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Reduction of Air Traffic Congestion
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Abstract. The annual number of flights in Western Europe has in-
creased from about 2.6 million in 1982 to about 4.5 million in 1992,
an increase of 73%. Acute congestion of the Air Traffic Control system
has been the result. One way to reduce this congestion is to modify the
flight plans (slot of departure and route) in order to adapt the demand
to the available capacity. This paper addresses the general time-route as-
signment problem. A state of the art of the existing methods shows that
this problem is usually partially treated and the whole problem remains
unsolved due to the complexity induced.

We perform our research on the application of stochastic methods on
real traffic data, and without using the flow network concept, but by
simulating the flight of each aircraft. The first results shows that our
Genetic Algorithms based method is able to reduce congestion of the
french airspace by a factor 2. Special coding techniques and operators
are used to improve the quality of the genetic search.

1 Introduction

As there are many aircraft simultaneously present in the sky, pilots must be
helped by an air traffic controller on the ground who has a global view of the
current traffic distribution in the airspace and can give orders to the pilots to
avoid collisions. A single controller is not able to manage all the aircraft, that’s
why the airspace is partitioned into different sectors, each of them being assigned
to a controller.

As any human being, a controller has working limits, and when the number
of aircraft increases, some parts of the airspace reach this limit and become
congested. In the past, the first way to reduce these congestions was to modify
the structure of the airspace in a way that increases the capacity (increasing
the number of runways, increasing the number of sectors by reducing their size).
This has a limit due to the cost involved by new runways and the way to manage
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traffic in too small sectors (a controller needs a minimum amount of airspace
to be able to solve conflicts). The other way to reduce congestion is to modify
the flight plans in a way to adapt the demand to the available capacity. Then
congestion is expected to be reduced by moving (in a limited domain) the time of
departure of aircraft (in the past and in the future) and by changing the current
flight paths (without too much extradistance).

This paper shows how well stochastic optimization is able to manage this
kind of problem.

2 Previous Related Works

Traffic assignment techniques have been developed in order to reduce congestion
in transportation networks by spreading the traffic demand in time and in space.
Dafermos and Sparrow [5] coined the terms user-optimized and system-optimized
transportation networks to distinguish between two distinct situations in which
users act unilaterally, in their own self-interest, in selecting their routes, and in
which users select routes according to what is optimal from the societal point of
view, in that the total costs in the system are minimized. Classical approaches
are applied to static traffic demand and are mainly used to optimize traffic on a
long time period and can only capture the macroscopic events.

When a more precise matching between traffic demand and capacity has
to be found, microscopic events have to be taken into account, and dynamic
traffic assignment techniques have to be used, ([12] gives a good description of
those techniques). The main ones are the following : Space-time network [14],
Variational Inequality [7], Optimal Control [8], Simulation [3] and Dynamic Pro-
gramming [11,13,2].

All the previous approaches are not able to manage the whole problem due
to its complexity.

A first attempt of resolution of the whole problem can be found in [6]. This
paper present a flow modeling of the air traffic network and give a resolution
principle of the route-time bi-allocation problem based on stochastic optimiza-
tion with very good results. The present approach is the following of this work.
The major difference between these two approches relies on the air network
modeling. In the following, a model is proposed and a method is developed that
yield “very good” solutions for realistic instances of the whole problem. In this
model, which is more realistic for air traffic, the concept of route flow is no more
valid and this induce a control workload spreading over the space and a stronger
complexity.

3 A Simplified Model

3.1 Introduction

Congestion in the airspace is due to aircraft which have close positions in a four-
dimensional space (one time dimension and three space dimensions). Tt is then



relevant to investigate ways to separate those aircraft in this four-dimensional
space by changing their slot of departure (time separation) or by changing their
route (spatial separation) or both. Those changes must be done in a way that
takes into account the objectives of the airlines. That’s why the moving of the
slot of departure must be done in a limited domain and the possible routes must
not generate too large additional distances.

According to the controllers themselves, the workload induced in a control
sector 1s a function of the three main following criteria :

— the conflict workload that results from the different actions of the controller
to solve conflicts.

— the coordination workload corresponds to the information exchanges between
a controller and the controller in charge of the bordering sector or between
a controller and the pilots when an aircraft crosses a sector boundary.

— the monitoring aims at checking the different trajectories of the aircraft in
a sector and induces a workload.

We can now define our goals more precisely in the following way :

one considers a fleet of aircraft with their associated route and slot of
departure. For each flight a set of alternative routes and a set of possible
slots of departure are defined. One must find “optimal” route and slot
allocation for each aircraft in a way that significantly reduces the peak
of workload in the most congested sectors and in the most congested
airports, during one day of traffic.

The workload computing is based on the aircraft trajectories discretization
(time step dt) produced by off-line simulation. The workload indicator used is the
summation of the coordination and monitoring workloads regarding to critical
capacities of the controller’s workload. The conflict workload has been omited
in order to match the operational capacity.

3.2 Mathematical formulation

A pair of decision variable (d;,7;) is associated with each flight in which d; is
the advance or the delay from the original slot of departure and r; is the new
route. With this notation (0, r¢) will be considered as the most preferred choice
from the user point of view. Those two decision variables (d;,r;) will be chosen
from two finite-discrete sets : A for the slots and R for the routes. The routes
are ordered according to cost induced to the associated flight.

As it has been previously said, workload in a sector Si at time ¢ can be
expressed by the summation of two terms :

ng = Wmos, (t) + Wcos, (1) ;

Where Wmosg, (t) is the monitoring workload (quadratic term related to
the number of aircraft overloading a sector monitoring critical capacity Ch,),



Weos, (t) the coordination workload (quadratic term of the number of aircraft
overloading a critical coordination capacity C.).

As there are some uncertainties on the aircraft position, control workload
has been smoothed in order to improve the robustness of the produced solution.
This smoothing is done by averaging the control workload over a time window :

_ 1 r=t+D
Wi = ——— W3

where :
W, represent the sector Sy, smoothed workload during ¢ and D is the length
of the smoothing window.

Formulation of the objective function
[43

The objective is defined in the following way : “ one must try to reduce
congestion in the most overloaded sectors” ; this will spread the congestion over

several sectors. So, we have :

k=P
obj = min Z ((Z ng)¢ x (rtnEaTXWEk)‘p>

k=1 teT

where :

= D ier W, s the sector Sy congestion surface computed during the day.

— maxeT VT/EC : 18 the maximum sector congestion reported during the day.
— P is the number of elementary sectors.

The parameters ¢ € [0,1] et ¢ € [0,1] gives more or less importance to
congestion maximum or to congestion sur face.

3.3 Problem complexity

Before investigating an optimization method, the associated complexity of our
problem must be studied. The model previously developed is discrete and induces
a high combinatoric search space. As a mater of fact, if R,, A, are the route
set and the slot moving set associated with flight n, the number of points in the
state domain is given by :

n=N
Statel = T (1Ral 144)
n=1
where |S| denotes the cardinality of the set S.

For instance, for 20000 flights with 10 route choices and 10 possible slot
movings, : |State| = 1002°9°0. Moreover, those decision variables are not inde-
pendent due to the connection induced by the control workload and the airport
congestions, so, decomposition methods cannot be applied. It must be noticed
that the objective function is not continuous (then it is not convex) and may



have several equivalent optima. This problem has been proved to be a strong
NP_hard[1] problem with non-separable state variables which can be well ad-
dressed by stochastic optimization.

4 Genetic Algorithms

Genetic Algorithms (GAs) are probabilistic search algorithms. Given an opti-
mization problem they try to find an optimal solution. GAs start by initializing
a set (population) containing a selection of encoded points of the search space
(individuals). By decoding the individual and determining its cost the fitness of
an individual can be determined, which is used to distinguish between better
and worse individuals. A GA iteratively tries to improve the average fitness of
a population by construction of new populations. A new population consists of
individual (children) constructed from individuals of the old population (par-
ents) by the use of re-combination operators. Better (above average) individuals
have higher probability to be selected for re-combination than other individuals
(survival of the fittest). After some criterion is met, the algorithm returns the
best individuals of the population.

In contrast to the theorical foundations [9,4], GAs have to deal with limited
population sizes and a limited number of generations. This limitation can lead
to premature convergence, which means that the algorithm gets stuck at local
optima. A lot of research has been undertaken to overcome premature conver-
gence (for an overview see [10]). Also, experiments have shown that incorporation
of problem specific knowledge generally improve GAs. In this paper attention
will be paid how to incorporate Air Traffic specific information into a Genetic

Algorithm.

5 Application to Airspace Congestion

5.1 Introduction

The way this specific genetic algorithm works 1s the following. A set of flight
plans is generated from each chromosome candidate and the whole associated
day of traffic is generated. Sector congestion are registered and the associated
fitness is computed. The problem specific features of the Genetic Algorithm are
now described.

5.2 Data Coding and biased initial population

For each flight, the possible new path and new slot moving have been supposed
to be chosen in two discrete-finite sets associated with each flight. In this case a
straight forward coding has been used in the sense that each chromosome is built
as a matrix (see fig. 1-(a)) which gather the new slot moving (for the time of
departure) and the new route number (for the flight path). With this coding, a
population of individuals can be created by choosing a new slot moving number
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Fig. 1. Special coding and stochastic problem specific knowledge

and a new route number from individual sets associated with each flight with
a positive probability to move the flights which are involved in the congestion
peaks (to each flight we associate the reported congestion during the flight and
the stochastic trend, these two indicators are explained explained below - see
also, fig. 1-(a) and (b)) and a very small probability for the others.

5.3 TFitness Evaluation

The fitness of each individual is defined by the ration of the congestion associated
with the initial distribution of the flight plans (ref) and the distribution given
by the chromosome (chrom) :

W (ref)
W (chrom)

fitness(chrom) =

where :

WX =Y ((Z W5, x)* x (rggxﬁék,xw)

k=1 teT

So, when fitness(chrom) > 1, it means that the induced congestion is lower
than the reference one.

5.4 Recombination Operators

To be able to recognize the aircraft involved in the biggest sector congestion new
information must be added to the chromosome which indicates for each gene,
the maximum level of sector congestion encountered during a flight.

Crossover
The successive steps of this new crossover operator are the following :



two parents are first selected according to their fitness ;
the summation of the sector congestion levels is computed for each flight in
both parents. For a flight n, total congestion level in the parent p will be
noted WY ;
an order relationship is then constructed with the total congestion level in
the following way :
o flight planing n in parent 1 is said to be “much better” than flight planing
n in parent 2 if W! < §.W?; where § € [0.7,0.95];
o flight planing n in parent 2 is said to be “much better” than flight planing
n in parent 1 if W2 < 8.W};
o flight planing n in parent 1 and in parent 2 are said to be “equivalent”
if none of the previous relations matches;
if a flight planning “is much better” in the first parent than in the second
then it is copied in the second ;
if a flight planning “is much better” in the second parent than in the first
then it is copied in the first ;
if the two flight plannings “are equivalent” they are randomly exchanged
with a constant probability (0.5) ;

Mutation
As already noted, this operator only affect the flights involved in the highest

peaks of congestion, and also determine wether it is “more suitable” to delay or
advance a flight (see fig.1-(b)). So to compute the stochastic trend over all the

sectors, we compute the signed indicator T;, € [—1, 1] which is a sort of bias to
advance or delay each flight. T,, is a signed pondered (by the encountered flight
congestion) summation over sectors. The sign indicates the sector state during

the

6

6.1

entree and the left of the flight (congestion increase or decrease).
The mutation operator works in the following way :

a threshold congestion level (T'h) is randomly chosen ;
then for each flight n in the chromosome the following are applied :
if (W,, > Th) then the associated flight plan is modified :
o if T,, > rand(1) then we randomly assign a futur slot to the flight.
o if T,, < —rand(1) then we randomly assign a past slot to the flight.
e otherwise we randomly affect the flight slot with no preference for the
advance or the delay.
else the flight planing is unchanged;

rand(z) represent a random float between the [0, x] range.

Results on a real day of traffic

Introduction

The computations were based on a whole real day traffic data which corresponds
to 6381 flights that cross the french airspace on the 21th of June 1996. The



number of elementary sectors was 89. We consider also that the congestion of an
elementary sector Sg at time period ¢ is equal to the congestion of the sectors
grouping Rs, to whom it belongs (W§, = szsk) during the same period. By
this, we take into acount the changes in the critical capacities values during the
day. Also, the critical capacity of the prohibited sectors (as military sectors) is
set equal to 0.

To test the improvements of our new-recombinators (OGA), the results of a
simple genetic algorithm (SGA) are reported.

The presented tests are performed with the elitism principle and have been
processed on a Pentium Pro 200Mhz Computer

The results below are obtained by using slots moving only in order to do
some comparisons with classical methods which investigate the time-allocation
problem only.

6.2 The results

The tests parameters for both algorithms are : the smoothing window D =
5min ; the population length popiengin = 50; dt = 1min so, T' = 1440 minutes
for the day ; ¢ = 0.9 and ¢ = 0.1. The last two parameters are chosen to give
more importance to the decrease of the maximum congestion peaks.

The number of generations : 300 ; and the maximum slots moving in the
futur or in the past : 45 minutes.

— For the OGA, we have, P, = 0.3 : the probability to undergo a crossover
and P, = 0.4 : the chromosome mutation probability.

— For the SGA : The initial population is created by giving random slot num-
bers to the flights with a probability 0.5 of not moving the slot ; P. = 0.3
for each chromosome and P,, = 0.02 for each flight in the population.

"SGAT —
OGA" -

FITNESS
FITNESS

1
o 50 100 200 250 300 o 50 100 200 250 300

150 150
ITERATIONS ITERATIONS

(a) The best chromosome (b) Pop fitness average

Fig. 2. Evolution of the population best and fitness average



The fig.2 shows that the original congestion, in the sense given by the optimiza-
tion criterion, could be respectively divided by 1.74 with the SGA and by 2.40
by using the OGA. Even with the small population size used, the results given
by the genetic algorithm are very encouraging.

On the figure 3, it can be noticed that the max workload on one of the most
overloaded sectors has been divided by 3.07 by using the OGA and by 1.78 with
the SGA. The figure fig.3—(b) represent the fig.3—(a) zoomed on the greatest
congestion peaks range. As expected, the workload is spread around the peak as
in a smoothing process.

The computation times (OGA : 14 hours, SGA : (5 : 30) hours) are
the weak point of this GAs based method, but when using GAs as pre-tactial
method taking place during the two days preceeding the day of operations, the
computations can be done on night. Also, a parallel GA will be helpfull to
decrease the processing time.

To make a more precise comparison of the OGA and the SGA, the SGA was
used for 1000 generations which is equivalent to 16 processing hours. The best
chromosome fitness was equal to 2.02 which still always less than the OGA one.
The number of delayed flights of the SGA was 4120 against 3510 for the OGA
and the total slots moving minutes was 126508 for the SGA against 107782 for
the OGA. This is due to the fact that the crossover and the mutation of the SGA
are irrelivant regarding to their total random choices. When they are applied,
they somethimes affect aircraft involved in the underloaded sectors.

“Before_GA" — “Before_GA" —
AFTER OGA" - AFTER OGA" -
“AFTER_SGA" 8~ “AFTER_SGA" 8~

WORKLOAD
WORKLOAD

200 400 500 800 1000 1200 1400 1600 1215 1220 1225 1230 1235 1240 1265 1250
THE DAY in MINUTES. MINUTES

(a) (b)

Fig. 3. Spreading the sectors congestion

7 Conclusion

Our objectif was the reduction of the Air Traffic Congestion by reaching a sys-
tem equilibrium. To that end, Genetic Algorithms have been used and new re-
combinators have been presented and show that the incorporation of Air Traffic



specific knowledge improves the results of the GA. Also, the strength of this
model is its ability to manage the constraints of the airlines companies in a
microscopic way by using individual sets of decision variables associated with
each flight. The next steps of our research are : - the introduction of new al-
ternative routes ; - the introduction of new stochastic operators including more
ATM specific knowledge ; - the hybridation of the GA with other heuristic and
deterministic methods ; - and, developing a sector complexity indicator more
efficient then the only monitoring and coordination ones, by taking into acount
the sectors microscopic events as the aircrafts separation.
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