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Abstract

In this paper, we show how genetic algorithms can
be used to compute automatically a balanced regroupe-
ment of Air Traffic Control sectors to optimally reduce
the number of controller teams during daily low flow
periods.

AT topic: Genetic Algorithm, Network partition-
ing, Sector Classification.

Domain Area: Air Traffic Control

Status: Operational mock-up.

Effort: 1 man/year

Impact: Automatic (and dynamic) regroupement
of Air Traffic Control sectors according to the flow on
the network by balancing workloads groups.

1 Introduction

The CENA is the organisation in charge of studies
and research for improving the French ATC systems.
Studies on the use of genetic algorithms for conflict
resolution [2], [9] , airspace sectoring [7] and air traf-
fic assignment [8] have given encouraging results, and
a new study has been funded to solve the Air Traffic
Control sectors regroupment problem which is the fol-
lowing of [7]. When joining two airports, an aircraft
must follow routes and beacons ; these beacons are
necessary for pilots to know their position during nav-
igation and because of the small number of beacons
on the ground they often represent crossing points of
different airways.

Crossing points may generate conflicts between air-
craft when their trajectories converge on it at the same
time and induce a risk of collision.

At the dawn of civil aviation, pilots resolved con-
flicts themselves because they always flew in good
weather conditions (good visibility) with low speed
aircraft. On the other hand, modern jet aircraft do
not enable pilots to resolve conflicts because of their
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high speed and their ability to fly with bad visibil-
ity. Therefore, pilots must be helped by an air traffic
controller on the ground who has a global view of the
current traffic distribution in the airspace and can give
orders to the pilots to avoid collisions.

As there are many aircraft simultaneously present
in the sky, a single controller is not able to manage all
of them. In France, airspace is partitioned into differ-
ent sectors, each of them being assigned to a controller.

During the day the flows on the airways change
according to the demand between each Origin Desti-
nation pair. So one can identify a maximum of the
control workload during the day, in the same way, a
minimum during the night. Maximum daily worload
is always used to compute a new sectoring to be sure
that it is well adapted for this period with no over-
loaded sector even if it is not so well adapted other
periods.

During the night, we know that traffic demand is
reduced inducing less workload in the airspace and
sector are gathered together into groups each of them
being assigned to a controller who manage several sec-
tors.

In [7] we tried an automatic approach to compute
a balanced sectoring of the air space which induced a
convex sectoring. In this paper we present an auto-
matic regroupement algorithm (based on Genetic Al-
gorithms) which uses convex sectoring to synthesize
an optimal regroupment. In the first part we describe
more precisely our problem and make some relevant
simplification to develop a mathematical model. In
the second part we present a complete example of res-
olution with genetic algorithms.

2 A simplified model

2.1 Introduction

Before specifying a mathematical description of our
problem, it is necessary to set out our framework to
introduce some simplifications for our model. Since
training period of an air traffic controller on his sector
is long (from 3 to 4 months), we must not investigate
a real time sectoring optimization according to the



Figure 1: Airways modeling

variations of the traffic load. Instead we have to con-
sider a registered maximum load traffic period on the
working network. This worload is supposed to be par-
titioned into balanced sectors. Our problem is then to
find a balanced regroupement of sectors in a way that
minimizes coordinations during underloaded period.

When examining the physical air traffic network, we
notice that airways are superposition of several routes
which have the same projection on the ground but dif-
ferent altitudes according to their azimuth (semi cir-
cular rule!). So an airway can be modeled by a bidi-
rectional link which gathers several individual aircraft
routes (see figure 1).

Then, our 3 dimensional transportation network
will be modeled by a classical 2 dimensions network
on a horizontal plan. This network is supposed to be
sectorised into K convex sectors for each of them we
can compute the associated control workload.

The controller workload has several sources that
can be divided into two categories:

1. there are quantitative factors which include the
number of flights, the number of conflicts etc...,
which can be precisely modeled in a mathematical
way and handled by an optimization algorithm;

2. there are psychological factors such as stress, con-
centration etc... which have no evident math-
ematical formulation but are in direct relation-
ship with the previous ones according to the con-
trollers themselves.

So, we will only take into account quantitative ele-
ments in our application on first approximation.

Having a model, we can now define more precisely
our goals in the following way:

one considers an air traffic transportation
network in a 2 dimensional space with flows
on it inducing a workload distributed over

1 Aircraft with heading between 0 and 180 have to fly with
odd altitude (in hundred of feet) and even altitude for headings
between 180 and 360

Underlying Network:

Space Domain

Group 1(S1,S2,S3); Group 2 ($4,S5,56) - - - Group Boundaries

Figure 2: Example of sectoring

First Group (non connex)

Figure 3: Connexity constraint

|:| Second Group

the space and supposed to be partitioned into
K convex sectors. Those sectors must be re-
grouped into N equilibrated groups in a way

that minimizes coordinations?.

Figure 2 shows an example of network sectoring
with 6 sectors and 2 groups.

This regroupement must respect the following con-
straint which is called group connexity: all the sectors
belonging at the same sector must be connex.

Figure 3 gives an example of regroupement where
the previous constraint is not satisfied. As we can
see, there is a group with two separate subsets which
would be managed by the same contoller, furthermore
it induces superfluous coordinations when an aircraft
crosses the two subset.

2When an aircraft crosses a sector frontier, controllers in
charge of those sectors have to exchange information about the
flight inducing a workload called coordination
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Figure 4: Example of a 5-partitioning

2.2 Mathematical formulation

2.2.1 The transportation network

We define our transportation network as a doublet
(N, L) in which N is the set of nodes (with their po-
sitions in a topological space) and L is the set of links
each of them transporting a quantity f;; of flow from

node 7 to node j [3].

2.2.2 Construction of groups

According to the previous section, the groups we have
to build must gather together several sectors in a way
that garantees the connexity between the sectors. To
reach this goal we use a Forgy aggregation method [14]
coming from dynamic clustering in exploratory statis-
tics which aims at extracting clusters from a set of
points randomly distributed in a topological space
see [5, 14]). This method randomly throws N points
the group centers) in the space domain containing
the transportation network and aggregates all the sec-
tor barycenters to their nearest group center. This
method ends up in a N partitioning of our domain
into connex groups. Figure 4 gives an example of a
5-partitioning of a rectangle with two groups.

The way working gives an automatic way for mak-
ing groups which automatically respect the connex-
ity constraint. As a matter of fact, when the sector
barycenters are aggregated to their nearest group cen-
ter, the polygonal shape induced by this aggregation
is convex, then the associated sectors are connex.

2.2.3 Workload induced in a control sector

As said before, we just take quantitative criterions into
account to compute controller workload (see [4]). Ac-
cording to the controllers themselves, workload can
be divided into three parts which correspond respec-
tively to the conflict workload, the coordination work-
load and the trajectories monitoring workload of the
different aircraft which are present in a sector :

- the conflict workload gathers the different actions
of the controller to solve conflicts.

- the coordination workload corresponds to the in-
formation exchanges between a controller and the con-
troller in charge of the bordering sector or between a
controller and the pilots when an aircraft crosses a
sector frontier.

- the monitoring aims at checking the different tra-
jectories of the aircraft present in a sector and induces
a workload.

3 Complexity of our problem

The problem we have to solve can be divided into
two separate parts corresponding to our two different
goals:

1. equilibrium of the different groups workload ac-
cording to the number of aircraft and conflicts in
each group;

2. minimization of the coordination workload.

The second criterion is typically a discrete graph
partitioning problem with topological constraints and
then is NP_HARD [6]. The first criterion is a classical
classification problem with a connexity constraint.

One must find an optimal grouping among C}’ pos-
sibilities where k is the number of sectors and N the
number of groups. So our problem is NP HARD
and classical combinatorial optimization is not rele-
vant and stochastic optimization seems to be more
suitable.

Moreover this kind of problem may have several
optimal solutions (or near optimal) due to the different
possible symmetries in the topological space etc..., and
we must be able to find all of them because they have
to be refined by experts and we do not know at this
step which one is really the best. This last point makes
us reject classical simulated reannealing optimization
which updates only one state variable, even if it might
give better results in some cases [11].

On the other hand, Genetic Algorithms (GAs)
maintain and improve a population of numerous state
variables according to their fitness and will be able to
find several optimal (or near optimal) solutions. Then,
GAs seem to be relevant to solve our sectoring prob-
lem.

4 Genetic algorithms

4.1 Principles

We are using classical Genetic Algorithms and Evo-
lutionary Computation principles such as described in
the litterature [10, 13]; Figure 5 describe the main
steps of GAs.

First a population of points in the state space is
randomly generated. Then, we compute for each pop-
ulation element the value of the function to optimize,
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Figure 5: GA principle

which is the fitness. In a second step we select® the
best individuals in the population according to their
fitness. Afterward, we randomly apply classical oper-
ators of crossover and mutation to diversify the pop-
ulation (they are applied with respective probabilities
P, and P,,). At this step a new population has been
created and we apply the process again in an iterative
way.

This GA can be improved by including a Simulated
Annealing process after applying the operators [12].
For example, after applying the crossover operator, we
have four individuals (two parents P1,P2 and two chil-
dren C1,C2) with their respective fitness. Afterward,
those four individuals compete in a tournament. The
two winners are then inserted in the next generation.
The selection process of the winners is the following:if
C1 is better than P1 then C1 is selected. Else C1 will
be selected according to a probability which decreases
with the generation number. At the beginning of the
simulation, C1 has a probability of 0.5 to be selected
even if its fitness is worse than the fitness of P1 and
this probability decreases to 0.01 at the end of the
process. A description of this algorithm?* is given on
figure 6.

Tournament selection brings some convergence the-
orems from the Simulated Annealing theory. On the
other hand, as for Simulated Annealing, the (stochas-
tic) convergence is ensured only when the fitness prob-
ability distribution law is stationary in each state
point [1].

3Selection aims at reproducing better individual according to
their fitness. We tried two kinds of selection process, Roulette
Wheel Selection” and ” Stochastic Remainder Without Replace-
ment Selection”, the last one always gave better results.

4We are using our own GA simulator, which includes some
goodies usually not available on public domain GA, such as
Simulated Annealing, very simple parallelism, etc.
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Figure 6: GA and SA mixed up
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Figure 7: Structure of the chromosome

4.2 Coding our problem

To code our problem, we did not use binary chro-
mosomes. The problem is not well suited for binary
coding, and, as it has been advocated already by dif-
ferent experts, a specific coding with specific operators
is usually more efficient.

An example of the coding of a chromosome is given
in figure 7.

To create a new classification we just need to know
the coordinates of the associated group centers in the
space domain. So the chromosome can be coded as
a vector regrouping the coordinates of group centers.
For each chromosome there is only one associated clas-
sification (the reverse is false).

To make the GAs run one must be able to randomly
initialise a numerous population of individuals. To
reach this aim, random coordinates are generated in
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Figure 8: Crossover operator

the space for each individual.

We had then to create operators for crossover and
mutation. The efficiency of the algorithm depends of
the ability of those operators to create new individuals
that respect the constraint of our problem.

The crossover is implemented as a floating
crossover: After selecting two parents in the current
population, we randomly chose an allele position (so
we select two groups at the same allele position, one
in each grouping). Afterwards, we join by a straight
line the associated group centers.Then, we move the
groups centers on this line according to a uniform ran-
dom variable. An example of this kind of crossover is
given in figure 8.

To mutate a chromosome we randomly select an
allele position and we move its associated class center
by adding noise to it® (An example, of mutation is
given on figure 9).

5 Results

To validate our algorithm, we used a toy network
for which we knew a trivial grouping solution (this
network is drawn on figure 10). This network is sec-
torised into 81 sectors (see figure 11) for which it is
very easy to find 9 balanced groups of 9 sectors.

The parameters for the simulation were:
Population size: 200
Number of generations: 100
Probability of crossover: 0.6
Probability of mutation: 0.1

The evolution of best-ever chromosome fitness and
average chromosome fitness is displayed on figure 12:

5it seems that best results are given with an affine distribu-
tion and not with a Gaussian
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Figure 13: Geometrical results

an optimal solution is found at generation 50.

The solution is displayed in figure 13. It is clearly
a correct solution. It must be noted that, even if this
solution is trivial to find for a human being because of
the symmetries of the problem, it remains as difficult
as any other problem for our algorithm. The classifi-
cation induced by this geometrical result is given on
figure 14

6 Conclusion

This study showed us how Genetic Algorithm were
suitable to solve the sector regroupement problem
with very special constraints. We added a tournament
operator and used dynamic parameters to improve the
space exploration as well as the selection process. This
change brought good improvements to the algorithm
convergence rate. As every Genetic Algorithm, the
key of success lies in the modeling and the operators.
Both must be as close as possible to the application
problem. In our case, the representation seems to be
very close to the physical application but operators
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Figure 14: Induced regroupement

can still be improved, though the ones we have used
gave very good results.

One possibility to improve this algorithm would be
to reinforce the Simulated Annealing concept used
in the different operators as Goldberg does in his
PRSA [12] algorithm (with binary chromosome). This
brings some convergence theorems coming from the
Simulated Annealing theory. As for Simulated An-
nealing, the (stochastic) convergence is only ensured
when the fitness probability distribution law is station-
ary at each state point [1]. We would then have the
same drawbacks when this hypothesis is not satisfied.

Finally it would be very interesting to try differ-
ent acceptance probability laws and different moving
probability laws to change the way of exploring the
space in our last algorithm.
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