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Génération automatique de trajectoires aériennes sans conflit à l'aide de fonctions biharmoniques
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Introduction

Le projet SESAR1 a été mis en place afin de renouveler et d'uniformiser les systèmes de contrôle aérien sur toute l'Europe. Le système actuel de sectorisation de l'espace aérien ayant atteint ses limites, de nouvelles techniques de planification de trajectoires et d'aide à la décision doivent être mises en place afin d'aider les contrôleurs dans leur travail. Une des pistes envisagées consiste à contraindre un avion en position et en temps, ce qui permettrait de garantir l'évitement de conflit ainsi que l'heure d'arrivée de l'avion, réduisant ainsi de manière significative le nombre d'interventions nécessaires de la part des contrôleurs et permettant l'augmentation du trafic.

Les problèmes de génération et planification de trajectoires sont apparus pour la première fois en robotique et de nombreuses techniques ont été développées pour y répondre. Parmi elles, les fonctions de navigation (partie 2) sont une méthode prometteuse, permettant de générer des trajectoires garantissant l'arrivée à destination, ainsi que l'évitement d'obstacles. Les fonctions harmoniques sont un type particulier de fonctions de navigation qui présentent l'avantage d'être simples à calculer, mais l'inconvénient de donner des vitesses de vol très variables. Or dans le cadre de la navigation aérienne, la vitesse d'un avion doit respecter des bornes strictes, l'idéal étant d'obtenir une vitesse constante.

Plutôt que d'essayer de borner la vitesse obtenue avec une fonction harmonique à l'aide de lois de commandes, nous avons choisi de travailler ici avec une fonction biharmonique (partie 3) qui permet d'obtenir un champ de navigation à vitesse constante. Les fonctions biharmoniques présentent ce net avantage sur les fonctions harmoniques, mais sont également plus compliquées à calculer et demandent notamment un traitement particulier avant de pouvoir être utilisées pour la planification de trajectoires. Nous montrons de plus que les fonctions biharmoniques peuvent être ramenées au cadre des fonctions de navigation et qu'elles garantissent ainsi l'arrivée à destination et l'évitement d'obstacles. Enfin, nous expliquons comment utiliser une méthode de résolution sans grille afin de réduire le temps de calcul de notre méthode.

Définition et propriétés

Une fonction de navigation est une fonction de potentiel φ : E → [0, 1], E = R 2 \{obstacles} étant l'espace libre dans lequel les avions peuvent naviguer. Lorsque plusieurs avions volent dans le même espace, chacun considère les autres avions comme des obstacles, réduisant ainsi l'espace dans lequel il peut évoluer. À chaque avion correspondra donc un espace libre et une fonction de navigation. φ est alors construite de manière à être uniformément maximale à la frontière des obstacles et à n'accepter qu'un unique minimum : le point de destination. Sur le reste de l'espace libre, elle évolue de manière continue entre sa valeur maximale et sa minimale. Pour déterminer une trajectoire menant à la destination, il suffit alors de suivre les valeurs décroissantes de la fonction de navigation : -∇φ.

Pour garantir l'arrivée à destination et l'évitement des obstacles, une fonction de navigation doit vérifier une propriété supplémentaire : elle doit être Morse, c'est-à-dire que ses points critiques doivent être non-dégénérés. Un point critique est non-dégénéré si le déterminant de la hessienne de φ en ce point est non nul. Le caractère Morse de la fonction de navigation garantit que toute trajectoire obtenue en suivant -∇φ tendra vers l'unique minimum de la fonction de navigation (notre destination), sans passer par les obstacles.

État de l'art

Une fonction de navigation pour l'aérien : Rimon et Koditschek, les créateurs de la fonction de navigation, ont créé une fonction de navigation particulière pour la robotique [START_REF] Koditschek | Robot navigation functions on manifolds with boundary[END_REF]. Kyriakopoulos et Roussos ont par la suite repris et amélioré cette fonction de navigation afin de l'adapter à la génération de trajectoires aériennes [START_REF] Roussos | Decentralised navigation and collision avoidance for aircraft in 3D space[END_REF]. Cette fonction de navigation a néanmoins atteint ses limites. En effet l'imposition d'une vitesse constante le long de la trajectoire ne passe pas par la fonction de navigation elle-même, mais par des lois de contrôle sur l'avion. De même, le rayon de courbure des virages est limité par des lois de contrôle, mais sans prendre en compte la régularité de la trajectoire, donnant parfois des trajectoires chaotiques, certes réalisables, mais très peu appréciées par les pilotes et les passagers.

Une fonction harmonique comme fonction de navigation : Connolly et al. ont été les premiers à utiliser une fonction harmonique L, définie par △L = 0, △ l'opérateur laplacien, comme fonction de navigation [START_REF] Connolly | Path planning using Laplace's equation[END_REF]. Il est en effet relativement simple de construire une fonction harmonique afin qu'elle vérifie les propriétés des fonctions de navigation : on peut lui imposer un point minimum unique et la rendre uniformément maximale sur ses frontières. Il est également facilement démontrable qu'une fonction harmonique est Morse (voir annexe de [START_REF] Masoud | A discrete harmonic potential field for optimum point-to-point routing on a weighted graph[END_REF]). Les fonctions harmoniques ont été largement étudiées, que ce soit avec des conditions aux limites variées [START_REF] Masoud | Evolutionary action maps for navigating a robot in an unknown, multidimensional, stationary environment. II. Implementation and results[END_REF] ou pour la recherche de chemins sur des graphes [START_REF] Masoud | A discrete harmonic potential field for optimum point-to-point routing on a weighted graph[END_REF]. Elles présentent néanmoins l'inconvénient de donner un champ d'amplitude non constante, ce qui implique une vitesse de vol non constante pour les avions. Certaines conditions aux limites, comme la condition de Dirichlet, impliquent même que le champ de navigation est évanescent, c'est-à-dire qu'il tend exponentiellement vite vers zéro loin de la destination, rendant impossible l'atteinte de la destination en temps fini.

Ces deux types de fonctions de navigation présentant des défauts majeurs, nous cherchons à en créer un troisième, en utilisant des fonctions biharmoniques.

Les fonctions biharmoniques, c'est-à-dire les fonctions u qui vérifient △ 2 u = 0, sont très présentes en mécanique du solide et en mécanique des fluides. Masoud et Masoud furent les seuls à les utiliser pour la navigation de robots [START_REF] Masoud | Robot navigation using a pressure generated mechanical stress field : "the biharmonic potential approach[END_REF]. Les auteurs ont utilisé une analogie avec la mécanique du solide afin de générer leur champ de navigation. Ils ont considéré une plaque d'un matériau représentant l'espace libre de leur robot. A la destination du robot, ils ont imaginé un trou, dans lequel un ballon est placé. En gonflant le ballon, celui-ci exerce une contrainte P sur le matériau, contrainte qui se propage dans toute la plaque. De n'importe quel endroit de la plaque, il suffit de remonter ce champ de contraintes pour atteindre la destination. Les obstacles sont alors représentés par d'autres trous laissés vides, dans lesquels les contraintes ne pourront pas se propager et que le robot évitera donc naturellement. Les résultats obtenus par les auteurs montrent un champ de navigation d'amplitude constante, une caractéristique très intéressante pour la navigation aérienne. Ce sont donc ces fonctions biharmoniques que nous avons décidé d'étudier afin de générer nos trajectoires d'avion.

Obtention du champ de navigation à partir de l'équation △ 2 u = 0

En travaillant avec un logiciel adapté à la mécanique des structures, Masoud et Masoud ont choisi de travailler avec l'équation telle qu'elle est présentée dans la théorie de l'élasticité. Cette formulation rend cependant l'imposition des conditions aux limites relativement compliquée. Nous avons donc fait le choix de la simplifier et d'utiliser le système suivant en 2D :

     △ 2 u = 0 △ u = P à la destination, P > 0 △ u = 0 sur les frontières des obstacles. (1)
La résolution de ce système, puis le calcul de la hesienne de u, nous permet d'obtenir un champ de tenseurs, c'est à dire une matrice de dimension (2 × 2) en chaque point de l'espace, inutilisable tel quel pour la navigation. Pour obtenir un champ de vecteurs, nous calculons alors en chaque point le vecteur propre associé à la valeur propre minimale du tenseur, la seule utilisable pour générer le champ de navigation. C'est ce calcul de vecteur propre qui permet d'obtenir un champ de navigation d'amplitude constante. Un vecteur propre étant défini à une constante près et donc au signe près, le champ obtenu peut pointer vers la destination de l'avion ou à l'opposé de celle-ci. D'autres domaines de recherche, comme celui de l'imagerie médicale et de l'IRM de diffusion rencontrent les mêmes difficultés dans la récupération d'un champ de vecteurs à partir d'un champ de tenseurs. Pour résoudre ce problème, nous avons créé un algorithme de redressement de champ qui permet de retrouver, en chaque point, le sens dans lequel la direction donnée par le vecteur propre doit être suivie. Cet algorithme est fondé sur le fait que le champ de vecteurs obtenu doit être continu. Il oblige les vecteurs directement autour de la destination à pointer vers cette dernière, puis ces vecteurs, appelés «redressés», sont utilisés comme référence afin de redresser les vecteurs dans leur voisinage direct. Le processus est répété jusqu'à ce que tous les vecteurs aient été redressés. Ce n'est qu'après cette opération que le champ peut être utilisé pour faire naviguer notre avion.

Garantie d'évitement d'obstacles

Si les fonctions biharmoniques permettent d'obtenir un champ de navigation d'amplitude constante, elles sortent néanmoins du cadre des fonctions de navigation, ce qui implique la perte de la garantie d'évitement des obstacles. La solution de l'équation biharmonique étant un champ de tenseurs, on ne peut pas parler de caractère Morse pour cette solution. Notre but est donc, en utilisant la théorie de la singularité des applications différentielles, de nous ramener au cadre des fonctions de navigation en montrant que la solution de l'équation biharmonique est non-dégénérée en ses points critiques. Cela permettrait de garantir l'évitement d'obstacles pour le champ de navigation obtenu à partir de l'équation biharmonique.

Implémentation de la technique

Nous avons dans un premier temps implémenté cette technique pour un avion à l'aide de différences finies et d'éléments finis afin de vérifier le comportement de la solution de l'équation biharmonique. Les résultats s'avérant concluants et afin de préparer une étude sur le mouvement coordonné de plusieurs avions, nous avons ensuite implémenté cette technique à l'aide d'une méthode sans grille. En effet, chaque avion considérant les autres comme des obstacles, il nous faudra calculer un grand nombre de fois la solution de l'équation biharmonique, avec des frontières à chaque fois différentes. L'utilisation de la méthode des éléments finis impliquerait alors un remaillage de l'espace pour chaque calcul de la solution, ce qui est un processus très coûteux en ressources et en temps. L'utilisation d'une méthode sans grille permet de contourner ce problème. Dans le cadre de futurs travaux, cet algorithme servira de base à la construction d'une méthode permettant de planifier le mouvement coordonné de plusieurs avions.

Synthèse et perspectives

L

  'algorithme permettant la navigation d'un avion devant éviter un ou plusieurs obstacles statiques peut être présenté sous la forme suivante : • Choix de la destination • Construction d'un système de la forme (1) • Résolution du système à l'aide : } -→ Champ de tenseurs -d'une méthode avec grille (plus simple) -d'une méthode sans grille (plus rapide) • Calcul de vecteur propre associé à la valeur propre } -→ Champ de vecteurs minimale en chaque point • Redressement du champ de vecteurs par continuité -→ Champ de navigation • Calcul de trajectoire à partir de n'importe quel point de l'espace -→ Trajectoire garantissant l'évitement d'obstacles, l'arrivée à destination, avec une vitesse constante. TAB. 1 -Algorithme de génération de trajectoires
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