
HAL Id: hal-01020102
https://enac.hal.science/hal-01020102

Submitted on 7 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allocating 3D-trajectories to air traffic flows using A*
and genetic algorithms

David Gianazza, Nicolas Durand, Nicolas Archambault

To cite this version:
David Gianazza, Nicolas Durand, Nicolas Archambault. Allocating 3D-trajectories to air traffic flows
using A* and genetic algorithms. CIMCA 2004, international conference on Computational Intelligence
for Modelling, Control and Automation, Jul 2004, Gold Coast, Australia. pp xxxx. �hal-01020102�

https://enac.hal.science/hal-01020102
https://hal.archives-ouvertes.fr

Allocating 3D-trajectories to air traffic flows,
using A∗ and genetic algorithms

D. Gianazza and N. Durand and N. Archambault
LOG1 / CENA2

7, avenue Edouard Belin 31055 Toulouse Cedex
{gianazza,durand,archamba}@recherche.enac.fr

Abstract

This paper introduces two methods, tested on a toy problem, which allocate optimal
separated 3D-trajectories to air traffic flows. The first approach is a 1 vs. n strategy which
applies an A∗ algorithm iteratively to each flow. The second is a global approach using a
genetic algorithm, applied to a population of trajectory sets.

1 Introduction

The critical problem of airspace congestion over Europe is currently being handled by the Air
Traffic Flow Management (ATFM) by allocating departure time slots to aircraft, thus generating
costly ground delays. Besides, airlines operators are free to choose the flight path through the
routes network, and the requested flight level for each of their flights3. Very few constraints
are put on the airlines operators concerning these choices. A consequence is that many flights
request the same flight levels, thus increasing the airspace congestion. The continuous traffic
increase is now pushing the current system to its limits, and the need for alternatives of higher
capacity arises.

In this paper, we propose to reduce congestion by allocating full 3D-trajectories to the main
traffic flows, in order to obtain a set of optimal trajectories which do not interfere one with each
other. Section 2 brings a short overview of previous works on ATM4 problems. Section 3 de-
scribes the fairly simplified problem we have chosen to address first, with a discussion on the
complexity and the solving strategies. Section 4 deals with the application of the A∗ algorithm to
our problem, with a 1 vs. n strategy. Section 5 describes a global strategy using a genetic algo-
rithm, and its results. In the conclusion, the results are summarized, and the further developments
and applications to real traffic are discussed.

2 Context and related work

The Air Traffic Control (ATC) system is currently organized in predefined routes, crossing
airspace sectors. Each sector is handled by a team of two controllers (a planning controller

1LOG : Global Optimization Laboratory
2CENA : the Centre d’Etudes de la Navigation Aérienne is the French Civil Aviation institution in charge of

developing new concepts and applications for the future air traffic control automated systems.
3although their choices may be limited to a subset of routes when a traffic orientation scheme is defined.
4ATM: Air Traffic Management.

and a radar controller), whose job is to monitor aircraft trajectories within their sector, detect
potential conflicts, and issue lateral or vertical manoeuvres to conflicting aircraft when neces-
sary. We may distinguish the en-route control with aircraft following predefined routes, and the
approach control in Terminal Areas (TMAs) around the main airports, with specific arrival and
departure procedures. When the traffic within a TMA or an airspace sector becomes too high,
the controllers workload may reach a limit beyond which safety is not guaranteed. To avoid this
situation, the Air Traffic Flow Management (ATFM) services may delay the take-off of departing
aircraft. This system is now reaching a limit : a small amount of additionnal traffic generates a
great increase in the cumulated delays (c.f. Eurocontrol report [1]).

Numerous papers related to Air Traffic Management (ATM) appear in the litterature, many of
them dealing with capacity problems ([2], [3], [4]) or with dynamic flight planning through a
congested airspace ([5], [6]), using a variety of deterministic or stochastic methods. The solving
of these problems is not in the scope of this paper, which deals with static 3D-trajectory design.
The routes network design is adressed in [7], using Voronoï diagrams and clustering methods
which iteratively move and merge the crossing points of the network. Although quite interesting,
this approach is mainly bi-dimensionnal and does not take account of the vertical evolutions
of aircraft. In [8] and [9], Graph Colouring techniques are used to assign cruising flight levels
to aircraft flying on direct routes, in order to ensure vertical separation during the cruise. The
climbing or descending trajectory segments are not considered. In [10], an interesting concept of
TMA-to-TMA handover is assessed through statistical studies and traffic simulations. The idea
is to remove a percentage of the traffic from the current ATC system (and from the slot allocation
process) by defining conflict-free routes between the main terminal areas. Aircraft flying on these
routes would have priority over the rest of the traffic and would be handled by specific departure
and arrival management tools. Removing even a small percentage of traffic may drastically
reduce delays, as long as the impact on the overall system capacity is limited. However, only
horizontal separation between routes is discussed: crossing routes are either forbidden or allowed
in a very limited way. So only a few traffic flows could be considered, without significant profit
in terms of conflict reduction. In addition, it is not specified how aircraft would be sequenced on
each route and how separation from other traffic would be achieved.

In what follows, we propose to build static conflict-free 3D-trajectories between the main
Terminal Areas using two alternative methods. The first is an iterative 1 vs. n strategy where
flows are considered in decreasing order of size, and the second is a stochastic approach with a
global strategy. The chosen model, the complexity of the problems addressed by each strategy
and the choice of the algorithms is discussed in the next section.

3 The toy problem.

3.1 Trajectory model

Let us first consider a fairly simplified model for our trajectory design problem. The set of flows
shall be arbitrarily chosen (origins and destinations on a grid, or on a circle, for example). A

flow is defined as a set of flights between a departure airport and an arrival airport. The following
simplifications are made : the airspace is considered as an Euclidean space, where all airports
are at altitude 0. Latitudes and longitudes on the ellipsoïd earth surface are converted into (x, y)
coordinates by a stereographic projection, and the altitude in feet shall be our z coordinate 5 .
All aircraft fly with identical performances and follow linear slopes of climb and descent, and
all aircraft belonging to a given flow i request a same cruise flight level RFLi

6, and follow by
default a direct route between departure and arrival.

x

y

z

O

 Departure airport

Climb

Cruise

Descent

Arrival airport

Figure 1: Basic model of a default trajectory

These simplifications allow us to allocate only one trajectory per flow. A trajectory shall be a
sequence of line segments in our Euclidean space. Figure 1 shows a default trajectory between a
departure airport and an arrival airport, with a climb towards a requested flight level RFLi, and
a descent downto the destination airport.

In order to avoid conflicts between trajectories, we shall introduce some lateral or vertical
deviations. Horizontally, we shall allow only three possibilities, as shown on the left part of
figure 2 : the direct route, or left or right parallel routes. The radii around the departure and
arrival airports, and the value of the offset, are input parameters.

Left deviation

Departure
airport

Arrival
airport

Start of climb

Right deviation

End of climb

RFL
Default trajectory

CFL1
CFL2

d1=0 d2 d3

CFL3
Deviated trajectory

Figure 2: Horizontal (left) and vertical (right) deviations

Vertically, we shall allow a succession of different flight levels (CFL stands for Cleared Flight

5This approximation is possible only as long as we stay in an area around the projection center which is not too
large. It also introduces some errors in the computation of distances between trajectories : aircraft usually follow
orthodromic routes over the earth surface, which will not be projected as straight lines on our stereographic plane.
These errors can be balanced in our problem by increasing the separation minima between trajectories.

6Requested Flight Level

Level), as illustrated on the right part of figure 2. Each of the flight levels shall be between a min-
imum flight level FLmin and the requested flight level RFL. The vertical deviations are then
characterized by a sequence of pairs (dj, CFLj), where dj is the distance (along the route) at
which the vertical evolution towards CFLj begins. Each trajectory i is then completely repre-
sented by the following variables : the choice of a route, represented by a variable r (equal to 0
for the direct route, 1 when the deviation is to the right, and −1 when it is to the left), and the
sequence of pairs (dj, CFLj).

We are now able to define a cost related to the lateral and vertical deviations. The cost of
a vertical deviation depends on the surface between the effective vertical profile and the cruise
level : li×RFLi−surface(profilei) where li is the length of the chosen route. This cost should
not depend on the distance between origin and destination (otherwise small deviations on long
flights may cost as much as big deviations on short flights), so we shall divide this expression
by the route length li. The cost of a lateral deviation depends on the route elongation (li−lrefi)

lrefi
,

where lrefi is the length of the direct route. Finally, the total cost of a trajectory is a combination
of the two, with K a chosen factor : :

cost(i) = RFLi −
surface(profilei)

li
+ K × (li − lrefi)

lrefi

3.2 Detecting interfering trajectories

Let us now define the notion of interference between trajectories. We will deliberately avoid
to use the term conflict, which in the aviation community refers to the fact that two aircraft are
(or will be) closer than the allowed separation standard (usually 5 nautical miles horizontally
and 1000 feet vertically). The conflict definition refers to the horizontal and vertical distances
between points in space, not 3D line segments. Let us call Nh and Nv the standard horizontal and
vertical separations. A first definition of the interference between trajectories is the following :
two trajectories T1 and T2 are interfering when there exists a pair of points (p1, p2), with p1 ∈
T1, p2 ∈ T2, such that dh(p1, p2) < Nh and dv(p1, p2) < Nv. In this definition, dh is the
horizontal distance, and dv is the vertical distance.

With this definition, detecting interferences means to find the parts of trajectories which si-
multaneously violate the horizontal and vertical separation constraints, and this is not an easy
exercise of three-dimensional geometry. This is why we shall slightly modify the definition of
the interference, by introducing a new distance. Let us first define the following scalar product :





x1
y1
z1



 .





x2
y2
z2



 =
x1.x2 + y1.y2

N2
h

+
z1.z2

N2
v

Let us call d the distance defined by this scalar product. The distance d(a, b) between two
points a and b is equal to the squared root of the scalar product of the vector ab by itself (d(a, b) =√

ab.ab). It can easily be shown that for each pair of trajectories (T1, T2), if p1 and p2 are the
closest point with this new distance d, then :

d(p1, p2) >
√

2 ⇒





∀(q1, q2) ∈ T1 × T2

dh(q1, q2) > Nh

dv(q1, q2) > Nv



 (1)

In the rest of this paper, we shall consider that two trajectory segments s1 ⊂ T1 and s2 ⊂ T2

are interfering when the closest points (using the distance d) are at a distance less than
√

2,
when at least one segment is climbing or descending. When both segments are at a constant
altitude, they will interfere when the altitude difference is less than Nv and when their horizontal
separation is closer than Nh. The use of distance d brings an additional margin in the separation
of trajectories when compared to our initial definition, but the implementation of the detection
of interferences is much easier this way.

3.3 Problem description and discussion

Let us consider a set of N traffic flows. For each flow there is a default trajectory between
departure and arrival. These trajectories may interfere one with each other, in the sense of the
above definition. Our goal is to find a set of N new trajectories, as close as possible to the default
trajectories, but separated in space according to the distance criterion defined in the previous
subsection. This is a minimization problem, for which we may choose among two strategies. A
first approach, that we will call 1 vs. n, is to consider each flow in turn and try to find a new
trajectory of minimal cost, separated from the previous n trajectories (n < N). With this strategy,
the solution found (when there is one) depends on the order in which the flows are considered :
different sequences will lead to different solutions. The second strategy, that we may call global
strategy, consists in minimizing a cost associated to the set of trajectories, without any constraint
of order on the flows. The global cost should cumulate the costs of each individual trajectories.
So there are in fact two different problems, depending on the chosen solving strategy : global or
1 vs. n.

Two difficulties may arise with the 1 vs. n problem. The first one is directly related to the
number of constraints put on the trajectory we are trying to built, i.e. by the amount of airspace
occupied by the already computed trajectories. If there are too much constraints, there may be
no solution to our problem. The second one is the number of combinations of possible trajectory
deviations. It may take too much time to find an optimal solution while exploring a great number
of possible trajectories. However, these well-known difficulties may not prevent us to try a
classical tree-search method on this problem. As we are trying to find the shortest path through
the airspace while avoiding obstacles (the other trajectories), the A∗ algorithm seems adequate.

The global problem is similar, in terms of complexity, to the conflict resolution problem dis-
cussed in [11] (section 2.3). Let us consider two flows of aircraft following interfering default
trajectories T1 and T2. There are two possibilities when trying to build two separated trajectories
T ′

1 and T ′
2 for these flows : either the tube of section

√
2 defined around T ′

1 (with the distance d)
crosses the surface delimited by the trajectory and the straight line between departure and arrival
of T ′

2 , as shown on figure 3, or this tube is completely outside this surface.

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

x

z

O

y

Departure airport

Arrival airport

Trajectory 2

Trajectory 1, with its tube

Figure 3: Example of solution with trajectory 1 inside the surface of trajectory 2

As aircraft cannot fly under the earth surface, there is no way to pass from one type of solution
(crossing the surface) to the other (outside the surface) without discontinuity. So the set of
solutions for this two-flows problem is split in two different connected components.

For a given number n of interfering trajectories, we must consider the n(n−1)
2

pairs of trajecto-
ries, and the number of connected components is now 2

n(n−1)
2 . This huge number of connected

components (more than thirty thousand billions for 10 trajectories) and the fact that we don’t
know a priori in which component(s) is (or are) the optimal solution(s), make the global prob-
lem highly combinational and prevent to use local methods (gradient, BFGS, and so on...). Fur-
thermore, when the number of trajectories increases, we have to face big size problems which
are generally difficult to handle with deterministic optimization (as A∗ or Branch & bound for
example), so we will use a genetic algorithm for the global problem.

4 Solving the 1 vs. n problem, using an A∗ algorithm

4.1 Tree-search description

The A∗ algorithm is applied iteratively to each flow. Its aim is to find the shortest trajectory from
departure to arrival, while avoiding the already computed trajectories.

The idea of the A∗ algorithm (cf. [12]) is to search the best path through a tree of possibilities,
restarting at each step from the best possible node encountered so far during the search. To
do this, we need to define a cost function for the transitions between states (tree nodes), and a
heuristic function which shall estimate the cumulated cost of the transitions remaining between
the current state and a possible solution. In our problem, the states shall represent choices in
the possible deviations (horizontal or vertical), made at each step of the trajectory. The cost and
heuristic functions shall depend on the extent of the trajectory deviations.

As discussed before, a trajectory is completely defined by the choice of a route r, and a list
of pairs (dj, CFLj). Such a pair is a constraint on the vertical profile, which meaning is : at
distance dj, start a vertical evolution towards flight level CFLj. The choice of a distance dj is
not free : it can only be a multiple of one tenth of the route length. There is also an additional
implicit constraint : the vertical profile must end at the arrival airport, following the final descent

slope. A trajectory state is simply represented by (r, {(dj, CFLj) / j ∈ [0, 9]}. As an example,
the default trajectory will be (0, [(0, RFL)]). The trajectory is built step by step : climb (or
descend) towards CFLj then stay levelled until you climb or descend towards CFLj+1. So each
constraint (dj, CFLj) will induce an evolutive flight segment followed by a levelled segment.

So a node is completely defined by the index j and the current vertical evolution evol, which
may be either Climb or Descent (during the evolution towards the current CFLj), or Levelled.

The tree root is a specific initial state for which no choice of route or level is made yet. This
initial state has three sons (at most), corresponding to the three possible parallel routes. For
each route, we compute the highest level CFL0 (within the bounds [FLmin, RFL]) that can be
reached without interfering with other trajectories during the initial climb. Such a son is then
described by (r, [(0, CFL0)], Climb). If there is no such initial climb, the son is not valid and is
rejected.

Every other node usually has two sons corresponding either to the best possible next step
without interference with other trajectories, or to an alternative step with either an evolution
towards a lower flight level if the current node represents a vertical evolution, or a shorter levelled
segment if the current evolution is Levelled. When the current node is a Levelled step which
ends at the top of descent, an additional son is computed representing the final descent towards
the arrival airport.

This tree-search mechanism allows to explore all possible states, if necessary, without gener-
ating too many sons at each processing step. The tree is explored by considering at each step
the best node computed so far. To do this, the A∗ handles a priority queue which stores the al-
ready explored nodes. The search ends when the arrival airport is reached. The trajectory built
by the A∗ is then the one closest to the default trajectory that does not interfere with the other
trajectories.

4.2 Transition cost and heuristic

At each processing step, we need to compute the costs of the transitions between the father node,
extracted from the priority queue, and its sons. For our problem, the cost of a transition between
a state s1 and a state s2 is :

• K × l−lref

lref
, the cost of the route elongation, when s1 is the initial state,

• the surface of the area delimited by the requested flight level RFL and the trajectory part
corresponding to constraint j (between the distances dj and dj+1) divided by the route
length l, if the transition between s1 is the levelled segment of constraint j and s2 is the
evolutive segment of constraint (j + 1),

• O in any other case.

Note that the cumulated cost of all transitions from departure to arrival is equal to the cost of
the overall trajectory defined in section 3.

The heuristic must absolutely be a lower bound of the remaining transitions costs, otherwise
the estimated cost of a node leading to the optimal solution could be over-estimated, preventing
to explore the corresponding sub-tree (the one with the optimum) as other nodes may be extracted
from the priority queue first. So we will compute a vertical profile starting at the current point
and joining the default profile (cruise level at RFL) corresponding to the chosen route r. The
heuristic will be the surface delimited by this rejoining profile and the RFL, divided by the route
length.

Separated trajectories on a semi-circle (R= 350 nautical miles)

-400 -300 -200 -100 0 100 200 300 400 -400
-300

-200
-100

 0
 100

 200
 300

 400

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

-400

-300

-200

-100

 0

 100

 200

 300

 400

-400 -300 -200 -100 0 100 200 300 400

2D-view of separated trajectories on a semi-circle (R= 350 nautical miles)

Figure 4: A∗ results for 10 flows on a semi-circle (SC)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700

traj_0
traj_1
traj_2
traj_3
traj_4
traj_5
traj_6
traj_7
traj_8
traj_9

Figure 5: Side view of A∗ results for 10 flows on a semi-circle (SC)

4.3 A∗ results

The algorithm has been tested with different configurations of flows. Let us focus on the semi-
circle configuration (SC), with flows converging towards a same point, and requesting each a
same flight level (35000 feet, also noted FL350). For this configuration, the A∗ algorithm com-
putes non-interfering trajectories as shown on figure 4. Figure 5 shows the side views of each
trajectory. The cumulated cost of all deviations is 52.068, and the computation time on a Xeon
CPU 2.8 GHz is 5.76 seconds.

5 Solving the global problem using a genetic algorithm

5.1 Description

Genetic algorithms are based on the paradigm of natural evolution. Optima are reached through
a process of crossing, mutation and selection of the fittest individuals. This process is applied
to a population of chromosomes. The reader may refer to [13] and [14] for an overview of the
latest algorithms based on the evolutionnary paradigm, or to [15] and [16, 17] for more details on
genetic algorithms. A good state of the art of optimization using genetic algorithm may also be
found in [18] and [11], with a practical application to the Air Traffic Control domain (specifically
to conflict solving) in the latter. In our problem, a chromosome will be a set of n trajectories.
Each chromosome of the initial population is generated by randomly choosing its n trajectories,
within the bounds described in subsection 3.1.

The fitness criterion allowing to select the best trajectory sets at each step is directly related
to the cumulated cost of trajectory deviations. However, the fitness function also takes account
of the interferences between trajectories : chromosomes with interfering trajectories shall be
penalized. Let us first define a triangular matrix C, which diagonal values indexed (i, i) are the
deviation costs, defined in subsection 3.1, of each trajectory. The other values, indexed (i, j)
with i 6= j store the number of interfering segments between trajectories Ti and Tj .

Cii = cost(i)
∀i 6= j Cij =

∑

(sp,sq)∈Ti×Tj
δ(sp, sq)

where
δ(sp, sq) = 1 if d(sp, sq) ≤

√
2

0 otherwise.

Let us note f(i) the sum
∑

j∈[1,n],j≤i Cij . This sum is equal to zero when trajectory Ti is not
interfering with any other trajectory. For a chromosome with completely separated trajectories,
we will have

∑

i∈[1,n] f(i) = 0.

The fitness criterion F of a given chromosome (a set of n trajectories) is defined by :

F = 1 + n
1+

P

i Cii
if

∑

i f(i) = 0
1

P

i f(i)
if

∑

i f(i) > 0

Fitness values shall then be less than 1 for chromosomes with interfering trajectories, and
above 1 for chromosomes with separated trajectories. In this last case, the smaller the trajectory
deviations will be, the greater the fitness will be.

The crossover operator takes advantage of the partial separability or our problem to recognize
and favor good genes combinations in the chromosomes (the reader may refer to [19] for more
details on this subject). To do so, we will need to compare trajectories of different chromosomes,
using a local fitness computed for each trajectory in each chromosome. This local fitness is

simply the sum f(i) =
∑

j∈[1,n],j≤i Cij that we have seen above, which represents the number of
segments of trajectory Ti interfering with other trajectories.

Let us now consider two chromosomes a and b. The crossover operator chooses with different
probabilities among two following strategies : copy in a all trajectories of b whose local fitness
is better (strictly, or with an additional margin) than in a, and do the same for b, or generate two
new chromosomes by a barycentric crossover. The first crossover strategy is more elitist than the
second, as we deliberately try to produce better fit chromosomes. The crossover is applied to the
population with a given probability which is a parameter of the program.

The probability of mutation is also a parameter of the program. For each chromosome chosen
for mutation, the following actions are performed : a trajectory is randomly7 chosen among the
n ones of the chosen chromosome, and replaced by a new trajectory computed using the A∗

algorithm described in the previous section. If no such trajectory is found, random modifications
are introduced in the initial trajectory.

5.2 GA results

Run 1 2 3 4 5 6 7 8 9 10
Fbest 1.1897 1.1897 1.1901 1.1897 1.1885 1.1885 1.1897 1.1893 1.1901 1.1885
Cost 51.735 51.735 51.620 51.735 52.068 52.068 51.735 51.842 51.620 52.068
Gen. nb 71 125 116 89 75 78 109 98 84 78
Time (s) 591.03 1307.13 1033.93 848.83 742.89 894.82 1124.39 1107.01 714.64 728.49

Table 1: GA results for flows on a semi-circle (SC)

On the semi-circle problem, the genetic algorithm was run ten times with different seeds for
the random generator, with a population of 250 elements evolving over 150 generations. The
probability of crossing is 0.6, and the probability of mutation is 0.05. Table 1 shows for each
run the fitness of the best element, the corresponding cumulated cost, and the generation number
at which the best element was found. We see that all solutions found by the genetic algorithm
are better than, or equivalent to, the solution found by the A∗ (cost 52.068 with a corresponding
fitness of 1.1885). Figures 6 and 7 show the best solution found by the genetic algorithm. We
see that the lateral deviations of trajectories 8 and 9 allow slighly different vertical deviations for
these trajectories than in the A∗ solution, thus allowing to separate the trajectories using 8 flight
levels instead of 10.

6 Conclusion and further research

Both algorithms exhibit good results on our simplified problem. The global strategy usually finds
better results with the genetic algorithm than the 1 vs. n strategy with the A∗, which was to be
expected as the latter does not aim at solving the global problem.

7A more elitist strategy may be used, by choosing the trajectory with the worse local fitness

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800

traj_0
traj_1
traj_2
traj_3
traj_4
traj_5
traj_6
traj_7
traj_8
traj_9

Figure 6: Side view of GA results for 10 flows on a semi-circle (SC)

traj_0
traj_1
traj_2
traj_3
traj_4
traj_5
traj_6
traj_7
traj_8
traj_9

-400 -300 -200 -100 0 100 200 300 400 -400
-300

-200
-100

 0
 100

 200
 300

 400

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

-400

-300

-200

-100

 0

 100

 200

 300

 400

-400 -300 -200 -100 0 100 200 300 400

traj_0
traj_1
traj_2
traj_3
traj_4
traj_5
traj_6
traj_7
traj_8
traj_9

Figure 7: GA results for 10 flows on a semi-circle (SC)

The algorithms have already been successfully applied to real traffic over France and Europe,
involving several modifications in the model. For example, the case of traffic flows which do not
start and/or end within the considered geographic areas must be handled : entry and exit flight
levels must be added to the trajectory description. These results will be described in a future
paper.

Further research may deal with the flow definition, and particularly in the time dimension.
It would not make sense to allocate a full 3D trajectory during the whole day to a flow with a
few flights early in the morning and another few in the evening, for example. The fact that all
aircraft do not have similar flight performances should also be taken into account. These real-life
constraints may slightly change our model of traffic flows. The great number of origin/destination
pairs in real traffic (310 flows of more than 10 aircraft per day on the 21st may 1999, in France)
also adds some difficulty, although we expect to avoid it by splitting flows along the time axis.
However, this does not change the nature of the results presented in this paper.

References

[1] Performance Review Commision. Performance review report, an assessment of air traffic manage-
ment in europe during the calendar year 2000. Technical report, Eurocontrol, 2001.

[2] D. Bertsimas and S. Stock Patterson. The traffic flow management rerouting problem in air traffic
control: A dynamic network flow approach. Transporation Science, 34(3):239–255, August 2000.

[3] D. Delahaye and A. Odoni. Airspace congestion smoothing by stochastic optimization. In Evolu-
tionary Programming VI, 1997.

[4] N. Barnier, P. Brisset, and T. Rivière. Slot allocation with constraint programming: Models and
results. In Proceedings of the fourth USA/Europe Air Traffic Management R&D Seminar, 2001.

[5] M.R. Jardin. Real-time conflict-free trajectory optimization. In Proceedings of the fifth USA/Europe
Air Traffic Management R&D Seminar, June 2003.

[6] C.H.M. van Kemenade, C.F.W. Hendriks, H.H. Hesselink, and J.N. Kok. Evolutionnary computation
in air traffic control planning. In Proceedings of the Sixth International Conference on Genetic
Algorithm. ICGA, 1995.

[7] Karim Mehadhebi. A methodology for the design of a route network. In Proceedings of the Third
Air Traffic Management R & D Seminar ATM-2000, Napoli, Italy, June 2000. Eurocontrol & FAA.

[8] Vincent Letrouit. Optimisation du réseau des routes aériennes en Europe. PhD thesis, Institut
National Polytechnique de Grenoble, 1998.

[9] Nicolas Barnier and Pascal Brisset. Graph coloring for air traffic flow management. In CPAIOR’02:
Fourth International Workshop on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimisation Problems, pages 133–147, Le Croisic, France, March 2002.

[10] L. Maugis, J.-B. Gotteland, R. Zanni, and P. Kerlirzin. TOSCA-II - WP3: Assessment of the TMA
to TMA hand-over concept. Technical Report TOSCA/SOF/WPR/3/03, SOFREAVIA, 1998.

[11] Nicolas Durand. Optimisation de trajectoires pour la résolution de conflits aériens en route. PhD
thesis, Institut National Polytechnique de Toulouse, 1996.

[12] Judea Pearl. Heuristics. Addison-Wesley, 1984. ISBN: 0-201-05594-5.

[13] T. Baeck, D.B. Fogel, and Z. Michalewicz. Evolutionary Computation 1 : Basic Algorithms and
Operators. Institute of Physics Publishing, 2000.

[14] T. Baeck, D.B. Fogel, and Z. Michalewicz. Evolutionary Computation 2 : Advanced Algorithms and
Operators. Institute of Physics Publishing, 2000.

[15] J.H Holland. Adaptation in Natural and Artificial Systems. University of Michigan press, 1975.

[16] David Goldberg. Genetic Algorithms. Addison Wesley, 1989. ISBN: 0-201-15767-5.

[17] David Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison
Wesley, 1989.

[18] Yann Le Fablec. Optimisation par algorithmes génétiques parallèles et multi-objectifs. Master’s
thesis, Ecole Nationale de l’Aviation Civile (ENAC), 1992.

[19] N. Durand and J. M. Alliot. Genetic crossover operator for partially separable functions. In Pro-
ceedings of the third annual Genetic Programming Conference, 1998.

