =  4.000000       q =  3.000000       d =  0.000000       b =  0.000000     t =  0.000000
alpha  362.4295  1.419925 -1.121853  1.119001 -0.458336 -0.408297  0.424080 -0.981864

se_alpha  16.44449  0.124404  0.163324  0.161361  0.112397  0.054459  0.041062  0.044931
t-stat(alpha)  22.03957  11.41379 -6.868886  6.934751 -4.077817 -7.497300  10.32773 -21.85263
|AR roots|  0.941583  0.877047  0.877047  0.632820
|MA roots|  0.997486  0.997486  0.986820

R²  0.935396 SIC  8.853235          max P[Q-stats]  0.770000             P[Q-stats(1)]  0.037000
D-W  1.815138 JB  1.689929           min P[Q-stats]  0.037000             P[Q-stats(2)]  0.112000

            P[Q-stats(3)]  0.219000
Northwest       p =  4.000000       q =  3.000000       d =  0.000000       b =  0.000000     t =  1.000000

alpha  556.4219 -2.865983 -0.494535 -0.395445 -0.393415  0.469012  1.427952  1.273337  0.813511
se_alpha  8.218436  0.210066  0.144094  0.131545  0.124337  0.133880  0.105101  0.148822  0.081167

t-stat(alpha)  67.70410 -13.64325 -3.432030 -3.006146 -3.164100  3.503215  13.58651  8.556115  10.02267
|AR roots|  0.986488  0.948656  0.948656  0.528292
|MA roots|  0.976931  0.912535  0.912535

R²  0.961141 SIC  8.208349          max P[Q-stats]  0.852000             P[Q-stats(1)]  0.251000
D-W  1.887232 JB  2.507287           min P[Q-stats]  0.147000             P[Q-stats(2)]  0.494000

            P[Q-stats(3)]  0.587000
United       p =  1.000000       q =  2.000000       d =  0.000000       b =  1.000000     t =  0.000000
alpha  522.3056 -88.50288 -0.297339  1.176809  0.780686

se_alpha  8.217776  11.49746  0.064204  0.090384  0.088512
t-stat(alpha)  63.55802 -7.697605 -4.631183  13.02007  8.820084
|AR roots|  0.297339
|MA roots|  0.883564  0.883564

R²  0.857745 SIC  9.190899          max P[Q-stats]  0.655000             P[Q-stats(1)]  0.135000
D-W  1.720066 JB  4.900801           min P[Q-stats]  0.069000             P[Q-stats(2)]  0.159000

            P[Q-stats(3)]  0.266000
US       p =  1.000000       q =  2.000000       d =  1.000000       b =  0.000000     t =  0.000000

alpha -2.784931  0.457360 -0.807764 -0.436972
se_alpha  1.209650  0.044404  0.160582  0.145174

t-stat(alpha)-2.302261  10.29997 -5.030231 -3.009992
|AR roots|  0.457360
|MA roots|  1.178538  0.370774

R²  0.400083 SIC  8.928315          max P[Q-stats]  0.001000             P[Q-stats(1)]  0.000000
D-W  2.234239 JB  2.103985           min P[Q-stats]  0.000000             P[Q-stats(2)]  0.000000

            P[Q-stats(3)]  0.000000
Southwest       p =  0.000000       q =  3.000000       d =  0.000000       b =  1.000000     t =  1.000000

alpha  197.1474 -16.46539  1.327309  0.614065 -0.531715 -0.915340
se_alpha  2.356047  3.057518  0.093868  0.074627  0.085253  0.043895

t-stat(alpha)  83.67721 -5.385216  14.14012  8.228480 -6.236935 -20.85293
|AR roots|
|MA roots|  0.980219  0.980219  0.952656

R²  0.843484 SIC  6.886999          max P[Q-stats]  0.717000             P[Q-stats(1)]  0.036000
D-W  1.706585 JB  1.648904           min P[Q-stats]  0.036000             P[Q-stats(2)]  0.070000

            P[Q-stats(3)]  0.116000
Av. fares       p =  1.000000       q =  3.000000       d =  0.000000       b =  1.000000     t =  1.000000

alpha  447.0397 -47.37277 -0.978832  0.545304  0.410159 -0.374553 -0.978057
se_alpha  8.492168  7.507944  0.226122  0.154522  0.048518  0.032738  0.067188

t-stat(alpha)  52.64141 -6.309686 -4.328773  3.528977  8.453678 -11.44095 -14.55699
|AR roots|  0.545304
|MA roots|  0.997475  0.997475  0.983015

R²  0.937661 SIC  7.875666          max P[Q-stats]  0.893000             P[Q-stats(1)]  0.146000
D-W  2.075813 JB  1.341188           min P[Q-stats]  0.146000             P[Q-stats(2)]  0.188000

            P[Q-stats(3)]  0.308000

Figure 142: Best ARIMA models for non-filtered data (with possible use of a trend variable and a
dummy variable).
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A.2 EViews6 Code

This code prepares some pre-treated DOT and some economic data for use by the authors. All

EViews6 code for further data treatment, modelling building; and analysis/forecasting was written

exclusively by the authors. The first code is a tool to sort the Coupon database in order to get

the quarterly average fares and number of passengers per carrier. The second program was used

to perform the ARIMA regressions on these data of fares and passengers, and to pick up the best

one according to the Schwarz Information Criterion.

wfopen complete_coupon_text.wf1

scalar nb_carriers=7

matrix(65,nb_carriers+1) pax

matrix(65,nb_carriers+1) fares

for !k=1 to nb_carriers

for !t=1 to 65

sample paxfares @all if carriercode=!k and time=!t

smpl paxfares

series pax_q=group01(7)

series fares_q=group01(14)

pax(!t,!k)=@sum(pax_q)

series mult=pax_q*fares_q

fares(!t,!k)=@sum(mult)/pax(!t,!k)

delete paxfares

next

next
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for !t=1 to 65

scalar sumpax=0

scalar avfares=0

for !k=1 to nb_carriers

sumpax=sumpax+pax(!t,!k)

avfares=avfares+fares(!t,!k)*pax(!t,!k)

next

pax(!t,nb_carriers+1)=sumpax

fares(!t,nb_carriers+1)=avfares/sumpax

next

fares.write fares.txt

pax.write pax.txt
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wfcreate u 65

’...........................................VARIABLES.........................

scalar nb_carriers=8 ’{1,2,...8,...}

scalar maxlags=4 ’{0,1,...4,...}

scalar maxdifferencing=0 ’{0,1,2,...}

scalar trend=0 ’{0,1} 1: use of a trend variable

scalar breakdown=0 ’{0,1} 1: use of break var. at t=35

scalar filter=1 ’{0: no filter; 1:filtered data}

’.............................................................................

’..................................MATRIX OF RESULTS..........................

table(10*nb_carriers+1,20) results_bestARMA

matrix(65,nb_carriers) matrix_fares

’.............................................................................

’.........................CREATION OF continuous SERIES fare!k................

if filter=1 then

matrix_fares.read(t=txt,dropstrings) fares.txt

matrix_fares(1,5)=NA ’missing data from Northwest

else

matrix_fares.read(t=txt,dropstrings) fares2.txt

matrix_fares(12,7)=NA

matrix_fares(13,7)=NA

matrix_fares(12,8)=NA

matrix_fares(13,8)=NA

endif

’...............................................................................
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’........................................COMPUTATIONS...........................

for !k=1 to nb_carriers

vector vect=@columnextract(matrix_fares,!k)

series fare!k

mtos(vect,fare!k)

scalar opt_sic=100

scalar tstat=10

scalar opt_p=0

scalar opt_q=0

scalar opt_d=0

scalar opt_b=0

scalar opt_t=0

scalar opt_qprob_min=0

matrix(50,1) opt_correl

for !p=0 to maxlags

%ar=""

if !p>0 then

for !p2=1 to !p

%ar=%ar+"ar("+@str(!p2)+") "

next

endif

for !q=0 to maxlags

%ma=""

if !q>0 then

for !q2=1 to !q
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%ma=%ma+"ma("+@str(!q2)+") "

next

endif

for !b=0 to breakdown

%break=""

if !b>0 then

series dummy=(@trend>33)

dummy(35)=0.22

%break="dummy "

endif

for !t=0 to trend

%trend=""

if !t>0 then

%trend="@trend "

endif

%arma= %break + %trend +%ar + %ma

for !d=0 to maxdifferencing

%fare="fare!k"

if !d>0 then

%fare="d(fare!k,!d)"

endif

equation fare_!k!p!d!q!b!t.ls {%fare} c {%arma} ’ARMA(p,q)

for !r=1 to !p+!q+!t+!b+1

if fare_!k!p!d!q!b!t.@stderrs(!r,1)<>NA then

if @abs(fare_!k!p!d!q!b!t.@tstats(!r))>1.96 then
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else

tstat=tstat-1

endif

else

tstat=0

endif

next

scalar qprob_min=0

matrix(50,1) temp2

if (filter=1 and (!k!p!d!q!b!t=711001 or !k!p!d!q!b!t=430411

or !k!p!d!q!t=80001 or !k!p!d!q!b!t=200210)) then

else

freeze(temp) fare_!k!p!d!q!b!t.correl

for !i=1 to 50

temp2(!i,1)=@val(temp(!i,7))

next

qprob_min=@min (temp2)

endif

if opt_sic>fare_!k!p!d!q!b!t.@schwarz and tstat=10 then ’min{SIC_k}

opt_sic=fare_!k!p!d!q!b!t.@schwarz

opt_p=!p

opt_q=!q

opt_d=!d

opt_b=!b

opt_t=!t
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opt_qprob_min=qprob_min

opt_correl=temp2

endif

tstat=10

delete temp*

next

next

next

next

next

’.................................................................................

’.........................computations of roots...................................

!p=opt_p

!q=opt_q

!d=opt_d

!b=opt_b

!t=opt_t

matrix root_ar

matrix root_ma

if maxlags>0 and (opt_p>0 or opt_q>0) then

fare_!k!p!d!q!b!t.arma(type=root,save=root)

close fare_!k!p!d!q!b!t

endif

fare_!k!p!d!q!b!t.makeresids residuals

freeze(residu) residuals.stats
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’...................................................................................

’.......................................RESULTS BEST_ARMA...........................

results_bestARMA((!k-1)*10+1,4)=!p ’p_opt

results_bestARMA((!k-1)*10+1,6)=!q ’q_opt

results_bestARMA((!k-1)*10+1,8)=!d ’q_opt

results_bestARMA((!k-1)*10+1,10)=!b ’q_opt

results_bestARMA((!k-1)*10+1,12)=!t ’q_opt

for !r=1 to !p+!q+!b+!t+1

results_bestARMA((!k-1)*10+2,!r+1)=fare_!k!p!d!q!b!t.@coefs(!r,1) ’apha

results_bestARMA((!k-1)*10+3,!r+1)=fare_!k!p!d!q!b!t.@stderrs(!r,1) ’se_apha

if fare_!k!p!d!q!b!t.@stderrs(!r,1)>0 then

results_bestARMA((!k-1)*10+4,!r+1)=fare_!k!p!d!q!b!t.@tstats(!r) ’t-stat(alpha)

endif

next

for !r=1 to !p

results_bestARMA((!k-1)*10+5,!r+1)=root_ar(!r,3) ’AR roots

next

for !r=1 to !q

results_bestARMA((!k-1)*10+6,!r+1)=root_ma(!r,3) ’MA roots

next

results_bestARMA((!k-1)*10+7,2)=fare_!k!p!d!q!b!t.@r2 ’R

results_bestARMA((!k-1)*10+7,5)=opt_sic ’SIC

results_bestARMA((!k-1)*10+8,2)=fare_!k!p!d!q!b!t.@dw ’Durbin-Watson

results_bestARMA((!k-1)*10+8,5)=residu(14,2) ’Jarque-Bera

!i=1
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while opt_correl(!i,1)=NA

!i=!i+1

wend

results_bestARMA((!k-1)*10+7,11)=opt_correl(!i,1) ’Q_stat(1)

results_bestARMA((!k-1)*10+8,11)=opt_correl(!i+1,1) ’Q_stat(2)

results_bestARMA((!k-1)*10+9,11)=opt_correl(!i+2,1) ’Q_stat(3)

results_bestARMA((!k-1)*10+7,8)=@max(opt_correl) ’Q_stat max

results_bestARMA((!k-1)*10+8,8)=@min(opt_correl) ’Q_stat minimum

’.........................................................................................

’......................................LEGENDS and FORMATTING.............................

results_bestARMA(1,1)="American"

results_bestARMA(11,1)="Continental"

results_bestARMA(21,1)="Delta"

results_bestARMA(31,1)="Northwest"

results_bestARMA(41,1)="United"

results_bestARMA(51,1)="US"

results_bestARMA(61,1)="Southwest"

results_bestARMA(71,1)="Av. fares"

!coord=(!k-1)*10+2

!coord2=(!k-1)*10+1

!coord3=(!k-1)*10+5

!coord4=(!k-1)*10+7

!coord5=(!k-1)*10+10

results_bestARMA.setlines(!coord2) +t

results_bestARMA.setlines(!coord) +t
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results_bestARMA.setlines(!coord3) +t

results_bestARMA.setlines(!coord4) +t

results_bestARMA.setlines(a) +r

results_bestARMA.setfillcolor(!coord2) @rgb(50,255,0)

results_bestARMA.settextcolor(!coord,2) @rgb(0,0,255)

results_bestARMA.setwidth(2:20) 9

results_bestARMA.setheight(!coord5) 0

results_bestARMA(!coord,1)="alpha"

results_bestARMA(!coord+1,1)="se_alpha"

results_bestARMA(!coord+2,1)="t-stat(alpha)"

results_bestARMA(!coord+3,1)="|AR roots|"

results_bestARMA(!coord+4,1)="|MA roots|"

results_bestARMA(!coord+5,1)="R"

results_bestARMA(!coord+5,4)="SIC"

results_bestARMA(!coord+6,1)="D-W"

results_bestARMA(!coord+6,4)="JB"

results_bestARMA(!coord+5,6)=" max P[Q-stats]"

results_bestARMA(!coord+6,6)=" min P[Q-stats]"

results_bestARMA(!coord+5,9)=" P[Q-stats(1)]"

results_bestARMA(!coord+6,9)=" P[Q-stats(2)]"

results_bestARMA(!coord+7,9)=" P[Q-stats(3)]"

results_bestARMA(!coord-1,3)=" p ="

results_bestARMA(!coord-1,5)=" q ="

results_bestARMA(!coord-1,7)=" d ="

results_bestARMA(!coord-1,9)=" b ="
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results_bestARMA(!coord-1,11)=" t ="

’......................................................................................

’.............................FORECAST.................................................

pagestruct(end=73)

series dummy=(@trend>33)

dummy(35)=0.22

rename fare_!k!p!d!q!b!t carrier_!k

smpl 66 73

carrier_!k.forecast ffare!k ffare_se!k

smpl 58 65

carrier_!k.forecast ffare2!k ffare2_se!k

smpl @all

graph gr!k.line ffare2!k ffare!k fare!k ffare!k+ffare_se!k ffare!k-ffare_se!k

’gr!k.legend -display

gr!k.name(3)

gr!k.name(4)

gr!k.name(5)

gr!k.name(6)

gr!k.name(7)

gr!k.name(1) forecast!k1

gr!k.name(2) forecast!k2

%gr=%gr+" gr" + @str(!k)

%f1=%f1+" ffare" + @str(!k)

%f2=%f2+" ffare2" + @str(!k)

group fare_g1 {%f1}
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group fare_g2 {%f2}

’.......................................................................................

’........................................................................................

delete opt*

delete residu*

delete qprob_min

delete tstat

delete root_*

delete vect

’.......................................................................................

’.......................................................................................

next

’........................................................................................

’........................................................................................

graph forecast.merge {%gr}

matrix matrix_faresf=@convert(fare_g1)

matrix matrix_faresf2=@convert(fare_g2)

delete gr*

delete ffare*

delete fare_*

show forecast

show results_bestarma
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A.3 Excel VBA-code for Form 41 data treatment

The following VBA programs were written exclusively by the authors, and were used to treat and

convert the Form 41 data into a format that could be used for modeling in EViews6.

Sub spaltensort()

Dim i As Integer, w As Integer

Dim letztespalte As Integer, namespalte As Integer, _

yearspalte As Integer, quarterspalte As Integer

Dim name As String

For w = 1 To Worksheets.Count

letztespalte = 0

’Carriername verschieben

For i = 1 To 99

If Worksheets(w).Cells(1, i).Value = "UNIQUE_CARRIER_NAME" Then

namespalte = i

End If

Next

If Not namespalte = 1 Then

Worksheets(w).Columns(namespalte).Cut

Worksheets(w).Columns(1).Insert Shift:=xlToRight
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End If

namespalte = 3

’letzte Spalte finden

For i = 1 To 99

If Worksheets(w).Cells(1, i).Value = "" Then

letztespalte = i - 1

End If

Next i

’ Quarter verschieben

For i = 1 To 99

If Worksheets(w).Cells(1, i).Value = "QUARTER" Then

quarterspalte = i

End If

Next

If Not quarterspalte = 1 Then

Worksheets(w).Columns(quarterspalte).Cut

Worksheets(w).Columns(1).Insert Shift:=xlToRight

End If

quarterspalte = 2

’Jahr verschieben

For i = 1 To 99

If Worksheets(w).Cells(1, i).Value = "YEAR" Then
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yearspalte = i

End If

Next

If Not yearspalte = 1 Then

Worksheets(w).Columns(yearspalte).Cut

Worksheets(w).Columns(1).Insert Shift:=xlToRight

End If

yearspalte = 1

’worksheet next:

Next

--------------------------------------

End Sub

Sub employquarter()

Dim w As Integer, i As Integer, z As Integer

For w = 1 To Worksheets.Count

If Left(Worksheets(w).name, 4) = "EMPL" Then

For i = 1 To 99

If Worksheets(w).Cells(1, i).Value = "" Then
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Worksheets(w).Cells(1, i).Value = "QUARTER"

For z = 2 To Worksheets(w).Cells(Rows.Count, 1).End(xlUp).row

Worksheets(w).Cells(z, i).Value = "1"

Next

End If

Next

End If

Next

End Sub

--------------------------------------

Sub entfquarter()

For w = 1 To Worksheets.Count

If Left(Worksheets(w).name, 4) = "EMPL" Then

Worksheets(w).Columns("J:CU").ClearContents

End If

Next

End Sub

--------------------------------------
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Sub headercheck()

Dim w As Integer

Dim i As Integer, breite As Integer

For w = 2 To Worksheets.Count

If Left(Worksheets(w).name, 4) = Left(Worksheets(w - 1).name, 4) Then

breite = 1

Do While Worksheets(w).Cells(1, breite).Value <> ""

breite = breite + 1

Loop

For i = 1 To breite

If Worksheets(w).Cells(1, i).Value <> _

Worksheets(w - 1).Cells(1, i).Value Then

Debug.Print Worksheets(w).name; _

Worksheets(w).Cells(1, i).Value; Worksheets(w - 1).Cells(1, i).Value

End If

Next

End If

Next

End Sub
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--------------------------------------

Sub identitycheck()

Dim lastrow As Integer, i As Integer

lastrow = Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row

For i = 2 To lastrow

If Worksheets(1).Cells(i, 3).Value <> Worksheets(1).Cells(i, 29).Value _

Or Worksheets(1).Cells(i, 3).Value <> Worksheets(1).Cells(i, 38).Value _

Or Worksheets(1).Cells(i, 2).Value <> Worksheets(1).Cells(i, 28).Value _

Or Worksheets(1).Cells(i, 2).Value <> Worksheets(1).Cells(i, 37).Value _

Or Worksheets(1).Cells(i, 1).Value <> Worksheets(1).Cells(i, 27).Value _

Or Worksheets(1).Cells(i, 1).Value <> Worksheets(1).Cells(i, 36).Value Then

Debug.Print i

End If

Next

End Sub

--------------------------------------

Sub zusammenfassen()
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Dim i As Integer, w As Integer, z As Integer, lastrow As Integer, y As Integer

Dim letztespalte As Integer, namespalte As Integer, yearspalte As Integer,_

quarterspalte As Integer

Dim name As String, year As Integer, quarter As Integer

Dim gesuchtespalte As String

For w = 2 To Worksheets.Count

Debug.Print Worksheets(w).name

’letzte freie zeile finden

lastrow = Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row

For i = 2 To lastrow

If Worksheets(w).Cells(i, 1).Value <> "" _

And Worksheets(w).Cells(i, 2).Value <> "" Then

z = 2

name = Worksheets(w).Cells(i, 3).Value

quarter = Worksheets(w).Cells(i, 2).Value

year = Worksheets(w).Cells(i, 1).Value

If name = "" Then

z = Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row + 1

’namespalte = Worksheets(w).Cells(1, 4).Value

If Left(Worksheets(w).name, 4) = "EMPL" Then

Worksheets(w).Range(Worksheets(w).Cells(i, 1), _
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Worksheets(w).Cells(i, 3)).Copy Destination:=Worksheets(1).Cells(z, 1)

Worksheets(w).Range(Worksheets(w).Cells(i, 1), _

Worksheets(w).Cells(i, 9)).Cut Destination:=Worksheets(1).Cells(z, 27)

ElseIf Left(Worksheets(w).name, 4) = "ACCR" Then

Worksheets(w).Range(Worksheets(w).Cells(i, 1), _

Worksheets(w).Cells(i, 3)).Copy Destination:=Worksheets(1).Cells(z, 1)

Worksheets(w).Range(Worksheets(w).Cells(i, 1), _

Worksheets(w).Cells(i, 9)).Cut Destination:=Worksheets(1).Cells(z, 36)

Else

Debug.Print Worksheets(w).name

MsgBox ("Fehler!")

End If

End If

Do Until z > lastrow Or Worksheets(1).Cells(z, 2).Value = quarter_

And Worksheets(1).Cells(z, 1).Value = year And Worksheets(1).Cells(z, 3).Value = name

Do While Worksheets(1).Cells(z, 1).Value <> year And z < lastrow + 1

z = z + 1

Loop

Do While Worksheets(1).Cells(z, 2).Value <> quarter And z < lastrow + 1

z = z + 1

Loop

Do While Worksheets(1).Cells(z, 3).Value <> name And z < lastrow + 1
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z = z + 1

Loop

If Left(Worksheets(w).name, 4) = "EMPL" Then

Do While Worksheets(1).Cells(z, 27).Value <> "" And z < lastrow + 1

z = z + 1

Loop

ElseIf Left(Worksheets(w).name, 4) = "ACCR" Then

Do While Worksheets(1).Cells(z, 36).Value <> "" And z < lastrow + 1

z = z + 1

Loop

End If

Loop

’Debug.Print z, Worksheets(1).Cells(z, 3).Value, name, year, quarter

If Worksheets(1).Cells(z, 2).Value <> quarter Or _

Worksheets(1).Cells(z, 1).Value <> year Or Worksheets(1).Cells(z, 3).Value <> name Then

If z <> lastrow + 1 Then

Debug.Print z, Worksheets(1).Cells(z, 2).Value, _

quarter, Worksheets(1).Cells(z, 1).Value, year, Worksheets(1).Cells(z, 3).Value, name

Else

z = Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row + 1

’namespalte = Worksheets(w).Cells(1, 4).Value
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If Left(Worksheets(w).name, 4) = "EMPL" Then

Worksheets(w).Range(Worksheets(w).Cells(i, 1), _

Worksheets(w).Cells(i, 3)).Copy Destination:=Worksheets(1).Cells(z, 1)

Worksheets(w).Range(Worksheets(w).Cells(i, 1), _

Worksheets(w).Cells(i, 9)).Cut Destination:=Worksheets(1).Cells(z, 27)

ElseIf Left(Worksheets(w).name, 4) = "ACCR" Then

Worksheets(w).Range(Worksheets(w).Cells(i, 1), _

Worksheets(w).Cells(i, 3)).Copy Destination:=Worksheets(1).Cells(z, 1)

Worksheets(w).Range(Worksheets(w).Cells(i, 1), _

Worksheets(w).Cells(i, 9)).Cut Destination:=Worksheets(1).Cells(z, 36)

Else

Debug.Print Worksheets(w).name

MsgBox ("Fehler!")

End If

End If

’Debug.Print z, Worksheets(1).Cells(z, 2).Value, _

quarter, Worksheets(1).Cells(z, 1).Value, year, Worksheets(1).Cells(z, 3).Value, name

’MsgBox ("Error. nicht richtige zeile erwischt. " & _

name & " nicht gleich " & Worksheets(1).Cells(z, 3).Value)

ElseIf name <> "" Then

If Left(Worksheets(w).name, 4) = "EMPL" Then

Worksheets(w).Range(Worksheets(w).Cells(i, 1), _

Worksheets(w).Cells(i, 9)).Cut Destination:=Worksheets(1).Cells(z, 27)

ElseIf Left(Worksheets(w).name, 4) = "ACCR" Then
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Worksheets(w).Range(Worksheets(w).Cells(i, 1), _

Worksheets(w).Cells(i, 9)).Cut Destination:=Worksheets(1).Cells(z, 36)

Else

Debug.Print Worksheets(w).name

MsgBox ("Error")

End If

End If

End If

If w = Worksheets.Count And i = lastrow Then

Debug.Print i, lastrow, Worksheets.Count, w

Exit Sub

End If

Next

Next

End Sub

--------------------------------------

Sub financialzusammenfuegen()

Dim breite As Integer, hoehe As Integer
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For w = 2 To Worksheets.Count

If Left(Worksheets(w).name, 4) = "FINA" Then

breite = 1

hoehe = 1

Do While Worksheets(w).Cells(1, breite).Value <> ""

breite = breite + 1

Loop

hoehe = Worksheets(w).Cells(Rows.Count, 1).End(xlUp).row

Worksheets(w).Range(Worksheets(w).Cells(2, 1), _

Worksheets(w).Cells(hoehe, breite - 1)).Cut _

Destination:=Worksheets(1).Cells(Worksheets(1)._

Cells(Rows.Count, 1).End(xlUp).row + 1, 1)

End If

Next

End Sub

--------------------------------------

Sub spaltensort()

Dim w As Integer
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For w = 1 To Worksheets.Count

Worksheets(w).Range("A1:ZZ999").Sort Key1:=Worksheets(w).Range("A1"),_

Order1:=xlAscending, Orientation:=xlColumns

Next

End Sub

--------------------------------------

Sub spaltsort2()

With ActiveWorkbook.Worksheets(3).Sort

.SetRange Range("A1:Z350")

.Header = xlYes

.MatchCase = False

.Orientation = xlLeftToRight

.SortMethod = xlPinYin

.Apply

End With

End Sub

--------------------------------------

Sub sum_regions()
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Dim i As Integer, s As Integer

Dim row As Integer

row = Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row

i = 2

Do Until i > row

If Cells(i, 1).Value = Cells(i + 1, 1).Value And Cells(i, 2).Value = _

Cells(i + 1, 2).Value And Cells(i, 3).Value = Cells(i + 1, 3).Value Then

For s = 4 To 26

Cells(i, s).Value = Cells(i, s).Value + Cells(i + 1, s).Value

Next

For s = 30 To 35

Cells(i, s).Value = Cells(i, s).Value + Cells(i + 1, s).Value

Next

Cells(i, 39).Value = Cells(i, 39).Value + Cells(i + 1, 39).Value

Rows(i + 1).Delete

row = row - 1

i = i - 1

End If

i = i + 1

Debug.Print i

Loop
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End Sub

--------------------------------------

Sub identitycheck2()

Dim lastrow As Integer, i As Integer

lastrow = Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row

For i = 2 To lastrow

If Worksheets(1).Cells(i, 3).Value <> Worksheets(1).Cells(i, 29).Value _

And Worksheets(1).Cells(i, 29).Value <> "" _

Or Worksheets(1).Cells(i, 3).Value <> Worksheets(1).Cells(i, 38).Value _

And Worksheets(1).Cells(i, 38).Value <> "" _

Or Worksheets(1).Cells(i, 2).Value <> Worksheets(1).Cells(i, 28).Value _

And Worksheets(1).Cells(i, 28).Value <> "" _

Or Worksheets(1).Cells(i, 2).Value <> Worksheets(1).Cells(i, 37).Value _

And Worksheets(1).Cells(i, 37).Value <> "" _

Or Worksheets(1).Cells(i, 1).Value <> Worksheets(1).Cells(i, 27).Value _

And Worksheets(1).Cells(i, 27).Value <> "" _

Or Worksheets(1).Cells(i, 1).Value <> Worksheets(1).Cells(i, 36).Value _

And Worksheets(1).Cells(i, 36).Value <> "" Then
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Debug.Print i,

End If

Next

End Sub

--------------------------------------

Sub cellformat()

Dim lastrow As Integer

Dim s As Integer, i As Integer

lastrow = Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row

For s = 4 To 26

For i = 2 To lastrow

Worksheets(1).Cells(i, s).Value = CDbl(Worksheets(1).Cells(i, s).Value) / 100

Next

Next

For i = 2 To lastrow

Worksheets(1).Cells(i, 39).Value = CDbl(Worksheets(1).Cells(i, 39).Value) / 100

Next
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End Sub

--------------------------------------

Sub create_ws()

For i = 4 To 26

Worksheets.Add after:=Worksheets(Worksheets.Count)

Worksheets(Worksheets.Count).name = Worksheets(1).Cells(1, i).Value

Next

For i = 30 To 36

Worksheets.Add after:=Worksheets(Worksheets.Count)

Worksheets(Worksheets.Count).name = Worksheets(1).Cells(1, i).Value

Next

Worksheets.Add after:=Worksheets(Worksheets.Count)

Worksheets(Worksheets.Count).name = Worksheets(1).Cells(1, 39).Value

End Sub
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--------------------------------------

Sub singlesheets_financial()

Dim i As Integer, c As Integer, s As Integer, quarter As Integer

Dim name As String

For i = 2 To Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row - 1

quarter = (Worksheets(1).Cells(i, 1).Value - 1990) * 4 + Worksheets(1).Cells(i, 2).Value

If Worksheets(1).Cells(i, 3).Value = "American Airlines Inc." Then

c = 2

ElseIf Worksheets(1).Cells(i, 3).Value = "Continental Air Lines Inc." Then

c = 3

ElseIf Worksheets(1).Cells(i, 3).Value = "Delta Air Lines Inc." Then

c = 4

ElseIf Worksheets(1).Cells(i, 3).Value = "Northwest Airlines Inc." Then

c = 5

ElseIf Worksheets(1).Cells(i, 3).Value = "Southwest Airlines Co." Then

c = 6

ElseIf Worksheets(1).Cells(i, 3).Value = "United Air Lines Inc." Then

c = 7

ElseIf Worksheets(1).Cells(i, 3).Value = "US Airways Inc." Then

c = 8

Else

c = 0
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End If

If c <> 0 Then

For s = 4 To 26

name = Worksheets(1).Cells(1, s).Value

Worksheets(name).Cells(quarter + 1, c).Value = Worksheets(1).Cells(i, s).Value

Next

For s = 30 To 35

name = Worksheets(1).Cells(1, s).Value

Worksheets(name).Cells(quarter + 1, c).Value = Worksheets(1).Cells(i, s).Value

Next

Worksheets("ACCR_SALARIES").Cells(quarter + 1, c).Value = _

Worksheets(1).Cells(i, 39).Value

End If

Next

End Sub

--------------------------------------
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Sub inflate_financial()

Dim w As Integer, i As Integer, s As Integer

Dim quarter As Integer, row As Integer

w = 3

Do Until Worksheets(w).name = "GENERAL_MANAGE"

For i = 2 To 68

quarter = Worksheets(w).Cells(i, 1)

row = 2 + (3 * (quarter - 1))

For s = 2 To 8

Worksheets(w).Cells(i, s) = Worksheets(w).Cells(i, s).Value * _

Worksheets("Inflation").Cells(row, 8)

Next

Next

w = w + 1

Worksheets(w).Activate

Loop

End Sub

--------------------------------------
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Sub delete1990()

For w = 3 To Worksheets.Count

Worksheets(w).Range("B2:H13").Delete Shift:=xlUp

Worksheets(w).Range("A69:A80").ClearContents

Next

End Sub

Sub quarterize_employees()

Dim w As Worksheet

Dim i As Integer, s As Integer, z As Integer

Dim a As Integer

Set w = Worksheets("TOTAL")

i = 3

w.Columns(2).Insert

w.Cells(1, 2).Value = "QUARTER"

Do Until w.Cells(i, 1).Value = ""
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If w.Cells(i, 1).Value <> w.Cells(i + 1, 1).Value Then

w.Rows(i).Insert

w.Rows(i).Insert

w.Rows(i).Insert

For s = 3 To 9

a = (w.Cells(i + 3, s).Value - w.Cells(i - 1, s).Value) / 4

For z = 0 To 2

w.Cells(i + z, s).Value = w.Cells(i - 1, s).Value + (z + 1) * a

Next

Next

For z = 0 To 2

w.Cells(i + z, 1).Value = w.Cells(i - 1, 1).Value

w.Cells(i + z, 2).Value = z + 2

Next

w.Cells(i - 1, 2).Value = 1

End If

i = i + 4

Loop

End Sub

--------------------------------------



204

Sub quarterize_pilots()

Dim w As Worksheet

Dim i As Integer, s As Integer, z As Integer

Dim a As Integer

Set w = Worksheets("PILOTS_COPILOTS")

i = 3

w.Columns(2).Insert

w.Cells(1, 2).Value = "QUARTER"

Do Until w.Cells(i, 1).Value = ""

If w.Cells(i, 1).Value <> w.Cells(i + 1, 1).Value Then

w.Rows(i).Insert

w.Rows(i).Insert

w.Rows(i).Insert

For s = 3 To 9

a = (w.Cells(i + 3, s).Value - w.Cells(i - 1, s).Value) / 4

For z = 0 To 2

w.Cells(i + z, s).Value = w.Cells(i - 1, s).Value + (z + 1) * a
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Next

Next

For z = 0 To 2

w.Cells(i + z, 1).Value = w.Cells(i - 1, 1).Value

w.Cells(i + z, 2).Value = z + 2

Next

w.Cells(i - 1, 2).Value = 1

End If

i = i + 4

Loop

End Sub

--------------------------------------

Sub fueldatain1()

Dim breite As Integer, hoehe As Integer

For w = 2 To Worksheets.Count

breite = 1

hoehe = 1

Do While Worksheets(w).Cells(1, breite).Value <> ""

breite = breite + 1
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Loop

hoehe = Worksheets(w).Cells(Rows.Count, 1).End(xlUp).row

Worksheets(w).Range(Worksheets(w).Cells(2, 1), _

Worksheets(w).Cells(hoehe, breite - 1)).Cut _

Destination:=Worksheets(1).Cells(Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row + 1, 1)

Next

End Sub

--------------------------------------

Sub monthtoquarter()

Dim i As Integer, s As Integer

Dim row As Integer

row = Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row

i = 2

Do Until i > row

If Cells(i, 1).Value = Cells(i + 1, 1).Value And _

Cells(i, 2).Value = Cells(i + 1, 2).Value _

And Cells(i, 4).Value = Cells(i + 1, 4).Value Then

For s = 6 To 13
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Cells(i, s).Value = Cells(i, s).Value + _

Cells(i + 1, s).Value

Next

Rows(i + 1).Delete

row = row - 1

i = i - 1

End If

i = i + 1

Loop

End Sub

--------------------------------------

Sub zerotest()

Dim i As Integer, s As Integer

For i = 2 To Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row

Debug.Print i

For s = 6 To 9

If Right(Cells(i, s).Value, 2) <> "00" Then

mbox = ("Zeile" & i & ", Spalte" & s)

End If

Next
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Next

End Sub

--------------------------------------

Sub convertdbl()

Dim i As Integer, s As Integer

For i = 2 To Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row

Debug.Print i

For s = 6 To 9

Cells(i, s).Value = CDbl(Cells(i, s).Value) / 100

Next

Next

End Sub

--------------------------------------



209

Sub carriercodetest()

Dim i As Integer, s As Integer

For i = 2 To Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row - 1

Debug.Print i

For s = 6 To 9

If Cells(i, 4).Value = Cells(i + 1, 4).Value Then

mbox = ("Zeile" & i & ", Spalte" & s)

End If

Next

Next

End Sub

--------------------------------------

Sub inflate()

Dim year As Integer, month As Integer

Dim row As Integer

Dim i As Integer

For i = 2 To Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row
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year = Worksheets(1).Cells(i, 1).Value

month = Worksheets(1).Cells(i, 3).Value

row = (year - 1993) * 12 + month + 1

Worksheets(1).Cells(i, 10).Value = Worksheets(1).Cells(i, 8).Value * _

Worksheets("Inflation").Cells(row, 4)

Worksheets(1).Cells(i, 11).Value = Worksheets(1).Cells(i, 9).Value * _

Worksheets("Inflation").Cells(row, 4)

Worksheets(1).Cells(i, 12).Value = Worksheets(1).Cells(i, 8).Value * _

Worksheets("Inflation").Cells(row, 5)

Worksheets(1).Cells(i, 13).Value = Worksheets(1).Cells(i, 9).Value * _

Worksheets("Inflation").Cells(row, 5)

Next

End Sub

--------------------------------------

Sub inflate2()

Dim year As Integer, quarter As Integer

Dim row As Integer

Dim i As Integer

For i = 2 To Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row
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year = Worksheets(1).Cells(i, 1).Value

quarter = Worksheets(1).Cells(i, 2).Value

row = (year - 1993) * 12 + (quarter - 1) * 3 + 2

Worksheets(1).Cells(i, 13).Value = Worksheets(1).Cells(i, 7).Value * _

Worksheets("Inflation").Cells(row, 8).Value

Worksheets(1).Cells(i, 14).Value = Worksheets(1).Cells(i, 8).Value * _

Worksheets("Inflation").Cells(row, 8).Value

Next

End Sub

--------------------------------------

Sub singlesheets()

Dim i As Integer, c As Integer, x As Integer, quarter As Integer

For i = 2 To Worksheets(1).Cells(Rows.Count, 1).End(xlUp).row - 1

quarter = Worksheets(1).Cells(i, 3).Value

If Worksheets(1).Cells(i, 4).Value = "AA" Then

c = 2

ElseIf Worksheets(1).Cells(i, 4).Value = "CO" Then

c = 3

ElseIf Worksheets(1).Cells(i, 4).Value = "DL" Then

c = 4
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ElseIf Worksheets(1).Cells(i, 4).Value = "NW" Then

c = 5

ElseIf Worksheets(1).Cells(i, 4).Value = "WN" Then

c = 6

ElseIf Worksheets(1).Cells(i, 4).Value = "UA" Then

c = 7

ElseIf Worksheets(1).Cells(i, 4).Value = "US" Then

c = 8

Else

c = 0

End If

If c <> 0 Then

Worksheets("TDOMT_GALLONS").Cells(quarter - 27, c).Value = _

Worksheets(1).Cells(i, 6).Value

Worksheets("TOTAL_GALLONS").Cells(quarter - 27, c).Value = _

Worksheets(1).Cells(i, 7).Value

Worksheets("TDOMT_COST").Cells(quarter - 27, c).Value = _

Worksheets(1).Cells(i, 10).Value

Worksheets("TOTAL_COST").Cells(quarter - 27, c).Value = _

Worksheets(1).Cells(i, 11).Value

End If

Next
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End Sub
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A.4 Python Code

The two extended Python programs for preliminary data treatment in this project were developed

by Steve Lawford.

"""

Parse complete_coupon dictionary to text.

(for project with Anthony/Maximilian)

Steve Lawford: 20 November 2009

"""

import cPickle,time

from safe_cPickle import *

# Set oneway_flag=1 for one-way flights only (=0 for return flights)

oneway_flag=0

if oneway_flag:

data_path=’C:/Project/data/complete_coupon_oneway/’

filename=’complete_coupon_oneway’

else:

data_path=’C:/Project/data/complete_coupon/’

filename=’complete_coupon’
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# cPickle load individual coupon_full_x_x dictionaries

t0=time.time(); print ’Loading dictionary: ’+filename

c_x_x=open(data_path+filename,’r’)

dt=cPickle.load(c_x_x)

print str(time.time()-t0)+’ seconds to load dictionary.’

# CPI data parse

print; print ’Parsing CPI data.’

t0=time.time()

f=open(’C:/Project/data/us_cpi_index/us_cpi_monthly.txt’,’r’)

cpi_index_monthly={}

for l in f:

cpidata=l.strip().split()

cpi_index_monthly[cpidata[0]+’_’+cpidata[1]]=eval(cpidata[2])

f.close()

cpi_index_quarterly={}

for m in cpi_index_monthly.keys():

if m.split(’_’)[1]==’1’:

cpi_index_quarterly[m.split(’_’)[0]+’_1’]=cpi_index_monthly[m]

elif m.split(’_’)[1]==’4’:

cpi_index_quarterly[m.split(’_’)[0]+’_2’]=cpi_index_monthly[m]
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elif m.split(’_’)[1]==’7’:

cpi_index_quarterly[m.split(’_’)[0]+’_3’]=cpi_index_monthly[m]

elif m.split(’_’)[1]==’10’:

cpi_index_quarterly[m.split(’_’)[0]+’_4’]=cpi_index_monthly[m]

else:

pass

# CPI deflator

# Hard-coded: 2009Q1 prices

cpi_deflator={}

for m in cpi_index_quarterly.keys():

cpi_deflator[m]=cpi_index_quarterly[’2009_1’]/cpi_index_quarterly[m]

print str(time.time()-t0)+’ seconds to parse CPI data.’

length=len(dt[dt.keys()[0]])

#print; print ’Length of data file: ’+str(length); print

#print ’Dictionary keys: ’,dt.keys(); print

print; print ’Creating output file.’

t0=time.time()

routes_all={}; carriers_all={}; timeslot={}
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for i in range(length):

if dt[’OpCarrier’][i]!=’TW’:

routes_all[dt[’Origin’][i]+’_’+dt[’Dest’][i]]=0

carriers_all[dt[’OpCarrier’][i]]=0

timeslot[eval(dt[’Year’][i]+dt[’Quarter’][i])]=0

routes_all_list=routes_all.keys()

routes_all_list.sort()

route_codes={}; count=1

for j in routes_all_list:

route_codes[j]=count

count+=1

carriers_all_list=carriers_all.keys()

carriers_all_list.sort()

carrier_codes={}; count=1

for j in carriers_all_list:

carrier_codes[j]=count

count+=1

#print carrier_codes

timet=timeslot.keys()
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timet.sort()

timecode={}; count1=1

for k in timet:

timecode[k]=count1

count1+=1

output=’Origin’+’\t’+’Dest’+’\t’+’Year’+’\t’+’Quarter’+’\t’+

’OpCarrier’+’\t’+’AvFare’+’\t’+’TotalPass’+’\t’+\

’Route’+’\t’+’Routecode’+’\t’+’Carriercode’+’\t’+’Time’+’\t’

+’CPIquarter’+’\t’+’CPIdeflator’+’\t’+’RealAvFare’+’\n’

for i in range(length):

if dt[’OpCarrier’][i]!=’TW’:

output+=dt[’Origin’][i]+’\t’+dt[’Dest’][i]+’\t’+dt[’Year’][i]+

’\t’+dt[’Quarter’][i]+’\t’+dt[’OpCarrier’][i]+\

’\t’+str(dt[’AvFare’][i])+’\t’+str(dt[’TotalPass’][i])+’\t’+

dt[’Origin’][i]+’_’+dt[’Dest’][i]+\

’\t’+str(route_codes[dt[’Origin’][i]+’_’+dt[’Dest’][i]])+

’\t’+str(carrier_codes[dt[’OpCarrier’][i]])+\

’\t’+str(timecode[eval(dt[’Year’][i]+dt[’Quarter’][i])])+’\t’+\

str(cpi_index_quarterly[dt[’Year’][i]+’_’+dt[’Quarter’][i]])+’\t’+\

str(cpi_deflator[dt[’Year’][i]+’_’+dt[’Quarter’][i]])+’\t’+\

str(dt[’AvFare’][i]*cpi_deflator[dt[’Year’][i]+’_’+

dt[’Quarter’][i]])+’\n’
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print str(time.time()-t0)+’ seconds to create output.’

print; print ’Saving file.’

t0=time.time()

f=open(data_path+filename+’_text.txt’,’w’); f.write(output); f.close()

print str(time.time()-t0)+’ seconds to save file.’; print

print ’Done.’

-----------------------------

"""

Data parse for dynamic economic fare models, by route.

(for project with Anthony/Maximilian)

Steve Lawford : 24 January 2010

"""

import os,sys

from scipy import *

from airport_location_function_modified_return import *

from route_population_geom_mean_function import *

from route_leisure_function import leisure_function
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from route_business_function import business_function

from airport_gdp_function import gdp_function

module_dir=os.path.join(’Project’,’code’)

sys.path.insert(0,module_dir)

leisure_dict=leisure_function(0.05)

business_dict=business_function(0.10)

gdp_dict=gdp_function()

r_sphere=6372.7974775959065 # km

def distance_calculator(dest_coords_degrees,origin_coords_degrees):

dest_coords_radians=[(pi/180)*dest_coords_degrees[0],\

(pi/180)*dest_coords_degrees[1]]

origin_coords_radians=[(pi/180)*origin_coords_degrees[0],\

(pi/180)*origin_coords_degrees[1]]

p1,l1=dest_coords_radians[0],dest_coords_radians[1]

p2,l2=origin_coords_radians[0],origin_coords_radians[1]

l=abs(l1-l2)

num=sqrt(((cos(p2)*sin(l))**2)+(((cos(p1)*sin(p2))-(sin(p1)*cos(p2)

*cos(l)))**2))

den=sin(p1)*sin(p2)+cos(p1)*cos(p2)*cos(l)

theta=arctan(num/den)
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distance=r_sphere*theta

return distance

for rr in range(1,8):

filename=’fares_route’+str(rr)+’.txt’

filenameout=filename.split(’.’)[0]+’_out.txt’

f=open(’C:/Project/data/’+filename,’r’)

c=0

for j in f:

c+=1

k=j.split(’\t’)

if c==1:

lencheck=len(k); dct={}

for i in range(len(k)):

if k[i]!=’’ and k[i]!=’\n’: dct[i]=[k[i].strip(),[’’]*65]

else:

for i in range(len(k)):

if k[i]!=’’ and k[i]!=’\n’: dct[i][1][c-2]=eval(k[i].strip())

f.close()

dct2={}

for m in dct.keys():

dct2[dct[m][0]]=dct[m][1]

dct3={}
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print

for n in dct2.keys():

p=n.split(’_’)

flag=0

try:

dest_coords_degrees=airport_location(p[0])[1]

origin_coords_degrees=airport_location(p[1])[1]

distance=distance_calculator(dest_coords_degrees,origin_coords_degrees)

distance=abs(distance)

except TypeError: flag=1

try:

popn=route_population(p[0],p[1])

leisure=max(leisure_dict[p[0]],leisure_dict[p[1]])

business=max(business_dict[p[0]],business_dict[p[1]])

gdp=(gdp_dict[p[0]]*gdp_dict[p[1]])**0.5

except KeyError: flag=1

if not flag and popn!=None:

dct3[n]=[dct2[n],distance]

dct3[n].append(eval(popn))

dct3[n].append(leisure)



223

dct3[n].append(business)

dct3[n].append(gdp)

else: pass

output=’’; lines=0

for s in dct3.keys():

c=0

for t in dct3[s][0]:

c+=1

if t!=’’:

lines+=1

output+=str(t)+’\t’+str(c)+’\t’+str(dct3[s][1])+’\t’+

str(dct3[s][2])+’\t’

output+=str(dct3[s][3])+’\t’+str(dct3[s][4])+’\t’+

str(dct3[s][5])+’\t’

if c>=35: output+=str(1)+’\n’

elif c<35: output+=str(0)+’\n’

print str(lines)+’ lines in file ’+filenameout

f=open(filenameout,’w’); f.write(output); f.close()
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