
HAL Id: hal-01017978
https://enac.hal.science/hal-01017978v1

Submitted on 3 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable Neighborhood Search for Edge-Ratio Network
Clustering

Sonia Cafieri, Pierre Hansen, Nenad Mladenovic

To cite this version:
Sonia Cafieri, Pierre Hansen, Nenad Mladenovic. Variable Neighborhood Search for Edge-Ratio Net-
work Clustering. S. Butenko et al. Examining Robustness and Vulnerability of Networked Systems,
IOS Press, pp 51-64, 2014, NATO Science for Peace and Security Series - D : Information and Com-
munication Security, Volume 37, 978-1-61499-390-2. �hal-01017978�

https://enac.hal.science/hal-01017978v1
https://hal.archives-ouvertes.fr

Variable Neighborhood Search for

edge-ratio network clustering

Sonia Cafieri1, Pierre Hansen2, Nenad Mladenović3

1ENAC, MAIAA, F-31055 Toulouse, France and

University of Toulouse, IMT, F-31400 Toulouse, France
2GERAD, HEC Montréal, Canada

3School of Mathematics, Brunel University, United Kingdom

Abstract

Edge-ratio clustering was introduced in [Cafieri et al., Phys.Rev. E 81(2):026105, 2010],

as a criterion for optimal graph bipartitioning in hierarchical divisive algorithms for cluster

identification in networks. Exact algorithms to perform bipartitioning maximizing the

edge-ratio were shown to be too time consuming to be applied to large datasets. In this

paper, we present a Variable Neighborood Search (VNS)-based heuristic for hierarchical

divisive edge ratio network clustering. We give a full description including the structure of

some algorithmic procedures which are used to implement the main steps of the heuristic.

Computational results show that the proposed algorithm is very efficient in terms of quality

of the bipartitions, moreover the computing time is much smaller than that one for exact

algorithms.

1 Introduction

Network analysis is successfully used in the study of complex systems in a variety of domains,

where a network representation and the study of its topological features help to better un-

derstand some characteristics of the system under consideration. Prominent examples include

social networks, describing individuals and their interactions and relationships, telecommuni-

cation networks, such as the World Wide Web, transportation networks, biological networks,

and many more. A detailed introduction to networks has recently been given by Newman

[18]. A mathematical representation of a network is obtained using a graph G = (V,E), where

vertices (in the set V) are associated to the entities under study and the edges (in the set E)

joining pairs of vertices correspond to relationships among the entities.

Network clustering represents a topic of particular interest in network analysis. It consists

in detecting subsets of vertices which are more densely linked compared to the rest of the graph,

called modules or clusters or communities. This is of much interest in the study of complex

systems as many of such systems are characterized by a modular structure. For example, a

community in a social network can be constituted by individuals sharing a common interest

or location, in a biological network by entities with a common function. The reader is referred

to Fortunato [4] for a recent survey of this research domain.

1

Network clustering is generally based on a definition of community or on a criterion to

evaluate a partition found. A clustering criterion can be used as an objective function in a

combinatorial optimization problem, whose solution gives an optimal partition for the consid-

ered network. Several alternatives have been proposed. Among clustering criteria, the most

used is modularity [16], based on the idea of comparing the fraction of edges falling within

communities to the expected fraction of such edges. Two of the most known definitions of

community were proposed in [20] and give conditions defining communities in a strong and a

weak sense, respectively. Building on the most significant condition, the weak condition, in [1]

a new criterion was introduced for a bipartition to be optimal, called the edge-ratio criterion.

This criterion, as well as the weak condition, are recalled below. The edge-ratio criterion is

maximized to obtain successive bipartitions in a hierarchical divisive algorithm. In [1] the

optimal bipartitioning problem was solved exactly at each iteration of the divisive algorithm.

It turns out that this exact algorithm is very time consuming even for small or medium size

datasets (i.e., with a few hundred of vertices). Therefore, heuristic approaches appear to be

the most adequate to solve in reasonable time the bipartitioning problems. In this paper, we

propose a Variable Neighborhood Search heuristic to solve the bipartitioning problems. Such

heuristic was presented in [3] somewhat informally. In the present paper we give a full math-

ematical description of this heuristic, including the structure of some algorithmic procedures

which are used to implement the main steps of the heuristic.

Let us consider a graph G = (V,E) with V set of vertices, with cardinality n, and E set of

edges, with cardinality m. Let S ⊆ V be a subset of vertices. Then the degree ki of a vertex

i belonging to V (i.e., the number of its neighbors) can be separated into two components

kini (S) and kouti (S), which represent respectively the number of neighbors of i inside S and

the number of neighbors of i outside S.

Radicchi et al. [20] give the following definition for a set of vertices S forming a community

in the weak sense:

∑

i∈S

kini (S) >
∑

i∈S

kouti (S)

That is, S is a community in the weak sense if and only if the sum of all degrees within S is

larger than the sum of all degrees joining S to the rest of the graph. As this condition can be

used ([20]) as a local stopping criterion in hierarchical clustering, it has been used by Wang et

al. [21] to define a community S indivisible if there is no bipartition, (S1, S2) of S, such that

both S1 and S2 satisfy the weak condition.

In [1] the definition of community in the weak sense is extended into a criterion for a bipar-

tition to be optimal: one seeks to maximize the minimum, for both classes S1 and S2 of the

bipartition of S (such that S1 ∪ S2 = S, S1 ∩ S2 = ∅, S1, S2 6= ∅), of the ratio of inner edges

to cut edges:

f(S1, S2) = max
S1,S2⊂V

min (r(S1), r(S2)) ,

where for a subgraph S the ratio r(S) is given by:

r(S) =
∑

i∈S

kini (S)/
∑

i∈S

kouti (S).

This definition is strenghten to be used in a hierarchical divisive clustering algorithm, by

introducing a parameter α and by quantifying how much the number of inner edges is larger

2

than the number of cut edges. Thus, the condition becomes:

∑

i∈S

kini (S) ≥ α
∑

i∈S

kouti (S). (1)

In case of equality, the coefficient α is equal to the ratio of twice the number of edges within

the community S divided by the number of edges within the cut of that community. It is

called the edge ratio [1]. Then, hierarchical divisive clustering algorithm, where at each step

a bipartitioning of the current subgraph is done, one can then seek the maximum value of

α for which the subgraph to be bipartitioned will be divisible. So, the problem of detecting

indivisible communities is also solved. The crucial step of bipartitioning in a hierarchical

divisive clustering algorithm is also the most computationally demanding. The VNS based

heuristic presented in this paper is aimed at performing efficiently this algorithmic step.

The paper is organized as follows. In Sect. 2 we recall the structure of a hierarchical

divisive clustering algorithm and introduce VNS to perform its main computational step.

Sect. 3 presents the details of the algorithmic structure of some subroutines which are used

to implement the main steps of the heuristic. A few results about algorithmic complexity

are also discussed. In Sect. 4 the results of computational experiments performed on a set of

instances from the literature are presented and discussed. Sect. 5 concludes the paper.

2 Divisive hierarchical clustering using VNS

2.1 Basic notation

Let us consider an unweighted graph G(V,E) with vertex set V = {v1, . . . , vn} and edge

set E = {e1, . . . , em}. Let ki denotes the degree of vertex vi ∈ V . Let A = aij be the

corresponding adjacency matrix (aij ∈ {0, 1}) and H = hij be the adjacency list, i.e., raw i

contains the list hij , j = 1, . . . , di of vertices that are adjacent to vertex vi.

2.2 Divisive hierarchical clustering

Hierarchical divisive clustering heuristics (see, e.g. [2]) proceed, in a top-to-bottom approach,

from an initial partition of the graph containing all its n vertices, iteratively bipartitioning

a subgraph, until a partition into n clusters is obtained, or the value of a chosen objective

function is not improved anymore. At each step of a divisive clustering algorithm, one must

select a cluster among the ones obtained at the previous hierarchy levels and divide it into

two. At the first step, the first bipartition is done on V . Let ℓ in {1, . . . , n} be the index of

the subgraph Sℓ selected to be bipartitioned during a step of the divisive algorithm. After

a bipartition into subsets of vertices S1 and S2, we obtain Sℓ = S1 and Sℓ+1 = S2. Then ℓ

is increased by one and all process repeated. In the present study, the objective function is

based on the edge-ratio criterion (1). So, for each bipartition, the objective function value

f(S1, S2) is computed. If it is greater than or equal to one, i.e., the subgraph that one seeks

to bipartition is divisible, then the obtained subgraphs are added to the list P of subgraphs

to be considered for bipartition.

The corresponding pseudo-code is given in Algorithm 1. Notice that bipartitioning is done

3

by Variable Neighbourhood Search, so an appropriate function BVNS is called to perform the

bipartitioning steps. It is described in details in Sect. 3.

Function DHC-VNS (m,n,A, P)

1 ℓ = 1, Sℓ = {v1, . . . , vn}, P = ∅

2 while |Sℓ| > 1 do

3 S1, S2 ← BVNS (Sℓ) // Find bipartition of Sℓ according to f(S1, S2);

4 if f ≥ 1 then

5 P = P ∪ argmin f(S1, S2)

6 Sℓ ← S1; S
ℓ+1 ← S2

7 ℓ← ℓ+ 1

8 Among {S1, . . . , Sℓ}, select cluster with the largest cardinality

9 Exchange its position with Sℓ

Algorithm 1: Divisive hierarchical clustering algorithm with VNS for bipartitioning

3 Variable Neighborhood Search for edge-ratio clustering

Variable Neighbourhood Search (VNS) is a metaheuristic aimed at solving combinatorial and

global optimization problems. It is based on the idea of a systematic change of neighbourhood

combined with a local search to escape the current local optimum. The main ingredients of

such heuristic are thus given by a local search procedure, shaking, i.e., a procedure to perturb

the current solution, and a procedure to update the current solution. The reader is referred

to [15, 7, 8, 9, 10] for an introduction of VNS and its main applications.

In this section, a detailed description of the proposed Variable Neighborhood Search is

given, together with pseudo-codes for its main procedures.

3.1 Initialization

The VNS for bipartitioning starts with a random partition of the current vertex set S = S1∪S2,

S1∩S2 = ∅, where the cardinality of the first set is n
2
(|S1| = [n

2
]). In that way, two subgraphs

G1 = (S1, E1) and G2 = (S2, E2) are obtained. A third set of vertices S3 = V \ {S1 ∪ S2} is

also handled through the execution of the algorithm. Obviously, at the first iteration S3 = ∅.

Let Pℓ denotes all possible partitions of vertex set Sℓ, where ℓ represents the hierarchy level of

the divisive hierarchical clustering algorithm. In order to simplify notation, in the following

we will omit the index ℓ.

3.2 Data structure and objective function

Let S be a set of vertices to be bipartitioned into S1 and S2. A bipartition is represented in

the computer memory in the following way:

x = {x1, . . . , x|S|} – indices of vertices that belong to S

4

δxj
=

{

1 if xj ∈ S1

0 if xj ∈ S2

and the following variables are used to update the objective function values:

n1 – number of vertices in set S1;

n2 – number of vertices in set S2;

n3 – number of vertices in set S3;

m1 – number of edges in subgraph G1;

m2 – number of edges in subgraph G2;

c1 – number of cut edges with one end point in S1 and another in V \ S1 = S2 ∪ S3;

c2 – number of cut edges with one end point in S2 and another in V \ S2 = S1 ∪ S3;

kini – inner degree of vertex vi (both end points belong to either S1 or S2);

kcuti – cut (outer) degree of vertex vi (number of links of vi with vertices from different sets);

kresti = ki − ki(S), vi ∈ S – “rest” degree of vertex vi, where ki(S) denotes the degree of the

vertex in the subgraph of G induced from vertices of S;

f1 = 2 · m1

c1
– ratio for subgraph G1;

f2 = 2 · m2

c2
– ratio for subgraph G2;

f = min{f1, f2} – objective function value.

Note that all values from above can be computed if a partition (S1, S2, S3) is known

(Sj ∈ P). Therefore, instead of n1 we could in fact put n1(S1), instead of m2 we could put

m2(S2), etc. Also note that the degree of each vertex v can be presented as

kv = kinv + kcutv + krestv

with respect to the current partition of V in three subsets.

At each step of the divisive hierarchical clustering algorithm, the problem is to find a

bipartition of the current S into S1 and S2 such that the largest value between the objective

functions associated to the corresponding subgraphs, f1 and f2, is as small as possible. The

objective function of the edge-ratio clustering at each iteration of the divisive algorithm can

be presented as follows

f(S1, S2) = max
S1,S2∈P

min{f1(S1), f2(S2)} (2)

where S1 ∪ S2 = S and S1 ∩ S2 = ∅.

Proposition 1 Given a graph G(V,E) and the bipartition of its vertex set V into sets S1 and

S2, computing the objective function value (2) is in O(|E|).

5

Proof. In order to compute f , we need to find m1,m2, c1 and c2. For each vertex vi we check

if hij belongs to S1 or S2 (i.e., we check if δ(hij) = true or false). If both δi and δ(hi,j) have

the same value, the corresponding inner degree (m1 or m2) is increased by one. Otherwise,

cut degree (c1 or c2) is increased by one. Since the number of elements in H is m = |E| we

need O(m) calculations. ⋄

3.3 Allocation local search

Local search in the proposed VNS is based on the selection of the entity (vertex) whose

associated local change (move) gives the best improvement of the objective function value,

and on the update of all entities involved in the problem after that move.

Assume that any solution (S1, S2, S3) is known. We use an allocation move as a local change.

It consists in taking some entity v from S = S1 ∪ S2 and changing its allocation: if v ∈ S1

then, after the allocation move, it will belong to S2 and vice-versa.

The vertex whose allocation change improves the most the objective function (2) is selected

and all variables updated accordingly. The datailed algorithms are given below.

3.3.1 Move.

In Algorithm Move(v, f, δ) input values are the index of entity v that will change its member-

ship, the current objective function value f and the current solution δ. We also assume that

values of m1,m2, c1 and c2 are known as well.

Function Move(v, f, δ)

1 if δv then

2 mm1 ← m1 − kinv ; mm2 ← m2 + kcutv

3 cc1 ← c1 + kinv − kcutv − krestv

4 cc2 ← c2 + kinv − kcutv + krestv

else

5 mm1 ← m1 + kcutv ; mm2 ← m2 − kinv
6 cc1 ← c1 + kinv − kcutv + krestv

7 cc2 ← c2 + kinv − kcutv − krestv

8 f1 ←
2·mm1

cc1
; f2 ←

2·mm2

cc2
; f ← min{f1, f2}

Algorithm 2: Allocation move

Notice that mm1,mm2, cc1 and cc2 are used to temporally denote the values of m1,m2, c1
and c2; these values will be actually changed once the move to be performed is selected.

Proposition 2 Let v be a vertex that moves from one subset to another. If v ∈ S1 then the

new objective function value is

fnew = min{
2 · (m1 − kinv)

c1 + kinv − kcutv − krestv

,
2 · (m2 + kcutv)

c2 + kinv − kcutv + krestv

}.

6

If v ∈ S2 then

fnew = min{
2 · (m1 + kcutv)

c1 + kinv − kcutv + krestv

,
2 · (m2 − kinv)

c2 + kinv − kcutv − krestv

}.

Proof. A new value of the objective function, by definition is

fnew = min{fnew
1 , fnew

2 } = min{
2mnew

1

cnew
1

,
2mnew

2

cnew
2

}. (3)

If v ∈ S1 changes its membership to S2, then we have:

mnew
1 = m1 − kinv (4)

mnew
2 = m2 + kcutv (5)

because the new number of inner edges m1 in S1 is reduced by kinv (the inner degree of v)

(see (4)), and the number of edges in S2 is augmented by the cut degree of v (see (5)). The

numbers of cut edges c1 and c2 of S1 and S2 are updated as follows:

cnew1 = c1 + kinv − kcutv − krestv (6)

cnew2 = c2 + kinv − kcutv + krestv (7)

Indeed, since v moves to S2, the number of cut edges cnew1 of S1 is increased by its inner degree

in S1 (+kinv); also, it is reduced by kcutv , since its cut degree contributes to inner degree of S2;

finally, all vertices from S \ (S1 ∪ S2) connected with v after the move to S2 do not produce

cut edges of S1 anymore (−krestv).

Observe that cnew1 = cnew2 only if S = V , i.e., at the first hierarchy level ℓ = 1, where subset

S3 = ∅ and therefore the rest degrees are equal to 0. Similarly for (7).

If vertex v belongs to S2 and moves to S1, then new numbers of inner and cut edges in S1

and S2 are

mnew
1 = m1 + kcutv (8)

mnew
2 = m2 − kinv (9)

cnew1 = c1 + kinv − kcutv + krestv (10)

cnew2 = c2 + kinv − kcutv − krestv (11)

Substituting (6) - (11) into equations (3) we get the result. ⋄

3.3.2 Update.

Once the entity v improving the most the objective function value is selected, a move is done

and the current solution as well as all the variables that we keep during the search are updated.

In order to get a new value improving the objective function, both fnew
1 and fnew

2 have to be

larger than f , since the minimum of these two values should be larger than f . Let us first

assume that v ∈ S1 is moved to S2. Besides updating values with formulas (4) - (11), we

7

also need to update the number of vertices of S1 (reduced by 1), and the cardinality of S2

(increased by 1):

nnew
1 = n1 − 1, nnew

2 = n2 + 1. (12)

In addition, inner and cut degrees of vertices that are adjacent to the moved vertex v have to

be updated.

Proposition 3 Let v be a vertex that changes its membership and let u be any adjacent vertex

to v ((v, u) ∈ E). Then values of new inner and cut degrees of u are:

(i) k̄inu = kinu − 1, k̄cutu = kcutu + 1, if both v and u belong to the same subset;

(ii) k̄inu = kinu + 1, k̄cutu = kcutu − 1, if v and u are in different subsets.

Proof. As mentioned earlier, uj = hvj , j = 1, . . . , kv indicate all adjacent vertices of v. There

are kv of them since kv is the degree of v. Let us denote with k̄inu and k̄cutu a new values of

inner and cut degrees (after the vertex v is moved from one to another subset of vertices),

respectively. Then four different cases can occur.

Case 1. v ∈ S1 and uj ∈ S1. Then k̄inuj
= kinuj

− 1 and k̄cutuj
= kcutuj

+ 1;

Case 2. v ∈ S1 and uj ∈ S2. Then k̄inuj
= kinuj

+ 1 and k̄cutuj
= kcutuj

− 1;

Case 3. v ∈ S2 and uj ∈ S1. Then k̄inuj
= kinuj

+ 1 and k̄cutuj
= kcutuj

− 1;

Case 4. v ∈ S2 and uj ∈ S2. Then k̄inuj
= kinuj

− 1 and k̄cutuj
= kcutuj

+ 1.

So, cases 1 and 4 give the same outcome in updating degrees of adjacent vertices to v, and

the same holds for cases 2 and 3. Thus, we get the result. ⋄

Algorithm Update(i, f, δ) summarizes the above updating procedure. Input values are

given by vertex v (that changes its membership), a solution δ and the objective function value

f . Notice that all other values mentioned before (n1, n2, m1, etc.) are also input values,

however we do not put them in the input list for the sake of readability.

8

Function Update(v, f, δ)

1 if δv then

2 n1 ← n1 − 1; n2 ← n2 + 1

3 m1 ← m1 − kinv ; m2 ← m2 + kcutv

4 c1 ← c1 + kinv − kcutv − krestv

5 c2 ← c2 + kinv − kcutv + krestv

else

6 n2 ← n2 − 1; n1 ← n1 + 1

7 m1 ← m1 + kcutv ; m2 ← m2 − kinv
8 c1 ← c1 + kinv − kcutv + krestv

9 c2 ← c2 + kinv − kcutv − krestv

10 y ← kcutv ; kcutv ← kinv ; kinv ← y

11 for j = 1, kv do

12 r ← hij
13 if (δr ∧ δv) ∨ (¬δr ∧ ¬δv) then

14 kcutr ← kcutr + 1; kinr ← kinr − 1

else

15 kcutr ← kcutr − 1; kinr ← kinr + 1

16 f1 ←
2·m1

c1
; f2 ←

2·m2

c2
; f ← min{f1, f2}

17 δv ← ¬δv;

Algorithm 3: Updating values after allocation move

In line 1 we check if v ∈ S1. If so, all variables are updated: in line 2 the cardinality of S1

is reduced by one (n1 ← n1 − 1), and cardinality of S2 increased by one (n2 ← n2 + 1). The

total number of inner and cut degrees of both sets (S1 and S2) are updated in lines 3, 4 and

5 respectively. From step 11 to 15 the degrees of vertices adjacent to v are updated. Similar

steps are repeated if v ∈ S2. Finally, the new objective function is computed, and membership

of vertex v flipped.

The following proposition can be easily deduced looking at the given pseudo-code.

Proposition 4 The worst case complexity of algorithm Update is in O(kmax), where kmax is

the maximum degree of G.

Note that, comparing the result of Proposition 2 with the result of Proposition 1, we see that

the number of operations is decreased by order of m− kmax by updating.

3.3.3 Local search algorithm.

A local search, or steepest descent procedure, is built on the idea of moving vertices from one

subset to another until an improvement in the objective function value, i.e., until fnew > f ,

is obtained. The vertex whose change of membership produces the maximum improvement

is chosen to make a new partition. Such partition corresponds to a local maximum of the

optimization problem.

9

Algorithm Best-Impr-LS(x, fopt, δ) describes the steps of the proposed Allocation local

search.

Function Best-Impr-LS(x, fopt, δ)

1 fopt ←∞; improve← true

2 while Improve do

3 Improve← false

4 for i = 1, n do

5 v ← xi
6 if kcutv > 0 then

7 Move(v, f, δ)

8 if f < fopt then

9 fopt ← f ; w ← v

10 improve← true

11 if ¬improve return

12 Update(w, f, δ)

Algorithm 4: Best improvement Allocation (re-assignment) local search

The following property holds.

Proposition 5 The time complexity of one iteration of the local search algorithm is O(n).

Proof. The proposed local search is based on the move procedure, which is repeated n times.

The results follows from the observation that the procedure move is O(1). ⋄

3.4 Shaking

Since the solution of bipartitioning S is represented with a binary vector δ(xj), the natural

way to introduce a distance into the solution space is to use the Hamming distance. That is,

we say that the two solutions x and y are at distance k if their Hamming distance is equal to

k, i.e., the minimum number of changes of zeros to ones (or reciprocally) required to change x

into y is equal to k. We build the shaking procedure on this concept, perturbing the current

solution x to a new vector which has Hamming distance k from it. This means that k zeros

or ones are switched to their opposite value. In other words, k entities change their original

cluster.

Therefore, our Shake(k, δ) procedure works as described in Algorithm 5.

10

Function Shake(k, δ)

1 ℓ← 1

2 while ℓ < k do

3 r ← 1 + (|S| − ℓ) · Rand

4 v ← xr
5 Update(v, f, δ)

6 ℓ← ℓ+ 1;

Algorithm 5: Steps of Shaking operator

3.5 Basic VNS for edge-ratio clustering

The basic VNS heuristic for edge-ratio clustering is straightforward, once the local search and

the shaking procedures have been introduced. It is summarized in Algorithm 6. Note that

BVNS is called at each iteration of the divisive hierarchical clustering Algorithm 1 to perform

bipartitioning.

Function BVNS (δ, kmax, tmax)

1 Initialization(δ)

2 repeat

3 k ← 1

4 repeat

5 δ′ ← Shake(k, δ) /* Shaking */

6 δ′′ ← Best-Impr-LS(δ′, f) /* Local search */

7 k ← k + 1 /* Next neighborhood */

8 if f(δ′′) < f(δ) then

9 δ ← δ′′; k ← 1 /* Make a move */

until k = kmax

10 t← CpuTime()

until t > tmax

Algorithm 6: Basic VNS for edge-ratio clustering

In Algorithm 6, kmax and tmax represent respectively the maximum number of explored

neighborhoods and the maximum cpu time used in the stopping criterion.

4 Computational results and analysis

The proposed VNS heuristic for edge-ratio clustering is validated on a set of 11 problems

from the literature, corresponding to various real-world applications. They are: Zachary’s

karate club dataset [23], describing friendship relationships in a karate club; Lusseau’s dolphins

dataset [14], describing communications between dolphins; Hugo’s Les Misérables dataset [11],

describing characters in Victor Hugo’s masterpiece and their interactions; Krebs’ political

11

books dataset [12]; a dataset representing the schedule of football games between American

college teams [5]; a dataset dealing with connections between US airports [19]; a dataset on a

coauthorship network of scientists working on network theory and experiment [17]; a network

describing electronic circuits [13]; a network representing e-mail interchanges between members

of a university [6]; a network giving the topology of the Western States Power Grid of the

United States [22] and a network of authors collaborations [19]. All considered networks are

undirected and unweighted, without loops.

We compare the results obtained using the VNS proposed in this paper for edge-ratio

bipartitioning in a divisive hierarchical algorithm (Algorithm 1) with the results obtained

solving, at each iteration of the divisive algorithm, the bipartition problem by an exact algo-

rithm. An exact solution of the bipartitioning problem based on the edge-ratio criterion was

proposed in [1]. In that paper, a mathematical programming formulation is proposed where

the edge-ratio α is maximized subject to non-linear and non-convex constraints, coming from

the products of α with binary variables. An exact algorithm is then obtained fixing the value

of α to solve a linear program in 0-1 variables, and then proceeding with a dichotomous search

on the values of α. Specifically, one strarts with a value of α equal to 1. If there is no feasible

solution for that value, the network is indivisible and one stops, otherwise the value of α is

doubled and feasibility checked until a value is attained for which the weak condition cannot

be satisfied. This gives an upper bound ᾱ and the previous value of α gives a lower bound α.

Then the dichotomous search proceeds by considering the mid value of the interval [α, ᾱ] (see

[1]). It turns out that this exact algorithm is very time consuming even for small or medium

size datasets (i.e., with a few hundred of vertices).

We implemented BVNS with the value of kmax set to min{50, n/2}. Tests were run on AMD

Opteron 2 GHz CPU, 128 GB RAM. Results are shown in Table 1.

Networks are listed together with their number of vertices n and number of edges m. We

report the cpu time (seconds) to obtain clustering solutions by a divisive hierarchical algorithm

using the VNS and the above exact algorithm for the bipartitioning problem solved at each

hierarchical level.

dataset n m Time VNS (sec.) Time exact (sec.)

karate 34 78 0.0 62.10

dolphins 62 159 9.99e-3 172.2

les miserables 77 254 1.99e-2 283.49

political books 105 441 1.99e-2 716.45

football 115 613 3.99e-2 11780.79

Usair97 332 2126 0.62 3752906.94

netscience main 379 914 1.14 2347.24

s838 512 819 0.64 12612.53

email 1133 5452 6.84 –

power 4941 6594 29.80 –

erdos02 6927 11850 35.50 –

Table 1: Comparison of results obtained using VNS and an exact algorithm for bipartition

according to the edge-ratio criterion, on datasets from the literature

It appears that the proposed VNS for edge-ratio is very efficient in terms of quality of ob-

12

1
2

3

4

5
6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34
35

36

37

38

39

40

41
42

43

44

45

46
47

48

4950

51

52

53

54

55
56

57

58
59

60
61

62

6364

65 66

67

68

69

70
71

72
73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89
90

91 92

93

94

95

96

97 98

99

100

101

102

103

104

105

Figure 1: Partition and dendrogram obtained for dataset polbooks

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15
16

17

18

1920

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55
56

57

58

59

60

61

62

63
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

Figure 2: Partition and dendrogram obtained for dataset football

tained bipartitions and in terms of computational time. It allows us to solve the bipartitioning

problem at each hierarchical level significantly faster than exact bipartitioning, reducing the

computational time up to 7 orders of magnitude. This allows us to solve larger problems,

increasing the number of problems that we can solve using the exact method. In terms of

quality of the solution, the proposed VNS also appears to be efficient. In the most of the

cases, we obtain the same partition using VNS and the exact bipartitioning method. We give

in Figures 1 and 2 two examples of obtained partitions, and the corresponding dendrogram

illustrating the hierarchical divisive algorithm.

5 Conclusions

We proposed a Variable Neighborhood Search heuristic for solving the bipartitioning problem

in a hierarchical divisive graph clustering algorithm, according to the recently introduced

edge-ratio criterion. Neighborhoods to be used in the VNS are defined using the Hamming

distance. We describe the proposed local search and shaking procedures, the latter used to

perform systematic perturbations of the current incumbent solution. We give a full description

including the pseudo-codes of the procedures used to implement the main steps of the heuristic.

13

Computational results show that VNS, compared to exact bipartitioning, gives good quality

results significantly reducing the computational time.

References

[1] S. Cafieri, P. Hansen, and L. Liberti. Edge ratio and community structure in networks.

Physical Review E, 81(2):026105, 2010.

[2] S. Cafieri, P. Hansen, and L. Liberti. Locally optimal heuristic for modularity maximiza-

tion of networks. Physical Review E, 83(5):056105, 2011.

[3] S. Cafieri, P. Hansen, and N. Mladenović. Edge-ratio network clustering by variable

neighborhood search. 2013. submitted.

[4] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010.

[5] M. Girvan and M. Newman. Community structure in social and biological networks.

Proceedings of the National Academy of Sciences, USA, 99(12):7821–7826, 2002.

[6] R. Guimerà, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas. Self-similar community

structure in a network of human interactions. Physical Review E, 68:065103, 2003.

[7] P. Hansen and N. Mladenović. Variable neighbourhood search: Principles and applica-

tions. European Journal of Operations Research, 130:449–467, 2001.

[8] P. Hansen and N. Mladenović. Variable neighbourhood search. Oxford University Press,

Oxford, 2002.

[9] P. Hansen and N. Mladenović. Variable neighbourhood search. Kluwer, Dordrecht, 2003.

[10] P. Hansen, N. Mladenović, and J.A.M. Pérez. Variable neighbourhood search: methods

and applications. 4OR, 6:319–360, 2008.

[11] D.E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing.

Addison-Wesley, Reading, MA, 1993.

[12] V. Krebs. http://www.orgnet.com/ (unpublished).

[13] Uri Alon Lab. http://www.weizmann.ac.il/mcb/UriAlon/.

[14] D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, and S.M. Dawson. The

bottlenose dolphin community of doubtful sound features a large proportion of long-

lasting associations. can geographic isolation explain this unique trait? Behavioral Ecology

and Sociobiology, 54(4):396–405, 2003.

[15] N. Mladenović and P. Hansen. Variable neighbourhood search. Computers and Operations

Research, 24:1097–1100, 1997.

[16] M. Newman and M. Girvan. Finding and evaluating community structure in networks.

Physical Review E, 69:026133, 2004.

14

[17] M. E. J. Newman. Finding community structure in networks using the eigenvectors of

matrices. Physical Review E, 74:036104, 2006.

[18] M. E. J. Newman. Networks: an introduction. Oxford University Press, 2010.

[19] http://vlado.fmf.uni-lj.si/pub/networks/data/.

[20] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identi-

fying comminities in networks. Proceedings of the National Academy of Sciences, USA,

101(9):2658–2663, 2004.

[21] J. Wang, Y. Qui, R. Wang, and X. Zhang. Remarks on network community properties.

Journal of Systems Science and Complexity, 21(4):637–644, 2008.

[22] D.S. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,

393(6684):409–410, 1998.

[23] W.W. Zachary. An information flow model for conflict and fission in small group. Journal

of Anthropological Research, 33:452–473, 1977.

15

