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Abstract

In this paper, we show how genetic algorithms can
be used to compute automatically a balanced sectoring
of airspace to increase Air Traffic Control capacity in
high density areas'.

AT topic: Genetic Algorithm, Network partition-
ing.

Domain Area: Air Traffic Control

Status: Operational mock-up.

Effort: 1 man/year

Impact: Increase capacity of Air Traffic Control
systems in high density areas by balancing load of sec-
tors.

1 Introduction

The CENA is the organism in charge for studies
and research for enhancing the French ATC systems.
Studies on the use of genetic algorithms for conflict
resolution have given encouraging results [2], and a
new study has been funded to solve the load balancing
problem for Air Traffic Control. When joining two
airports, an aircraft must follow routes and beacons ;
these beacons are necessary for pilots to know their
position during navigation and because of the small
number of beacons on the ground they often represent
crossing points of different airways.

Crossing points may generate conflicts between air-
craft when their trajectories converge on it at the same
time and induce a risk of collision.

At the dawn of civil aviation, pilots resolved con-
flicts themselves because they always flew in good
weather conditions (good visibility) with low speed
aircraft. On the other hand, modern jet aircraft do
not enable pilots to resolve conflicts because of their
high speed and their ability to fly with bad visibili-
ty. Therefore, pilots must be helped by an air traffic
controller on the ground who has a global view of the
current traffic distribution in the airspace and can give
orders to the pilots to avoid collisions.
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As there are lot of planes simultaneously present in
the sky, a single controller is not able to manage all of
them. In France, airspace is partitioned into different
sectors, each of them being assigned to a controller.

Sectoring is currently done in an empirical way
by some airspace experts who apply rules they have
learned with experience. Actually, the sectoring mod-
ifications are usually due to traffic evolution on long
period and when a sector is regularly overloaded it has
to be modified. To reach this aim, an ad hoc commis-
sion meets to elaborate new frontiers for the sectors in
order to balance the workload. Afterward sectoring is
updated (until new problems arise).

This way of making is relevant because it takes into
account a lot of practical aspects but has a limited ef-
fect on the local zone it treats. One can try to improve
and complete this process with an automatic approach
in order to give a solution to the sectoring problem in
the whole airspace and that could be refined by ex-
perts.

This first automatic approach is very new and still
may be improved but it gives very encouraging results.

In this paper we show how well Genetic Algorithms
manage this problem (after some simplifications and
modeling). In the first part we describe more precisely
our problem and make some relevant simplification to
develop a mathematical model. In the second part
we present complete examples of resolution with the
different Genetic Algorithms.

2 A simplified model

2.1 Introduction

Before doing a mathematical description of our
problem, it is necessary to stress out our framework
to introduce some simplifications for our model. Since
it is very long to train an air traffic controller on his
sector (from 3 to 4 months), we must not investigate a
real time sectoring optimization according to the vari-
ations of the traffic load. Instead we have to consider
a registered maximum load traffic period on the work-
ing network. Our problem is then to partition the air
space to get a balanced induced control workload.

When examining the physical air traffic network, we
notice that airways are superposition of several routes



Figure 1: Airways modeling

which have the same projection on the floor but differ-
ent altitudes according to their azimuth (semi circular

rule?). So an airway can be modeled by a bidirection-
al link which gathers several individual aircraft route
(see figure 1).

Then, our 3 dimensional transportation network
will be modeled by a classical 2 dimensions network
on a horizontal plan. This modeling is not far from
reality because of the small number of routes super-
posed on the same link (each link roughly contains 4
routes).

The controller workload has several origins that can
be divided into two categories:

1. there are quantitative factors which include the
number of flights, the number of conflicts etc...,
which can be precisely modeled in a mathematical
way and handled by an optimization algorithm,;

2. there are psychological factors as stress, concen-
tration etc... which have no evident mathematical
formulation but are in direct relationship with the
previous ones according to the controllers them-
selves.

So, we will only take into account quantitative ele-
ments in our application on first approximation.

Having now a model, we can define more precisely
our goals in the following way:

one considers an air traffic transportation
network in a 2 dimensional space with flows
on it inducing a workload distributed over
the space. This workload must be parti-
tioned into K equilibrated convex sectors in
a way that minimizes coordinations®.

Figure 2 shows an example of network sectoring

with 6 sectors.

2 Aircraft with heading between 0 and 180 have to fly with
odd altitude (in hundred of feet) and even altitude for headings
between 180 and 360

3When an aircraft crosses a sector frontier, controllers in
charge of those sectors have to exchange informations about
the flight inducing a workload called coordination

space domain

underlying network

Figure 2: Example of sectoring

This sectoring must take some constraints into ac-
count coming from Air Traffic Control system :

- a pilot must not encounter twice the same con-
troller during his flight to prevent useless coordina-
tions ; this means that an aircraft crossing a sector will
encounter 2 and only 2 sector frontiers. To guarantee
that our sectors met this constraint we force them to
be convex in the topological sense*. This constraint
gives sectors a polygonal shape.

- a sector frontier has to be at least at a given dis-
tance from each network node (safety constraint). As
a matter of fact, when a controller has to solve a con-
flict, he needs a minimum amount of time to elaborate
a solution. Each controller managing individually his
sector, if a sector frontier is too close to a crossing
point, he is not able to solve any conflicts because he
has not enough time between the coordination step
(with the previous sector where the aircraft comes
from) and the time the aircraft reaches the crossing
point. The minimum delay time is fixed at 7 minutes
and can be converted into a distance knowing the air-
craft speed.

- an aircraft has to stay at least a given amount of
time (a few minutes) in each sector it crosses to give
enough time to the controller to manage the flight in
good conditions (min stay time constraint). We ex-
press this constraint by a minimum distance between
two frontiers cutting the same network link.

The last two constraints will be implemented the
same way by forcing a minimum length for any link
segment between two consecutive frontiers or between
a node and a frontier.

2.2 Mathematical formulation

2.2.1 The transportation network

We define our transportation network as a doublet
(N, L) in which N is the set of nodes (with their po-

4this kind of convexity is stronger than the one imposed by
our problem (our sectors have to be convex according to the
direction of the links of the network and not in all directions)
but is easier to implement



class center

Figure 3: Example of a 5-partitioning

sitions in a topological space) and L is the set of links
each of them transporting a quantity f;; of flow from

node ¢ to node j [8].

2.2.2 Construction of sectors

According to the previous section, the sectors we have
to build have to be convex (with a polygonal shape
induced by the convexity property). To reach this
goal we use a Forgy aggregation method [11] com-
ing from dynamic clustering in exploratory statistic-
s which aims at extracting clusters from a set of
points randomly distributed in a topological space
see [4, 11]). This method randomly throws K points
the class centers) in the space domain containing the
transportation network and aggregates all the domain
points to their nearest class center. This method ends
up in a K partitioning of our domain into convex sec-
tors with linear frontiers. Figure 3 gives an example
of a 5-partitioning of a rectangle.

2.2.3 Workload induced in a control sector

As said before, we just take quantitative criterions in-
to account to compute controller workload (see [13]).
According to the controllers themselves, workload can
be divided into three parts which correspond respec-
tively to the conflict workload, the coordination work-
load and the trajectories monitoring workload of the
different aircraft which are present in a sector :

- the conflict workload gathers the different actions
of the controller to solve conflicts.

- the coordination workload corresponds to the in-
formation exchanges between a controller and the con-
troller in charge of the bordering sector or between a
controller and the pilots when an aircraft crosses a
sector frontier.

- the monitoring aims at checking the different tra-
jectories of the aircraft present in a sector and induces
a workload.

convexity constraint

~

security constraint

min stay time constraint

Figure 4: Constraints examples

2.2.4 Constraints

We handle the different constraints previously intro-
duced in the following way:

sectors convexity: this constraint is already satis-
fied by the construction method of sectors.

safety and Min stay time constraints: those two
constraints can be synthesized by an artificial in-
crease of the coordination work load on links.

On the figure 4 we give some examples where the 3
previous constraints are not satisfied.

3 Principle of resolution

3.1 Complexity of our problem

The problem we have to solve can be divided in
two different parts corresponding to our two different
goals:

1. equilibrium of the different sectors workload ac-
cording to the number of aircraft and conflicts in
each sector;

2. minimization of the coordination workload.

The second criterium is typically a discrete graph
partitioning problem with topological constraints and
then is NP_.HARD [5]. Having chosen a continu-
ous flow representation, the first criterium induces a
discrete-continuous problem which is also NP_.HARD.

So, according to the size of our network (about 1000
nodes), classical combinatorial optimization is not rel-
evant and stochastic optimization seems to be more
suitable.
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Figure 5: A GA iteration example, Pc probability of
crossover, Pm probability of mutation

Moreover this kind of problem may have several
optimal solutions (or near optimal) due to the different
possible symmetries in the topological space etc..., and
one must be able to find all of them because they have
to be refined by experts and we do not know at this
step which one is really the best. This last point makes
us reject classical simulated reannealing optimization
which updates only one state variable, even if it might
give better results in some cases [7].

On the other hand, Genetic Algorithms (GAs)
maintain and improve a numerous population of s-
tates variables according to their fitness and will be
able to find several optimal (or near optimal) solu-
tions. Then, GAs seem to be relevant to solve our
sectoring problem.

3.2 Different kinds of GAs we tried

3.2.1 Generals steps of GAs

First, we generate a population of sectoring, each rep-
resented by a set of class centers which are points in
our 2-dimensional space. Then each chromosome de-
fines one and only one sectoring. Afterward we select®
a new population according to the different fitness and
apply classical operators as crossover, mutation etc...

Figure 5 gives an example of one GA iteration with
5 sectors.

5Selection aims at reproducing better individual according to
their fitness. We tried two kinds of selection process, Roulette
Wheel Selection” and ” Stochastic Remainder Without Replace-
ment Selection”, the last one always gave better results.
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Figure 6: Construction of binary chromosome
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Figure 7: Floating point chromosome

3.2.2 GA with binary chromosome

A chromosome must containt all the sectoring infor-
mation for the GA to be able to evaluate the fitness
for each individual. We summerize this information by
a set of points in our geographical space called class
centers (one can show that for each class center set
there is just one sectoring induced see [11])). Having
chosen binary strings in this first example, we imple-
ment chromosome as a string of bits containing the
concatenation of the different class center positions
(see figure 6).

This implementation enables us to use classical op-
erators for GAs.

3.2.3 GA with floating point chromosome

In this case, each position (normalized into [0,1]) is di-
rectly coded in a chromosome without binary conver-
sion (see [10]). So, the chromosome has the structure
showed in figure 7.

This new structure involve some new kind of oper-
ators we now describe.

Crossover After selecting two parents in the current
population, we randomly chose an allele position (so
we select two sectors at the same allele position, one in
each sectoring). Afterward, we join by a straight line
the associated class centers. Then, we move the class
centers on this line according to a uniform random
variable. An example of this kind of crossover is given
in figure 8 (allele 1 has been selected in this example).



o2

= K] ol

,
ogr o3

Figure 8: Example of crossover

Mutation When we mutate a chromosome we ran-
domly select an allele position and we move its associ-
ated class center by adding to it a noise® (see figure 9
(in this example allele 2 has been selected for muta-
tion)).

The structure of this new GA is exactly the same as
the binary GA in the succession of the different steps.

3.3 Evolution GA

This last version of GA is a dynamic variant of the
previous one with some analogy with simulated an-
nealing. As for the previous one we select parents
from the current population and make them cross and
mutate to create a new population.

Crossover After selecting one class center in each
parent chromosome (at the same allele position) we
move each one in a random way with progressive de-
creasing range as the generation number increases.
This kind of crossover process induces large moving
at the beginning (— quasi randomly exploration of the
state domain) and very small ones at the end (— these
small moving enable the algorithm to ”climb hills”).

Mutation This operator randomly moves one class
center in a chromosome with the same law as for
crossover. According to the range law the initials mov-
ing are very important so space is explored in a quasi
randomly way and the moving become smaller as the
generation number increases. The objective evalua-
tions are refined as in an "hill climbing” process in

6it seems that best results are given with an affine distribu-
tion and not with a Gaussian

Figure 9: Example of mutation
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Figure 10: Evolution GA

which the climbing direction is given by the selection
process.

After applying those two operators, we have four in-
dividuals (two parents P1,P2 and two children C1,C2)
with their respective fitness. Afterward, those four in-
dividuals compete in a tournament. The two winners
are then inserted in the next generation. The selection
process of those winners is the following.

If C1 is better than P1 then C1 is selected. Else
C1 will be selected according to a probability which
decrease with the generation number.

Then, at the beginning, C1 has a probability 0.5
to be selected although it is worse than P1 and this
probability decrease to 0.01 at the end of the process.

A description of this algorithm is given on figure 10
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Figure 11: Square network

4 Results

4.1 Binary GA

Those evaluations were done with the classical S-
GA [6, 12] of Goldberg and give good results on very
small networks.

When the network size increases, this algorithm be-
comes inefficient because of the crossover and muta-
tion operators which induce a quasi random moving
in the state space. This is due to the fact that those
operators do not take into account the space point po-
sition in the chromosome and break it very roughly.
This last point made us change the structure of our
chromosome into a floating string where the crossing
position respects each individual floating allele.

4.2 Floating GA (FGA) and Evolution
GA (EGA)

The previous algorithm being too limited, we tried
and compare two floating point GA (FGA,EGA). The
results of those two algorithms are very encouraging
as shown by the following experiments results.

To compare and evaluate these algorithms, we have
used an artificial test network (see figure 11).

As we can see the network has trivial solutions with
9 sectors. These solutions seem to be very evident
for a human being because of the brain perception
ability to investigate the different symmetries but for
a computer these problems have no particularity and
remain difficult.

The different parameters we have chosen for our
experiments are the following :

population size: 400
number of generations: 200
probability of crossover: 0.6

probability of mutation: 0.06
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Figure 12: FGA stat results for the square network
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Figure 13: EGA stat results for the square network

4.2.1 Convergence

To see the convergence of our algorithms we observed
the evolution of the population statistics (max and
average) over the generations. As we can see on fig-
ure 11, the “square network” can be partitioned into
9 sectors in several ways and will be easier to man-
age as it has not a unique solution but a solution set.
Both algorithms find an exact solution very quickly
(15 generations for FGA and 8 for EGA, see figure 12
and figure 13), but EGA gives better results on the
average stat.

Furthermore, on several other experiments with
random networks, the given solutions were very close
to our objective and the most unbalanced sectors is
less than 0.7% distant from the objective.

We can see on figure 14,a physical sectoring result
which satisfies the topological constraints.

5 Conclusion

This study showed us how Genetic Algorithm were
suitable to solve the space sectoring problem with very
special constraints. To reach this aim we had to ex-
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Figure 14: Physical sectoring result

tend the chromosome concept to floating strings so
that operators do not break the chromosome struc-
ture roughly. This modification really improved the
algorithm performances regarding the resolution speed
and the result accuracy. Afterward we added a tour-
nament operator and used dynamic parameters to im-
prove the space exploration as well as the selection
process. This last change brought good improvements
to the algorithm convergence rate. Like in every Ge-
netic Algorithm, the key of success lies in the modeling
and the operators. Actually, both must be as close as
possible to the application problem. In our case, the
representation seems to be very close to the physi-
cal application but operators can still be improved,
though the ones we have used gave very good results.

One possibility to improve this algorithm would be
to reinforce the Simulated Annealing concept used
in the different operators as Goldberg does in his
PRSA [9] algorithm (with binary chromosome). This
brings in fact some convergence theorems coming from
the Simulated Annealing theory. On the other hand,
as for Simulated Annealing, the (stochastic) conver-
gence is only guaranteed when the fitness probability
distribution law is stationary in each state point [1].
We would then have the same drawbacks when this
hypothesis is not satisfied.

Finally it would be very interesting to try differ-
ent acceptance probability laws and different moving
probability laws to change the way of exploring the
states space in our last algorithm.

In this first study, we assumed that traffic flows
were correctly assigned (traffic assignment aims at dis-
tributing flows over a network to optimize an objec-
tive) before the algorithm partitioned the work load
spread over space. But after partitioning air space,
we are not sure that traffic assignment is still optimal
due to the fact that traffic assignment and sectoring
interact with each other. The next step of this study is
precisely to mix these two optimization problems in a
single genetic algorithm which will maximize a global
objective function.

References

[1] Emile Aarts and Jan Korst. Simulated annealing
and Boltzmann machines. Wiley and sons, 1989.
ISBN: 0-471-92146-7.

[2] Jean-Marc Alliot, Hervé Gruber, and Marc
Schoenauer. Using genetic algorithms for solving
ATC conflicts. In Proceedings of the Ninth IEEE
Conference on Artificial Intelligence Application.
IEEE, 1993.

[3] Jean-Marc Alliot and Thomas Schiex. Intel-
ligence Artificielle et Informatiqgue Théorique.
Cepadues, 1992. ISBN: 2-85428-324-4.

[4] G. Celeux, E. Diday, G. Govaert, Y. Lechevallier,
and H. Ralambrondrainy. Classification automa-
tique des données: environnement statistique et
informatique. Dunod, 1989.

[5] Chung-Kuan Cheng. The optimal partitioning of
networks. Networks, 22:297-315, 1992.

[6] David Goldberg. Genetic Algorithms. Addison
Wesley, 1989. ISBN: 0-201-15767-5.

[7] Lester Ingber and Bruce Rosen. Genetic algorith-
m and very fast simulated reannealing: a com-
parison. Mathematical and Computer Modeling,
16(1):87-100, 1992.

[8] D. Klingman and J. M. Mulvey, editors. Nei-
works models and associated applications. North-

Holland, 1981. ISBN: 0-444-86203-X.

[9] Samir W. Mahfoud and David E. Goldberg. Par-
allel recombinative simulated annealing: a genet-
ic algorithm. IIliGAL Report 92002, University of
Ilinois at Urbana-Champaign, 104 South Math-
ews Avenue Urbana IL 61801, April 1992.

[10] Zbigniew Michalewicz. Genetic algorithms+data
structures=evolution programs. Springer-Verlag,

1992. ISBN: 0-387-55387-.

[11] Gilbert Saporta. Probabilités, analyse des don-
nées et statistique. Technip, 1990.

[12] Robert E. Smith, David E. Goldberg, and Jeff A.
Earickson. SGA-C: A C-language implementa-
tion of a Simple Genetic Algorithm, May 1991.
TCGA report No. 91002.

[13] P. L. Tuan, H. S. Procter, and G. J. Couluris.
Advanced productivity analysis methods for air
traffic control operations. FAA Report RD-76-
164, Stanford Research Institute, Menlo Park CA
94025, December 1976.



