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Smoothed traffic complexity metrics for
airspace configuration schedules

David Gianazza, DSNA, Toulouse, France
Email : {lastname}@recherche.enac.fr

Abstract— This paper is a continuation of previous
research on optimal airspace configuration. It is expected
to improve the predictability and the flexibility of the
airspace management process by computing realistic pre-
dictions of the sectors opening schedules in En-route ATC
centers. In previous papers, we selected relevant complexity
metrics to predict the controllers workload, using neural
networks trained on recorded airspace configurations. We
also introduced new algorithms to build optimally balanced
airspace configurations, exploring all possible combinations
of elementary sectors.

As a result of this previous work, we were able to
compute realistic schedules on a whole day of traffic, using
complexity metrics that were computed from recorded
radar tracks. The raw metrics, however, showed high vari-
ations in time which caused a "configuration switching"
phenomenon. Although the number of control sectors in
the computed schedule stayed globally close to the recorded
number of sectors, the airspace was reconfigured much
more often than in reality. The present paper shows how
the input metrics can be smoothed in order to avoid this
problem, and what may be the subsequent problems caused
by the smoothing strategy.

INTRODUCTION

Over the years, and in a context of increasing air
traffic demand, there has been a growing need to increase
the capacity of the Air Traffic Management system.
Improving the predictability of the system’s response to
the traffic demand is also a crucial issue, as it would
allow a better use of the existing resources and an earlier
anticipation of future congestions.

The work presented in this paper is the continuation
of previous research on airspace configuration schedules
([1], [2], [3]) and air traffic complexity metrics ([4], [5])
previously led at the Global Optimization Laboratory
(CENA/ENAC) and now continued within the Planifica-
tion, Optimization, and Modeling team of DSNA/DTI-
R&D. The initial aim of this research is to compute
realistic sectors opening schedules for en-route air traffic
control centres, given an input traffic demand on a
chosen day.

The current FMP/CFMU working method to build
airspace configuration schedules relies on pre-defined
sectorization scenarios, where the incoming traffic flows1

are matched against the sector capacities2 to detect

1The metric used is the "incoming flow", also called "flight counts"
or "traffic-volume" in some Eurocontrol documentations ([6]) or "traf-
fic load" in the CFMU handbook. For a sector, it is the number of
flights that will enter the sector within the next 60 minutes (or any
other chosen period of time).

2The sector capacity is defined as a threshold value on the number
of flights that may enter the sector in a chosen period of time.

potential overloads. Although it may prove effective in
practice as it relies on the FMP/CFMU operators experi-
ence, this method is not grounded on a solid assessment
of the actual controllers workload. Consequently, imple-
menting any strategy to optimize the airspace schedule
on this basis may lead to unexpected results (see [1]).
Another drawback of the current method is that only
a small subset of all possible airspace configurations is
used.

In [3], new algorithms were proposed, using more
relevant complexity metrics to assess the controllers
workload, and exploring all possible combinations of
elementary sectors to build optimal airspace configura-
tions. As a result of this previous work, we were able
to compute realistic airspace configuration schedules on
a whole day of traffic, using raw complexity metrics
computed from recorded radar tracks. The raw metrics,
however, showed high variations in time which caused
a "configuration switching" phenomenon. Although the
number of control sectors in the computed schedule
stayed globally close to the recorded number of sectors,
the airspace was reconfigured much more often than in
reality.

The present paper shows how the input metrics can
be smoothed in order to avoid this problem. The next
section first provides a short overview of the current re-
search on airspace configuration and air traffic complex-
ity. Section II describes the algorithms used to predict the
sector status and to build airspace configurations, mainly
focusing on the few improvements that were made since
[3] was published. The experimental procedure applied
to select the best smoothing parameters is described in
section III. Results are provided in sections IV and V.
Section VI concludes this paper.

I. OVERVIEW

A. Airspace configuration

Current research on airspace configuration is manifold
and may deal with strategic airspace partitioning (see
[7] and included references, [8]), pre-tactical sectors
opening schedules ([9]), or tactical airspace management
([13]). In this paper, we are mainly concerned with pre-
tactical airspace configuration schedules, although some
of the proposed algorithms may also be used in tactical
applications, provided the complexity metrics being used
are relevant in that context.

The FMP/CFMU working method to build sectors
opening schedules was shortly described in the intro-
duction. Current research led by Eurocontrol proposes



short-term improvements of the Flow Management pro-
cess, mainly by avoiding unecessary regulations when
building sectors opening schemes ([9],[6], [11]). One of
the main concerns is the network effect observed in ATM
regulations ([12]). These studies still use incoming flows
and sector capacities, and a small number of pre-defined
configurations.

In the United States, the main concern seems to be the
dynamic adjustment of the airspace structure to the traffic
flows reroutings caused by severe weather conditions. It
is expected that more flexible boundaries would allow a
more efficient use of airspace and increase the overall
capacity. In [13], pre-defined scenarios of airspace sec-
torizations associated to traffic rerouting scenarios are
proposed as a short-term improvement to the current
practice.

A more dynamic resectorization with flexible bound-
aries is envisionned in future operational concepts ([14],
[15], and some SESAR Operational Improvement steps).
It is expected that moving the sector’s boundaries in
real-time to adapt to the traffic demand would increase
the capacity and the efficiency of the ATM system.
The actual capabilities and potential benefits of this
new operational paradigm are still largely unknown at
this early stage, however. There is also some concern
that unlimited flexibility in the sectors boundaries would
lead to a loss of situational awareness by the air traffic
controllers (see discussion and litterature review in [16]).

The work presented in this paper is more medium-
term research, trying to improve the predictability and
the flexibility of today’s airspace management in Europe.
The idea is to find the optimal combination of elementary
(or modular) sectors that will provide the maximum ca-
pacity to a given input traffic, and balance the controllers
workload as best as possible among the control sectors.

This airspace partitioning problem would be difficult
to solve without choosing a heuristic if every combina-
tion of sectors was possible. The partitionning of the
whole ATCC’s airspace into control sectors is highly
combinatorial ([2]), even with relatively few elementary
sectors. Hopefully, the list of possible control sectors
(either elementary or collapsed sectors) that can be
operated in an air traffic control center is relatively
small3, as not all combinations of elementary sectors
are operationnally valid4. So we may explore all valid
airspace configurations, which may be built with oper-
ationally valid control sectors only, using classical tree
search methods ([1], [3]).

These algorithms are applied to the prediction of
airspace configuration schedules, optimally balancing the
workload among the control sectors. Consequently, we
need a way to assess the controller’s workload, and it was
proposed to use relevant air traffic complexity metrics to
that purpose ([4], [5]).

3The list of control sectors is available from the ATCC’s database
4One usually does not merge sectors which are not geographically

connex, for example.

B. Air traffic complexity

A multitude of air traffic complexity metrics have
been proposed in the litterature (see [17] and [18] for
a review), and many studies tried to correlate some of
these metrics to the controllers workload, using various
methods: linear ([19]) or logistic ([20]) regression, cross-
sectional time series analysis ([21]), neural networks
([22]),... Many ways to quantify the controller’s work-
load have also been tried: physical activity ([23], [21]),
physiological indicators ([24], [25]), simulation models
of the controller’s tasks ([26], [27]), subjective ratings
([19], [22], [20]). The reader may refer to [4] for a
discussion on these variables. Let us just say that, in
addition to being subject to noise and biases5, most of
the above dependent variables require relatively heavy
experimental setups to collect the data, usually with the
active participation of controllers. Databases are often
small and might exhibit low variability, which may in
turn harm the statistical relevance of the results.

In order to avoid some of these drawbacks, we pro-
posed a new dependent variable for which a large amount
of data is available from the ATCC databases, and
which does reflect an operational reality. The basic idea,
introduced in [29], is that the decisions to split (resp.
merge) a sector are mostly taken when the controller
is close to overload (resp. under-load). So the sector
status (merged, operated, or split) is directly related to
the controller’s workload and may therefore provide an
acceptable dependent variable. In [4] and [5], neural
networks were trained on recorded patterns of metrics
and sector statuses6 to select the most relevant metrics
for our airspace configuration problem.

The proposed method allowed to select a subset of
only 6 relevant indicators among the initial 28 cho-
sen from [19], [22], [30], [31] and other sources. The
airspace configuration schedules obtained with these
metrics as input were quite realistic ([3]) when computed
from recorded radar tracks. In this previous work, how-
ever, the input metrics were not smoothed, and a "con-
figuration switching" phenomenon was observed. Let us
now see, after a short description of the algorithms, if
smoothed metrics provide better results.

II. ALGORITHMS

Our aim is to build a realistic schedule of the airspace
configuration throughout the day. To that purpose, one
needs first a correct assessment of the workload gen-
erated by the traffic throughput in a control sector,
and second an algorithm exploring all possible airspace
configurations to find out the optimal one, with respect
to the workoad balance over control sectors.

A. A neural network to predict the sector status

Neural networks are used to issue sector status proba-
bilities for each control sector of a candidate configura-

5such as the subjective ratings recency effect denounced in [25], or
raters errors in the case of "over-the shoulder workload ratings" [28]

6In our case, a pattern is a vector of complexity metrics measured
at a time t in a given sector, together with the sector status (merged,
normal, or split) that was recorded at this time.

2



tion. Beyond the similarities with the biological model,
an artificial neural network may be viewed as a statistical
processor, making probabilistic assumptions about data
([32]). A training set of patterns is used to determine
a statistical model of the process which produced this
data. Once correctly trained, the neural network uses this
model to make predictions on new data. The reader may
refer to [33] and [34] for an extensive presentation of
neural networks for pattern recognition.

In our case, the neural network is trained on recorded
airspace configurations, considering the actual status
of each control sector : merged when the sector is
collapsed with other sectors to form a larger sector (low
workload), normal when the control sector is opened
(normal workload), or split into smaller sectors operated
separately (high workload)7. The input variables are the
relevant complexity metrics, or any candidate subset of
metrics, normalized by substracting the mean value and
by dividing by the standard deviation. The output of the
neural network is a triple of sector status probabilities
(pmerge, pnormal, psplit).

The network is unable to make complex recommen-
dations such as to split the sector’s volume in several
parts and then to merge each of these parts with other
sectors. It only recommends to merge the sector when
the workload is low, or split it when the workload is high,
or operate it normally when the workload is acceptable.
As we are necessarily in one of the above three cases,
the sum of the three probabilities pmerge, pnormal, and
psplit is always 1.

More details on neural networks applied to sector
status prediction, in the context of airspace configura-
tion, can be found in previous works ([3]). How these
networks were used to select the most relevant metrics
is described in [4] and [5]. The same network’s topology
and training algorithms are used in the work presented
here to select the most relevant smoothing strategy for
the input metrics.

The software implementation is different, though. In
previous works, the nnet R package developped by
Pr. Ripley was used. As it is envisionned in a near
future to try other types of neural networks, more suited
to time series, some new software8 was developped.
A backprogation method9 and a BFGS10 quasi-Newton
optimization method were implemented in Ocaml lan-
guage. The same stopping parameters as in previous
works with nnet were used.

7Irrelevant statuses, such as when a part of the initial sector is
merged with one control sector, and the other part with another control
sector, were discarded in the neural network’s training.

8ANNiML (Artificial Neural Networks in ML) is written in Ocaml
and should be made available soon, probably under GNU Lesser
General Public License.

9Backpropagation of the output error through the network’s layers
allows to approximate the partial derivatives of the error function with
respect to the weights

10BFGS (Broyden-Fletcher-Goldfarb-Shanno) is an iterative local
optimization method, starting from an initial point (weights values in
our case) and using an approximate hessian and the gradient of the
objective function to find a local optimum. Note that different initial
points may lead to different local optima.

B. Tree search algorithms for well-balanced sector con-
figurations

As previously told, the neural network cannot issue
complex recommendations on how to reconfigure several
control sectors. A tree search algorithm was used to
that purpose, exploring all possible combinations of
elementary sectors, to find out the optimal one.

An optimal configuration is one for which the work-
load among the control sectors is balanced as best as
possible, while using the less possible ressources, and
satisfying operational constraints such as a maximum
number of available working positions for example.

Once again, we used the same algorithm as in [3]
to compute optimal airspace configurations, with a few
improvements that shall be detailed later in this section,
and with the aim to study the influence of the smoothing
strategy on the computed opening schedule.

Let us just describe the main features of this algo-
rithm. Starting at time t=0 with a configuration where
all elementary sectors are assigned to a single con-
troller’s working position, the situation is reconsidered
every minute of the day, using the status probabilities
(pmerge, pnormal, psplit) of each control sector in the
current configuration to decide if the airspace should be
reconfigured or not.

The decision criterion may be straightforward (taking
the action corresponding to the highest probability),
or it may propose to take an action only when the
corresponding probability is close enough to 1, and when
the difference between the two highest probabilities is
sufficient. The first, straightforward, decision criterion
was called D1 in [3], and the second was name D2,
with decision parameters η (threshold on the difference
between the two highest probabilities, for merging deci-
sions), α (proximity of pmerge to 1) and β (proximity
of psplit to 1). Figure 1 illustrates criterion D2, showing
the evolution of the sector status probabilities just before
a "split" decision, when psplit reaches 1− β.
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Fig. 1. Example of sector status probabilities in NGA sector (Brest
ATCC) just before the algorithm decides to split the sector.

Once a decision to reconfigure some control sectors
is taken, the corresponding elementary sectors are re-
combined, exploring all possible partitions of this set.
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Some drawbacks of this local recombination method
were highlighted in [3], for example in the case where
the decision criterion triggers a "merge" action for two
control sectors which are not neighbours. This is typi-
cally a case where the local recombination leads to no
change, because the airspace should be reconfigured on a
larger scale. A solution to this problem is to reconfigure
the whole airspace in such cases. However, exploring
exhaustively the whole tree of possible configurations
by computing all of them becomes very rapidly compu-
tationnally intensive even with a relatively small number
of elementary sectors.

So the previous algorithm was improved as follows.
Local recombinations are made as before when the
control sectors that need to be reconfigured are geo-
graphically connected. If this is not the case, a full
airspace reconfiguration is triggered, using a Branch &
bound algorithm to explore all possible combinations.
The detailed description of this algorithm will be the
subject of a next publication, but the reader may refer to
[1], [2], and [29] where a very similar Branch & bound
algorithm is detailed.

A second improvement introduced in this paper is
about the cost function allowing to compare the can-
didate airspace configurations. A more simple and more
understandable cost function was designed, where the
cost depends on the number of control sectors and the
maximum probability in each category (merge, normal,
split).

An "ideal" configuration should have
(pmerge, pman, psplit) = (0, 1, 0) for all its control
sectors. This is not always possible, so we need to
take account of overloaded or underloaded sectors, and
ill-balanced configurations. The cost of a configuration
c, with a vector x of complexity metrics measured at
time t is expressed as follows:

cost(c, x, t)) = xx︸︷︷︸
k1

xxx︸︷︷︸
k2

xx︸︷︷︸
k3

xxx︸︷︷︸
k4

xx︸︷︷︸
k5

xxx︸︷︷︸
k6

where we have assigned:
• k1 digits to the number of overloaded sectors,
• k2 digits to the maximum value of psplit among the

overloaded sectors, where the probability is suitably
scaled to the allowed number of digits,

• k3 digits to the number of under-loaded sectors,
• k4 digits to the maximum value of pmerge among

the under-loaded sectors,
• k5 digits to the number of normally loaded sectors,
• k6 digits to the maximum value of 1 − pnormal

among the normally loaded sectors,
With this cost, the first priority is to have the less

possible overloaded sectors, and if there still remains
some then the maximum probability psplit among these
sectors should be as small as possible. The same ex-
planation stands for underloaded sectors. For normally
loaded sectors, we still want to use the less possible
ressources, but workload should be balanced as well as
possible among the sectors. So the minimum value of
pnormal among the normally loaded sectors should be

as high as possible. This is why we use the maximum
of 1− pnormal in the cost, so that minimizing this cost
will lead to more desirable configurations.

III. EXPERIMENTAL PROCEDURE

Each complexity metric xi may be smoothed by taking
its average value over a period of time [t − δ1, t + δ2],
where we may try different values for δ1 and δ2 for each
metric.

For now, the metrics are computed on past data
(recorded radar tracks). In future applications, they may
be computed either from simulated trajectories following
flight plans, in the context of airspace configuration
schedules, or from real-time radar tracks and trajectory
predictions for tactical airspace management purposes.
For real-time applications, one may prefer to smooth the
metrics on a time window [t − δ, t], considering only
the past positions of the aircraft. We decided to try this
strategy first, which may be applied also to simulated
trajectories for airspace schedules.
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Fig. 2. Raw and smoothed number of aircraft in N sector (Brest
ATCC). The splitting decision was taken at t=530 (vertical line).

As an illustration of the effect of smoothing on the
metrics, figure 2 shows the number of aircraft within
sector N (Brest ATCC), with different values of δ. We
may notice the high variations in the raw aircraft count.
The vertical line shows when the decision to split the
sector into two smaller sectors was taken.

A. Testing different smoothing strategies

We would like to find out which combination of
metrics and smoothing parameters is the best. This is a
model selection problem. The main difficulties in model
selection are the choice of a search strategy (how to
explore the possible subsets of explanatory variables,
knowing that the number of combinations is usually too
large for an exhaustive search), and also the assessment
of each model’s performance (quality criterion, ability to
generalize to fresh data).

In this paper, we will consider different values for
the size of the smoothing window: 3, 5, 10, 15, 30, or
60 minutes. Ideally, we should make the same study as
in [4], [5] but applied to the 27 complexity metrics with
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all smoothing possibilities, which means 190 variables11.
The forward strategy that was used in previous works to
explore different combinations of variables would take
too much computation time, so it was decided to focus
on the 6 most relevant variables found in our previous
studies. These were the sector volume V , the number of
aircraft within the sector Nb, the average vertical speed
avg_vs, the incoming flows with time horizons of 15
minutes and 60 minutes (F15, F60), and the number of
potential crossings with an angle greater than 20 degrees
(inter_hori).

As a first approach, and keeping in mind that it
is a fairly restrictive search strategy, it was decided
to try different smoothing values, applying the same
smoothing window to all variables in the set of rel-
evant raw metrics. The reference set of variables is
REF={V,Nb, avg_vs, F60, F15, inter_hori}. The other
combinations that were tested are SM3, SM5, SM10,
SM15, SM30, SM60, which contain the same complex-
ity metrics, smoothed respectively using time windows
of 3, 5, 10, 15, 30, or 60 minutes.

B. Model selection and performance assessement
In our previous works ([4], [5]), the mean AIC12

(averaged over the sample’s size) was used to compare
the performance of a given neural network on data
samples of different sizes (a training set and a test set),
and the mean BIC13 was used to compare different neural
networks, trained on candidate subsets of complexity
metrics (models of different sizes). In this paper, we will
also use the mean BIC to compare the candidate models
and assess the improvements provided by smoothing the
metrics values, and the AIC to assess the generalization
performance.

Once trained on past data, it important to check if
the neural network also provides good predictions of
the sector status when feeded with new inputs. This is
generally done by splitting the initial data set in two
samples: a train set and a test set. This split-sample (or
hold-out) procedure is generally satisfying on large data
samples, but may be prone to overfitting 14 problems

1127 metrics multiplied by 7 smoothing values (counting a zero
value for the raw metrics), plus the sector volume.

12Akaike’s "An Information Criterion" AIC = 2λ−2ln(L), where
λ is the number of unadjusted parameters of the model (i.e. the number
of weights and biases of the network), and ln(L) is the log-likelihood
error. When used for model selection with neural networks, AIC tends
to overfit (see discussion in [34], p. 61), leading to select bigger
models. The Schwartz’s Bayesian Information Criterion is usually
preferred.

13Schwartz’s Bayesian Information Criterion BIC = 2λ.ln(N)−
2ln(L), where N is the size of the data sample. The BIC criterion
gives a higher penalization than AIC to big models, but varies with
the size of the data sample, so it may not be used to compare the
performances of a neural network on samples of different sizes. Note
that AIC and BIC are not absolute criteria: their evaluation is specific
to the underlying "true" model, and only the relative differences in the
criterion’s value is useful.

14Overfitting occurs when the statistical model fits very well the
data from which it was derived, but cannot generalize well on fresh
data. The number of parameters in the model (network’s weights for
example) and few data samples may both cause overfitting problems.
A neural network with too few weights may not be able to capture all
the variations of the response to the input x, whereas a network with
too many weights will more likely be subject to overfitting (see [32]).

on small samples. It was used in [4] and [5] with good
results, but one may argue that the selected models may
only be fit to the chosen train and test sets, although
some tests on a second test set (another day of traffic)
proved also satisfying.

So is was decided to apply a more sophisticated proce-
dure, using first a k-fold cross-validation method for the
model selection, and second a split-sample method (or
hold-out validation) to assess the generalization perfor-
mance of the best model. The initial data set is randomly
split in two samples. The first one (training set) is again
divided in k sub-samples and used for an iterative k-fold
cross-validation allowing to select the best smoothing
parameter. Then, the neural network is trained on the
whole training set, and the generalization performance
is checked on the the test set.

In our case, we applied a 10-fold cross-validation,
iteratively holding out one of the 10 sub-samples of the
training set to assess the candidate model, and training
the neural network on the 9 remaining sub-samples.
The Schwartz’s Bayesian Information Criterion (BIC)
is computed on the sample that was not used to train
the network. The BIC is averaged on the 10 runs for
each model. The best model is found by comparing the
average BIC.

Once we have found the best model, the neural
network is trained on the whole training set (the 10
samples). The generalization performance of the trained
network is assessed by comparing the AIC value found
for the training set to the AIC of the test set. As the
training method is an iterative local optimization (BFGS)
which may fall into local optima depending on the
chosen initial weights vector, ten training runs are made
with different random values of the initial weights15.

C. Comparison of airspace configurations schedules

So far we have only detailed how to compare different
statistical models allowing to predict the sector status
from smoothed complexity metrics. Our final goal, how-
ever, is to build realistic airspace configuration sched-
ules. So we also need to consider the influence of the
smoothing strategy on the overall airspace configuration.

Ideally, the computed schedule should reproduce the
actual configurations recorded that day. However, there
is a high variability in the decisions made by control
room managers on how to reconfigure the airspace,
which comes in addition to the variability of decisions
on when to reconfigure. We may hope that our sector
status prediction could give an indication on when to
trigger a reconfiguration and allow to build realistic
configurations, but our algorithms may not compute
exactly the same configuration as in reality.

We will assess the realism of the computed schedule
by comparing the number of control sectors to the
actual number of sectors that were opened that day. The
Pearson’s correlation coefficient may give an indication
of the linear correlation between the computed and the

15Note that the ten runs of the cross-validation were also made with
different random initial weights
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real number of control sectors. However it may not be
always reliable16 so we will also compute an ad-hoc
"dissimilarity measure" which is the surface delimited
by the two curves, divided by the surface of the real
schedule. With this measure, two identical curves shall
have a dissimilarity 0 if they are exactly superposed.
In addition, we will also consider the number of recon-
figurations throughout the day, which should be close
enough to the real one.

So we don’t have a unique quantified measure of simi-
larity between airspace configuration schedules for now:
the influence of the smoothing parameter on the opening
schedule is assessed by considering both the number of
control sectors and the number of configuration changes.

But before looking how smoothing the complexity
metrics may change the overall airspace configuration
schedule, let us show some results on the influence of
the smoothing parameter on the prediction of the sector
status.

IV. INFLUENCE OF SMOOTHED METRICS ON SECTOR
STATUS PREDICTION

The results of the 10-fold cross-validation with dif-
ferent values of the smoothing window are presented in
tables I, II, and III.

Set mean BIC BIC std dev
REF 1.163 2.7E − 2
SM3 1.156 3.0E − 02
SM5 1.141 2.9E − 02
SM10 1.117 2.4E − 02
SM15 1.114 2.4E − 02
SM30 1.059 2.6E − 02
SM60 1.046 3.5E − 02

TABLE I
MEAN BIC VALUES AND STANDARD DEVIATIONS FOR THE

CROSS-VALIDATION

Table I shows the mean value and the standard devi-
ation of the BIC criterion over the 10 runs of the cross-
validation, for each candidate model. A somewhat sur-
prising result is that SM60 (smoothing over 60 minutes)
seems to provide the best results if we look only at the
mean BIC. However, considering the standard deviation,
it is not obvious that there is a true statistical difference
between SM30 and SM60. Note also that the model with
the lowest mean BIC is the one with the highest standard
deviation.

Tables II and III show the mean correct classification
rates and their standard deviations, over the ten runs,
for all classes (Global) and also for each sector status
class. Let us notice that the main improvement, when
smoothing the input metrics, is made for the class
corresponding to the normal domain of operation.

Let us now assess the generalization performance of
the models. As explained in the previous section, the

16The correlation coefficient between two equal variables x and y =
x will be 1. Let us note however that this coefficient is not sufficient
to actually measure how close we are to equality: the correlation
coefficient between a variable x and another variable y = x + d,
where d is a constant offset, will also be 1.

Set Global Merged Normal Split
REF 82.074% 88.353% 62.799% 90.322%
SM3 82.428% 88.451% 63.691% 90.587%
SM5 82.673% 88.545% 64.279% 90.75%

SM10 83.454% 89.401% 64.918% 91.548%
SM15 83.784% 89.365% 66.066% 91.699%
SM30 84.947% 89.910% 68.036% 93.147%
SM60 85.811% 90.698% 69.798% 93.242%

TABLE II
CORRECT CLASSIFICATION RATES

Set Global Merged Normal Split
REF 0.446% 0.616% 1.543% 0.572%
SM3 0.662% 0.586% 1.853% 0.641%
SM5 0.662% 0.852% 1.275% 0.556%
SM10 0.574% 0.714% 1.419% 0.384%
SM15 0.696% 0.771% 1.822% 0.636%
SM30 0.648% 0.568% 1.667% 0.794%
SM60 0.601% 1.091% 1.488% 0.794%

TABLE III
STANDARD DEVIATIONS OF THE CORRECT CLASSIFICATION RATES

neural network is trained again on the whole training
set of patterns (instead of 9 sub-samples in the cross-
validation). Ten runs were made with different random
initial weights. The difference with cross-validation is
that there are all made on the same training set.

Training set Test set
Set mean AIC AIC std dev mean AIC AIC std dev

REF 0.765 1.2E − 02 0.781 1.5E − 02
SM3 0.750 1.3E − 02 0.757 1.3E − 02
SM5 0.743 1.6E − 02 0.751 1.5E − 02

SM10 0.733 2.1E − 02 0.744 2.3E − 02
SM15 0.710 2.2E − 02 0.727 2.2E − 02
SM30 0.681 1.5E − 02 0.697 1.3E − 02
SM60 0.644 1.6E − 02 0.662 1.8E − 02

TABLE IV
GENERALIZATION PERFORMANCE: MEAN AIC VALUES AND

STANDARD DEVIATIONS FOR THE TRAINING SET AND THE TEST SET

Table IV shows the mean AIC values and the standard
deviation, over the 9 best results out of the 10 runs17,
for each smoothing parameter. The neural networks
performances on the training and test sets are quite
close, with any smoothing parameter. All models seem
to generalize well, and show little differences in that
respect (see figure 3).

V. INFLUENCE OF SMOOTHED METRICS ON OPENING
SCHEDULES

The last section was dedicated to the influence of
the smoothing strategy on the performance of the sector
status prediction. Now, let us see how it modifies the
resulting opening schedules, comparing the different
models on a same day and for a chosen air traffic centre
(Brest ATCC, 2003, June 1st). The same algorithms

17In two cases, it happened that the choice of the random initial
weights and the training process relying on a local optimization led to
significantly less performing networks. So it was decided to remove
the ten percent less performing networks from the results.
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Fig. 3. Mean AIC for the training set and the test set.

were used for all models, with the same values for the
split/merge decision parameters (eta = 0.2,alpha = 0.1,
and beta = 0.3).

Set Correlation coeff. Dissimilarity Nb. config.
REF 0.9443 0.1169 101
SM3 0.9196 0.1489 202
SM5 0.9142 0.1510 179
SM10 0.9038 0.1783 125
SM15 0.9065 0.1681 140
SM30 0.9471 0.1094 34
SM60 0.9101 0.1426 23

TABLE V
CORRELATION COEFFICIENT AND NUMBER OF AIRSPACE

CONFIGURATIONS FOR EACH MODEL

Table V shows the correlation coefficient, the dissimi-
larity measure, and the number of configurations for each
model. All models show a good correlation, above 0.9
to the recorded number of control sectors. The number
of reconfigurations is fairly high when smoothing on
less than 15 minutes, showing a lot of "configuration
switching", whereas SM30 and SM60 are much closer
to the 28 airspace configurations that were actually used
that day. Considering the dissimilarity measure and the
number of configurations, SM30 seems to be the model
that is most similar to reality. Let us now have a closer
look at each computed schedule.

Figure 4 shows the reference situation, for Brest
ATCC (2003, June 1st). The number of control sectors
computed by our algorithm, using raw complexity met-
rics, can be compared to the actual number of control
sectors that where opened, for each minute of this day.
The evolution of the number of aircraft within the center
is also displayed, above the two other curves. Let us
remind that the number of aircraft is not sufficient to
explain the number of control sectors, as other complex-
ity metrics are also involved in the explanation of the
sector status, and as the traffic load may not be equally
dispatched among the sectors. It is still a good indication
of the overall traffic load, however.

We may notice that, while the computed output stays
globally close the recorded number of control sectors,
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Fig. 4. Number of control sectors (computed schedule, real
configurations), and traffic for Brest ATCC (2003, June 1st), with REF
setup

it also shows many variations around the actual curve,
more or less following the traffic trends on that day.
Notice the peak of traffic around 20:00 UTC (1200
minutes after 00:00), where the curve of the computed
schedule apparently better follows the traffic trend than
the actual configurations (we shall see later that this
depends on the chosen smoothing parameter).
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Fig. 5. Number of control sectors (computed schedule, real
configurations), and traffic for Brest ATCC (2003, June 1st), with
smoothed metrics (SM15)

Figures 5, 6 and 7 show the airspace schedule com-
puted with smoothed metrics, using a smoothing window
of 15, 30, or 60 minutes respectively. The traffic load’s
curve displayed on each figure shows the smoothed
number of aircraft, using the smoothing window cor-
responding to each model.

At this point, when comparing figures 4, 5, 6, and 7,
we may notice two phenomena which are not quantified
by the measures of correlation and the number of recon-
figurations. First of all, considering the peak of traffic
aroung 20:00 UTC (1200 minutes after 00:00), we can
see that the more you smooth the metrics, the less the
computed number of control sectors reflects this peak of
traffic. In fact, it becomes closer to the actual number of
control sectors.
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Fig. 6. Number of control sectors (computed schedule, real
configurations), and traffic for Brest ATCC (2003, June 1st), with
smoothed metrics (SM30)
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Fig. 7. Number of control sectors (computed schedule, real
configurations), and traffic for Brest ATCC (2003, June 1st), with
smoothed metrics (SM60)

The second conclusion that may be drawn from these
figures is that smoothing the input metrics leads to delay
the decisions to reconfigure the airspace. This is most
visible on figure 7 (SM60) where the "climbing steps"
corresponding to the split decisions in the morning and
the "descending steps" of the merge decisions towards
the end of the day are both on the right of the actual
curve. In other words, the sector status prediction seems
more performant on average when smoothing over 60
minutes18, but smoothing too much leads to take late
split/merge decisions, thus delaying the moments at
which the reconfigurations should be triggered.

All these experiments were made using the same
decision parameters (eta = 0.2, alpha = 0.1, and
beta = 0.3) for all models. These parameters also have
an influence on the moment at which reconfigurations
are triggered. Some other parameter values were tried
(eta = 0, alpha = 0.5, and beta = 0.5), with the aim to
improve the reactivity of the reconfiguration algorithm.
For SM60, the reconfigurations were triggered slightly

18Although it was not such a clear-cut in deciding which of SM30
or SM60 was the best model, in table I

earlier but still the same phenomenon was observed, and
the number of configurations increased to 38 configura-
tions. Other trials were made, mixing metrics smoothed
over 60 minutes and metrics smoothed over 10 minutes,
with similar results.

So, smoothing the metrics over 15 minutes or less al-
lows a higher reactivity to the traffic variations, but with
much more reconfigurations than observed in real life.
Among the models that were tested, SM30 (smoothing
the input metrics over 30 minutes) seems the best com-
promise, considering the performance of the sector status
prediction, but also the realism of the computed airspace
configuration schedule. It seems to better capture the
moments at which the reconfigurations are triggered,
than when smoothing over 60 minutes.

VI. CONCLUSION AND PERSPECTIVES

The opening schedule computed with metrics
smoothed over 30 minutes showed a number of recon-
figurations close to reality, and with a number of control
sectors well correlated to the actual configurations. It
seems the best compromise among the models tested so
far with the chosen neural network topology.

In a pre-tactical context, smoothing over relatively
long periods of time may have positive consequences.
The model should be more robust to uncertainties on
aircraft trajectories when the complexity metrics will be
computed from flight plans instead of past radar tracks.

In regard to the instant workoad of a controller operat-
ing a sector at a time t, this smoothing strategy seems too
drastic and may lead to miss the exact moments at which
reconfigurations should be triggered, if this model was
to be used for tactical purposes in a dynamic airspace
management tool. An explanation is that only snapshots
of the traffic situation – i.e. metrics values measured at
time t – were used to predict the sector status. We may
expect better results by considering the input metrics
as time series, and by using recurrent neural networks
instead of simple feed-forward networks. Provided this
approach proves successful, the airspace configuration
algorithms may prove useful for tactical purposes: flow
managers may issue what-if requests and get some
feedback on the resulting sectorization and workload
balance among the control sectors.

Further works shall adress both issues: improve the
statistical model by using time series and recurrent
networks to better capture the instant workload, and
test the current model on simulated traffic, using flight
plans as inputs, in order to predict the airspace opening
schedule for the next day. Other smoothing strategies
may also be tried, with different smoothing parameters
for each metric for example, or with smoothing intervals
centered on the current time.
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