
HAL Id: hal-01018034
https://enac.hal.science/hal-01018034v1

Submitted on 3 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using mathematical programming to refine heuristic
solutions for network clustering

Sonia Cafieri, Pierre Hansen

To cite this version:
Sonia Cafieri, Pierre Hansen. Using mathematical programming to refine heuristic solutions for net-
work clustering. P. Pardalos, M. Batsyn, V. Kalyagin. Models, Algorithms and Technologies for
Networks Analysis Proceedings of the 3rd International Conference on Network Analysis, Springer,
pp xxxx, 2014, Springer Proceedings in Mathematics & Statistics, 9783319097572. �hal-01018034�

https://enac.hal.science/hal-01018034v1
https://hal.archives-ouvertes.fr

Using mathematical programming to refine

heuristic solutions for network clustering

Sonia Cafieri1 and Pierre Hansen2

1ENAC, MAIAA, F-31055 Toulouse, France and

University of Toulouse, IMT, F-31400 Toulouse, France
2GERAD, HEC Montréal, Canada

Abstract We propose mathematical programming based aproaches to refine graph

clustering solutions computed by heuristics. Clustering partitions are refined by ap-

plying cluster splitting and a combination of merging and splitting actions. A re-

finement scheme based on iteratively fixing and releasing integer variables of a

mixed-integer quadratic optimization formulation appears to be particularly effi-

cient. Computational experiments show the effectiveness and efficiency of the pro-

posed approaches.

1 Introduction

Networks, or graphs, provide very useful tools for modelling complex systems [33].

They consist of a set V of vertices associated to the entities under study and a set E

of edges each of which joins two vertices and corresponds to relationships among

the entities. For instance, in sociology vertices are associated with people and edges

with relationships like friendship, communication or collaboration between them. In

biology, vertices are associated for instance to proteins and the edges to their inter-

actions. Some topological features of networks are studied to better understand the

underlying complex systems, as they may reveal the organizational principles of the

system components. The structure of complex systems can in fact be understood by

identifying the way the nodes of the corresponding networks are connected to each

other. A modular structure characterizes many complex systems, meaning that they

contain subgroups of entities sharing some common properties. A topic of particular

interest in the study of complex networks is therefore the identification of modules,

also called clusters or communities. Given a graph G = (V,E), roughly speaking

one seeks subgraphs induced by sets of vertices Si ⊆ V which contain more inner

edges (with both vertices in the same subset) than cut edges (with vertices in differ-

ent subsets). In the last decade the problem of finding clusters in complex networks

has been very extensively studied, see Fortunato [15] for an in-deep survey.

1

2 Sonia Cafieri and Pierre Hansen

Many definitions of network modules have been proposed as well as criteria to

evaluate partitions of vertices in modules. Maximizing any such criterion over the

set of all partitions is a combinatorial optimization problem. The most popular cri-

terion, despite some recent criticism [16, 8], is the modularity of a subnetwork [32].

The modularity of a module is defined as the difference of the fraction of the edges

that it contains and the expected number of such edges in a network where edges

are distributed at random while keeping the degree distribution of vertices constant,

according to the so-called configuration model. Modularity of a partition is the sum

of modularities of its clusters. So modularity of a network is a criterion whose maxi-

mization provides both the optimal number of clusters and an estimate of the amount

of modularity of the network. Numerous heuristics have been proposed for maxi-

mizing modularity of a network. They include applications of simulated annealing

[20, 28, 29], mean field annealing [26], genetic search [36], extremal optimization

[14], variable neighborood search [3], spectral clustering [31], linear programming

followed by randomized rounding [1], dynamical clustering [5], multilevel parti-

tioning [13], contraction-dilation [30], divisive [31, 9] or agglomerative [11, 4] hi-

erarchical clustering, and several other approaches.

Mathematical programming allows us rigorous formulations and solutions for the

maximizing modularity optimization problem. Nevertheless, it is rarely used. There

are two approaches to use mathematical programming formulations which can be

solved to global optimality. Grötschel and Wakabayashi’s [18, 19] model for clique

partitioning can be immediately applied, replacing the original graph by a com-

plete weighted graph. A closed model is used by Brandes et al. [6]. The second

approach was proposed by Xu et al. [39], who express modularity maximization as

a mixed-integer quadratic programming problem with a continuous convex relax-

ation. Column generation can be applied to solve both models [2]. In these models,

modularity is the objective function to be maximized and constraints are used to

impose conditions defining a partition of the vertex set.

The obtained optimization problems are generally difficult to solve and only small or

medium-scale problems can be easily treated . The situation is more favorable when

subgraphs of an original graph are handled, as they are more likely to have smaller

size (possibly, medium-scale) than the original graph. Given a partition found by a

heuristic, one can attempt to refine the result to obtain a new better partition, acting

on subnetworks induced by the clusters of the original partition. The purpose of the

present paper is to discuss and advance the use of mathematical programming to

refine heuristic solutions for network clustering. Two approaches are discussed and

compared, one of which is new. The first one was proposed in [10] and is based on

splitting clusters using an exact algorithm for bipartitioning and merging pairs of

clusters. The new one is inspired by the approach in [38] and is based on iteratively

fixing integer variables and solving the corresponding problem.

The paper is structured as follows. In Sect. 2 we describe the proposed mathe-

matical programming based approaches to refine heuristic partition. In particular, a

mixed-integer quadratic model for modularity-maximizing clustering is recalled and

the two strategies to refine partitions, that use such a model, are presented. In Sect. 3

Using mathematical programming to refine heuristic solutions for network clustering 3

a computational analysis and comparison, on a set of instances from the literature,

is presented and discussed. Sect. 4 concludes the paper.

2 Mathematical programming based clustering refinement

Let us consider a partition found by a heuristic for network clustering. It is consti-

tuted by subnetworks induced by the clusters found. As a heuristic has been applied,

there is no guarantee that the partition given by these subnetworks represents the op-

timal solution. Thus, one can seek an improved solution by applying a refinement

technique.

We propose in this section mathematical programming-based refinement tech-

niques, to be employed as post-processing of heuristics for modularity maximiza-

tion. First, we recall the main elements of a mixed-integer quadratic model for mod-

ularity maximization which is used in these refinement techniques.

2.1 A MIQP mathematical programming model

Let G = (V,E) be an undirected unweighted graph, with set of vertices V of order

n = |V | and set of edges E of size m = |E|. Modularity Q of G can be expressed

as the sum of modularities of clusters, each one being a a function of its number of

inner edges and of the sum of degrees of its vertices:

Q = ∑
s

[

ms

m
−

(

Ds

2m

)2
]

, (1)

where ms denotes the number of edges in cluster s, and Ds denotes the sum of

degrees ki of the vertices of cluster s.

In [39] a mixed-integer quadratic formulation is proposed, where (1) is the objective

function to be maximized and binary variables are used to identify to which cluster

each vertex and each edge belongs. Sets of allocation constraints, and constraints

used to express that each vertex belongs to exactly one module, to impose lower and

upper bounds on the cardinality of the modules and to break symmetries, fully define

the model. In [10] this model is specialized to the case of two clusters only, i.e., a

bipartition of the graph. Such a model for bipartitioning is recalled below. Notice

that it has been also successfully used to build a hierarchical divisive clustering

algorithm, see [9, 7].

First observe that in the case of bipartitioning the objective function (1) can be

rewritten in a simpler form, expressing the sum of degrees of vertices belonging to

one of the two clusters, say D2, as a function of the sum of degrees D1 of vertices

belonging to the other one: D2 = Dc −D1, where Dc denotes the sum of degrees in

the cluster c to be bipartitioned. The objective function to split cluster c can then be

4 Sonia Cafieri and Pierre Hansen

written as the following quadratic function:

Qc =
m1 +m2

m
−

D1
2

2m2
−

Dc
2

4m2
+

D1Dc

2m2
. (2)

where m1 and m2 are respectively the number of edges inside the two clusters.

Decision variables are variables Xi, j,s for each edge (vi,v j) and s = 1,2, with Xi, j,s

equal to 1 if the edge (vi,v j) is inside cluster s and 0 otherwise, and variables Yi,1 for

i= 1,2, . . .n, equal to 1 if the vertex vi is inside cluster 1 and 0 otherwise. Constraints

on the problem are allocation constraints, used to impose that any edge (vi,v j) can

belong to cluster s if and only if both of its end vertices i and j also belong to that

cluster:

∀(vi,v j) ∈ Ec Xi, j,1 ≤ Yi,1 (3)

∀(vi,v j) ∈ Ec Xi, j,1 ≤ Yj,1 (4)

∀(vi,v j) ∈ Ec Xi, j,2 ≤ 1−Yi,1 (5)

∀(vi,v j) ∈ Ec Xi, j,2 ≤ 1−Yj,1 (6)

Further constraints express the number of edges of each of the two clusters and the

sum of vertex degrees of the first cluster in terms of the decision variables X and Y ,

and finally integrality constraints are imposed on variables Y . Notice that integrality

of variables X is implied by constraints (3)-(6), as well as integrality of D1 follows

by its defining constraint. The following mixed-integer quadratic (MIQP) model,

that has a continuous convex relaxation, is finally obtained [10]:

(B)

max Qc

s.t. ∀(vi,v j) ∈ Ec Xi, j,1 ≤ Yi,1

∀(vi,v j) ∈ Ec Xi, j,1 ≤ Yj,1

∀(vi,v j) ∈ Ec Xi, j,2 ≤ 1−Yi,1

∀(vi,v j) ∈ Ec Xi, j,2 ≤ 1−Yj,1

∀s ∈ {1,2} ms = ∑(vi,v j)∈Ec
Xi, j,s

D1 = ∑vi∈Vc
kiYi,1

∀s ∈ {1,2} ms ∈ R

D1 ∈ R

∀vi ∈Vc Yi,1 ∈ {0,1}
∀(vi,v j) ∈ Ec ∀s ∈ {1,2} Xi, j,s ∈ R

+
0 .

2.2 Splitting and merging clusters

In [10] we proposed a refinement technique for clustering results that is built on

the mathematical programming formulation (B) recalled above. First, clusters are

considered one at a time and the bipartitioning problem (B) is solved exactly, then

pairs of clusters are merged and the exact bipartitioning is applied again. More pre-

Using mathematical programming to refine heuristic solutions for network clustering 5

cisely, in a sequence of steps, starting from the original partition obtained applying

a heuristic, each cluster is first bipartitioned using an exact algorithm. Notice that

(B) is a MIQP with a continuous convex relaxation, that can be solved to global

optimality by any standard solver for MIQP problems through the standard branch-

and-bound method. If the modularity value corresponding to the obtained bipartition

is higher than the one of the original cluster, then such original cluster is replaced

by the new ones obtained by bipartition, otherwise the original cluster is kept. This

sequence of bipartition attempts leads to a new, refined partition.

This new partition is furtherly refined by a new sequence of steps, where pairs of

clusters, sorted by decreasing number of joining links, are provisionally merged and

modularity of the merged cluster is compared to the sum of modularities of the two

original clusters. In the case of improvement of the objective function value, the

merged cluster is kept at the place of the two original ones. When merging is not

beneficial in terms of improvement of the solution, the merged cluster is attempted

to be splitted into two parts, according to the procedure applied in the first sequence

of refining steps, exactly solving the bipartition problem. The two new clusters are

possibly different from the original ones that have been merged, and can potentially

correspond to an improved solution.

2.3 Fixing integer variables

We now present a novel mathematical programming- based approach to refine

heuristic partitions. It is inspired by the methodology proposed by Xu et al. [38]

for community detection in networks. In [38], the authors propose a two-stage pro-

cedure, where first a mixed-integer nonlinear problem (similar to that of [39] for a

number of clusters generally greater than two, but where the only decision variables

are binary variables Y expressing allocation of vertices to modules) is approximately

solved to get an initial partition, and then a fixing and releasing scheme is applied.

In this second stage, the authors consider the MIQP model in [39] and solve it, by

standard solvers, iteratively fixing a certain number of variables Y to their value 1

and releasing the other variables, that are so free to take a value 1 or 0 depending

on the way vertices are re-allocated in the current solution. Fixing integer variables

gives a mathematical programming formulation with a reduced number of variables,

and so more tractable.

We build upon the idea of fixing binary variables, though developing a different

approach. Our approach is devised to refine approximate clustering solutions, so

we start from the partition provided by a clustering heuristic, that replaces the first

stage of the procedure in [38]. Then, we attempt to improve the original partition by

acting on modules through a new heuristic based on variable fixing. Starting from an

assignment of vertices to modules, i.e., from an assignment of 0-1 values to variables

Y , we fix n f ix variables to their value 1 and compute a new value for the remaining

variables, that is, we re-allocate the corresponding vertices. For each cluster, the

vertices that are reallocated are chosen on the basis of their inner degree (the number

6 Sonia Cafieri and Pierre Hansen

of neighbors of a vertex inside the cluster), moving first vertices that have a small

inner degree and so are likely to have more connections inside a different cluster

than the one they are assigned. A given number of (outer) iterations is performed,

each one acting on a set Fix, containing variables whose value has to be fixed, and

a set Un f ix, containing variables to be released. To avoid using the same sets Fix-

Un f ix in successive iterations, random perturbations are applied to these sets.

As acting on the whole graph requires to solve a mixed-integer nonlinear problem

that may be quite large even with a number of variables that are fixed, and splitting

and merging clusters appears to be an effective strategy for refinements [10], we in-

tegrate our fixing variables-based strategy in the procedure above based on splitting

and merging clusters. To refine a given partition, again we implement the two con-

secutive steps performing respectively bipartitioning of each cluster and merging

mixed to bipartitioning on pairs of clusters. Thus, we consider the MIQP formu-

lation (B), but in place of solving exactly the bipartitioning problem by standard

branch-and-bound for MIQP, we apply our fixing variables-based strategy.

Thus, our refinement procedure works as follows.

First, each cluster of the original partition is splitted into two sets. To that effect,

an initial approximate solution for the bipartition is computed and the above fixing

variables-based approach is applied. If the modularity value corresponding to the

obtained bipartition is higher than the one of the original cluster, then the original

cluster is replaced by the new ones obtained by bipartition, otherwise the original

cluster is kept. Once all clusters of the original partition have been examined, the

merging-and-splitting procedure is applied. Pairs of clusters, sorted by decreasing

number of joining links, are provisionally merged. If merging improves the objec-

tive function value, then the merged cluster is kept, otherwise it is splitted into two

subsets again applying the fixing variables-based approach.

3 Computational results

In this section, we apply the proposed clustering refinement techniques to the par-

titions found by two known and heuristics for graph modularity maximization. The

first one was proposed by Noack and Rotta [34] and is based on a single-step coars-

ening with a multi-level refinement. The second one was proposed in 2011 by Cafieri

et al. [9] and is a hierarchical divisive heuristic that is locally optimal in the sense

that bipartitions are computed by an exact optimization algorithm.

The first refinement technique (subsection 2.2) is implemented solving the mixed-

integer quadratic bipartition problem (B) using CPLEX 12.2 [22], setting its pa-

rameters in such a way that the MIP cutting plane generation is disabled, the branch-

ing variable selection strategy is based on reduced pseudo costs, the number of nodes

in the Branch-and-Bound tree is limited to 40000, and 1 only thread is used.

The fixing variables-based technique (subsection 2.3) is implemented using as a

strarting guess an (approximate) affectation of variables provided by CPLEX 12.2

limited to the solution at the root node, and then iterating the fixing variables scheme

Using mathematical programming to refine heuristic solutions for network clustering 7

over 100 iterations. At each iteration, the number of fixed variables is setted to half

the cardinality of the current subgraph.

We test the proposed refinement algorithms on datasets in the literature, which

correspond to networks modelling various real-life applications. Specifically, we

consider a social network of dolphins [27], a network describing interactions among

the characters of Hugo’s novel Les Misérables [23], a biological network of protein-

protein interactions [12], a network recording co-purchasing of political books on

Amazon.com [24], a representation of the schedule of games between American

college football teams in the Fall of 2000 [17], a network of connections between

US airports [35], a network describing electronic circuits [25], e-mail interchanges

between members of a university [21], a network giving the topology of the Western

States Power Grid of the United States [37] and authors collaborations [35]. The

considered datasets are listed in Table 1 together with their number of vertices n and

number of edges m. Solutions have been obtained on a 2.4 GHz Intel Xeon CPU of

a computer with 8GB RAM shared by three other similar CPU running Linux.

In Table 2 and Table 3 we report the results of the refinements of clustering re-

sults obtained using the Noack and Rotta’s [34] (NR) heuristic and the Cafieri et

al.’s [9] (CHL) heuristic respectively. We compare the results of the mathematical

programming-based refinements described in Sect. 2, showing the original modu-

larity value computed by the heuristic under consideration (NR or CHL), the inter-

mediate result obtained by cluster splitting only and the final result after sequentially

applying the splitting step and the merging step mixed to splitting, for the first re-

finement technique (split and mrg+ spl) (also in [10]) and respectively the new

one based on fixing variables (split f ix and mrg+ spl f ix). We are able to obtain

improved results for all the tested cases out of one (political books) refined

with the fixing variables technique. Comparing the refined results with optimal mod-

ularity maximization solutions, when available in the literature [2], we remark that

in some cases we get the optimal partitions, and in general very good quality so-

lutions. The results obtained applying the two proposed refinements are generally

comparable, and often we get the same modularity value (up to 5 decimal digits) in

the two cases. When this is not the case, the values coincide up to 2 or 3 decimal

digits.

In Table 4 we compare the two proposed approaches in terms of computing time.

Very short times are spent in both cases on small-scale networks. For larger net-

works, it appears that the proposed approach based on fixing integer variables re-

duces sometimes significantly the time needed to refine the initial partition. This

happens, as expected, especially for networks for which exact bipartitioning takes

time because of the exploration of a large Branch-and-Bound tree. For example,

improving the NR heuristic, time is reduced from 334.72 to 8.96 seconds for the

6-th dataset and from 919.74 to 241.29 seconds for the last dataset, and, improving

the CHL heuristic, the reduction is from 454.64 to 16.86 seconds, again for the 6-th

dataset.

Figure 1 illustrates the clustering of a network for which the optimal modularity-

maximizing partition is obtained refining the NR heuristic result.

8 Sonia Cafieri and Pierre Hansen

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
50

51

52

53

54

5556

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98
99

100

101

102

103

104
105

106

107

108

109

110

111

112

113

114

115

Fig. 1 Optimal clustering of network football obtained refining the NR heuristic result

Table 1 Datasets in the literature, whith their number of vertices n and number of edges m.

dataset n m

dolphins 62 159

les miserables 77 254

p53 protein 104 226

political books 105 441

football 115 613

usair97 332 2126

netscience main 379 914

s838 512 819

email 1133 5452

power 4941 6594

erdos02 6927 11850

4 Conclusions

We proposed mathematical programming based approaches to refine graph cluster-

ing solutions. In particular we discussed and compared two approaches, the one in

[10] based on splitting clusters and a combination of merging and splitting clusters,

where bipartitions are computed exactly solving a MIQP problem, and a new one,

based on iteratively fixing and releasing integer variables, again integrated in a split-

ting and merging-splitting scheme. We employ our approach as post-processing of

some known heuristics for modularity maximization, obtaining improved solutions

and, for some datasets, the optimal partition. The proposed approach based on fix-

Using mathematical programming to refine heuristic solutions for network clustering 9

Table 2 Modularity values corresponding to the partition found by the Noack and Rotta’s heuris-

tic [34] (QNR), by our first approach for refinement after the splitting step only (QNR
split) and after the

merging and splitting step (QNR
mrg+spl), and by our fixing variables- based approach after the split-

ting step only (QNR
split f ix) and after the merging and splitting step (QNR

mrg+spl f ix). In the last column,

the optimal modularity value Qopt is reported, when available in the literature [2].

dataset QNR QNR
split QNR

mrg+spl QNR
split f ix QNR

mrg+spl f ix Qopt [2]

dolphins 0.52377 0.52773 0.52852 0.52508 0.52646 0.52852

les miserables 0.56001 0.56001 0.56001 0.56001 0.56001 0.56001

p53 protein 0.53216 0.53216 0.53502 0.53216 0.53502 0.53513

political books 0.52694 0.52724 0.52724 0.52694 0.52694 0.52724

football 0.60028 0.60237 0.60457 0.60237 0.60457 0.60457

usair97 0.36577 0.36577 0.36808 0.36577 0.36808 0.3682

netscience main 0.84745 0.84828 0.84842 0.84828 0.84842 0.8486

s838 0.81624 0.81624 0.81656 0.81624 0.81656 0.8194

email 0.57740 0.57741 0.57776 0.57741 0.57768 –

power 0.93854 0.93867 0.93873 0.93854 0.93858 –

erdos02 0.75926 0.75926 0.76958 0.75926 0.78952 –

Table 3 Modularity values corresponding to the partition found by the Cafieri et al.’s heuristic [9]

(QCHL), by our first approach for refinement after the splitting step only (QCHL
split) and after the merg-

ing and splitting step (QCHL
mrg+spl), and by our fixing variables- based approach after the splitting

step only (QCHL
split f ix) and after the merging and splitting step (QCHL

mrg+spl f ix). In the last column, the

optimal modularity value Qopt is reported, when available in the literature [2].

dataset QCHL QCHL
split QCHL

mrg+spl QCHL
split f ix QCHL

mrg+spl f ix Qopt [2]

dolphins 0.52646 0.52646 0.52680 0.52646 0.52680 0.52852

les miserables 0.54676 0.54676 0.55351 0.54676 0.55351 0.56001

p53 protein 0.53000 0.53000 0.53004 0.53000 0.53145 0.53513

political books 0.52629 0.52629 0.52678 0.52629 0.52678 0.52724

football 0.60091 0.60091 0.60112 0.60091 0.60112 0.60457

usair97 0.35959 0.35959 0.35975 0.35959 0.35960 0.3682

netscience main 0.84702 0.84702 0.84703 0.84702 0.84703 0.8486

s838 0.81663 0.81663 0.81675 0.81663 0.81667 0.8194

email – – – –

power 0.93937 0.93937 0.93941 0.93937 0.93941 –

erdos02 – – – –

ing integer variables allow us to significantly reduce the computing time needed to

provide an improved clustering solution.

Acknowledgements The first author has been supported by French National Research Agency

(ANR) through grant ANR 12-JS02-009-01 “ATOMIC”.

10 Sonia Cafieri and Pierre Hansen

Table 4 Computing time (seconds) required by the proposed approaches applied as post-

processing to Noack and Rotta’s heuristic (timeNR) and Cafieri et al.’s heuristic (timeCHL). Solutions

have been obtained on a 2.4 GHz Intel Xeon CPU of a computer with 8GB RAM shared by three

other similar CPU running Linux.

dataset timeNR
mrg+spl timeNR

mrg+spl f ix timeCHL
mrg+spl timeCHL

mrg+spl f ix

dolphins 0.20 0.39 0.26 0.20

les miserables 0.67 0.71 0.35 0.30

p53 protein 1.02 1.23 0.26 0.49

political books 5.10 1.66 3.41 1.21

football 3.26 3.16 0.99 0.83

usair97 334.72 8.96 454.64 16.86

netscience main 1.38 1.67 0.77 0.85

s838 1.20 1.40 1.06 1.16

email 57.80 56.02 – –

power 18.62 15.81 17.50 15.42

erdos02 919.74 241.29 – –

References

1. G. Agarwal and D. Kempe. Modularity-maximizing graph communities via mathematical

programming. The European Physical Journal B, 66(3):409–418, 2008.

2. D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, L. Liberti, and S. Perron. Column generation

algorithms for exact modularity maximization in networks. Physical Review E, 82(4):046112,

2010.

3. D. Aloise, G. Caporossi, P. Hansen, L. Liberti, S. Perron, and M. Ruiz. Contemporary Math-

ematics 588.

4. V.D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities

in large networks. Journal Statistical Mechanics: Theory and Experiment, page P10008, 2008.

5. S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino, and A. Rapisarda. Detecting complex

network modularity by dynamical clustering. Physical Review E, 75:045102, 2007.

6. U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner. On

modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2):172–

188, 2008.

7. S. Cafieri, A. Costa, and P. Hansen. Reformulation of a model for hierarchical divisive graph

modularity maximization. Annals of Operations Research, 2012. DOI 10.1007/s10479-012-

1286-z (in press).

8. S. Cafieri, P. Hansen, and L. Liberti. Loops and multiple edges in modularity maximization

of networks. Physical Review E, 81(4):046102, 2010.

9. S. Cafieri, P. Hansen, and L. Liberti. Locally optimal heuristic for modularity maximization

of networks. Physical Review E, 83(5):056105, 2011.

10. S. Cafieri, P. Hansen, and L. Liberti. Improving heuristics for network modularity maximiza-

tion using an exact algorithm. Discrete Applied Mathematics, 163(1):65–72, 2014.

11. A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in very large net-

works. Physical Review E, 70:066111, 2004.

12. L. Dartnell, E. Simeonidis, M. Hubank, S. Tsoka, I.D.L. Bogle, and L.G. Papageorgiou. Self-

similar community structure in a network of human interactions. FEBS Letters, 579:3037–

3042, 2005.

13. H.N. Djidjev. A scalable multilevel algorithm for graph clustering and community structure

detection. Lecture Notes in Computer Science, 4936:117–128, 2008.

Using mathematical programming to refine heuristic solutions for network clustering 11

14. J. Duch and A. Arenas. Community identification using extremal optimization. Physical

Review E, 72(2):027104, 2005.

15. S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010.

16. S. Fortunato and M. Barthelemy. Resolution limit in community detection. Proceedings of

the National Academy of Sciences, USA, 104(1):36–41, 2007.

17. M. Girvan and M. Newman. Community structure in social and biological networks. Pro-

ceedings of the National Academy of Sciences, USA, 99(12):7821–7826, 2002.

18. M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering problem. Math-

ematical Programming, 45:59–96, 1989.

19. M. Grötschel and Y. Wakabayashi. Facets of the clique partitioning polytope. Mathematical

Programming, 47:367–387, 1990.

20. R. Guimerà and A.N. Amaral. Functional cartography of complex metabolic networks. Na-

ture, 433:895–900, 2005.

21. R. Guimerà, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas. Self-similar community

structure in a network of human interactions. Physical Review E, 68:065103, 2003.

22. IBM. ILOG CPLEX 12.2 User’s Manual. IBM, 2010.

23. D.E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-

Wesley, Reading, MA, 1993.

24. V. Krebs. http://www.orgnet.com/ (unpublished).

25. Uri Alon Lab. http://www.weizmann.ac.il/mcb/UriAlon/.

26. S. Lehmann and L.K. Hansen. Deterministic modularity optimization. European Physical

Journal B, 60:83–88, 2007.

27. D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, and S.M. Dawson. The bot-

tlenose dolphin community of doubtful sound features a large proportion of long-lasting asso-

ciations. can geographic isolation explain this unique trait? Behavioral Ecology and Sociobi-

ology, 54(4):396–405, 2003.

28. C.P. Massen and J.P.K. Doye. Identifying communities within energy landscapes. Physical

Review E, 71:046101, 2005.

29. A. Medus, G. Acuna, and C.O. Dorso. Detection of community structures in networks via

global optimization. Physica A, 358:593–604, 2005.

30. J. Mei, S. He, G. Shi, Z. Wang, and W. Li. Revealing network communities through modularity

maximization by a contraction-dilation method. New Journal of Physics, 11:043025, 2009.

31. M. Newman. Modularity and community structure in networks. Proceedings of the National

Academy of Sciences, USA, 103(23):8577–8582, 2006.

32. M. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys-

ical Review E, 69:026113, 2004.

33. M. E. J. Newman. Networks: an introduction. Oxford University Press, Oxford, 2010.

34. A. Noack and R. Rotta. Multi-level algorithms for modularity clustering. Lecture Notes in

Computer Science, 5526:257–268, 2009.

35. http://vlado.fmf.uni-lj.si/pub/networks/data/.

36. M. Tasgin, A. Herdagdelen, and H. Bingol. Community detection in complex networks using

genetic algorithms. arXiv:0711.0491, 2007.

37. D.S. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,

393(6684):409–410, 1998.

38. G. Xu, Bennett, L.G. Papageorgiou, and S. Tsoka. Module detection in complex networks us-

ing integer optimisation. Algorithms for Molecular Biology, 5(36), 2010. DOI:10.1186/1748-

7188-5-36.

39. G. Xu, S. Tsoka, and L.G. Papageorgiou. Finding community structures in complex networks

using mixed integer optimization. European Physical Journal B, 60:231–239, 2007.

