N

N

Variable Neighborhood Search for Edge-Ratio Network
Clustering

Sonia Cafieri, Pierre Hansen, Nenad Mladenovic

» To cite this version:

Sonia Cafieri, Pierre Hansen, Nenad Mladenovic. Variable Neighborhood Search for Edge-Ratio Net-
work Clustering. S. Butenko et al. Examining Robustness and Vulnerability of Networked Systems,
IOS Press, pp 51-64, 2014, NATO Science for Peace and Security Series - D : Information and Com-
munication Security, Volume 37, 978-1-61499-390-2. hal-01017978

HAL Id: hal-01017978
https://enac.hal.science/hal-01017978
Submitted on 3 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://enac.hal.science/hal-01017978
https://hal.archives-ouvertes.fr

Variable Neighborhood Search for

edge-ratio network clustering

Sonia Cafieri!, Pierre Hansen?, Nenad Mladenovié?
'ENAC, MAIAA, F-31055 Toulouse, France and
University of Toulouse, IMT, F-31400 Toulouse, France
2GERAD, HEC Montréal, Canada
3School of Mathematics, Brunel University, United Kingdom

Abstract

Edge-ratio clustering was introduced in [Cafieri et al., Phys.Rev. E 81(2):026105, 2010],
as a criterion for optimal graph bipartitioning in hierarchical divisive algorithms for cluster
identification in networks. Exact algorithms to perform bipartitioning maximizing the
edge-ratio were shown to be too time consuming to be applied to large datasets. In this
paper, we present a Variable Neighborood Search (VNS)-based heuristic for hierarchical
divisive edge ratio network clustering. We give a full description including the structure of
some algorithmic procedures which are used to implement the main steps of the heuristic.
Computational results show that the proposed algorithm is very efficient in terms of quality
of the bipartitions, moreover the computing time is much smaller than that one for exact
algorithms.

1 Introduction

Network analysis is successfully used in the study of complex systems in a variety of domains,
where a network representation and the study of its topological features help to better un-
derstand some characteristics of the system under consideration. Prominent examples include
social networks, describing individuals and their interactions and relationships, telecommuni-
cation networks, such as the World Wide Web, transportation networks, biological networks,
and many more. A detailed introduction to networks has recently been given by Newman
[18]. A mathematical representation of a network is obtained using a graph G = (V, E'), where
vertices (in the set V') are associated to the entities under study and the edges (in the set E)
joining pairs of vertices correspond to relationships among the entities.

Network clustering represents a topic of particular interest in network analysis. It consists
in detecting subsets of vertices which are more densely linked compared to the rest of the graph,
called modules or clusters or communities. This is of much interest in the study of complex
systems as many of such systems are characterized by a modular structure. For example, a
community in a social network can be constituted by individuals sharing a common interest
or location, in a biological network by entities with a common function. The reader is referred
to Fortunato [4] for a recent survey of this research domain.

Network clustering is generally based on a definition of community or on a criterion to
evaluate a partition found. A clustering criterion can be used as an objective function in a
combinatorial optimization problem, whose solution gives an optimal partition for the consid-
ered network. Several alternatives have been proposed. Among clustering criteria, the most
used is modularity [16], based on the idea of comparing the fraction of edges falling within
communities to the expected fraction of such edges. Two of the most known definitions of
community were proposed in [20] and give conditions defining communities in a strong and a
weak sense, respectively. Building on the most significant condition, the weak condition, in [1]
a new criterion was introduced for a bipartition to be optimal, called the edge-ratio criterion.
This criterion, as well as the weak condition, are recalled below. The edge-ratio criterion is
maximized to obtain successive bipartitions in a hierarchical divisive algorithm. In [1] the
optimal bipartitioning problem was solved exactly at each iteration of the divisive algorithm.
It turns out that this exact algorithm is very time consuming even for small or medium size
datasets (i.e., with a few hundred of vertices). Therefore, heuristic approaches appear to be
the most adequate to solve in reasonable time the bipartitioning problems. In this paper, we
propose a Variable Neighborhood Search heuristic to solve the bipartitioning problems. Such
heuristic was presented in [3] somewhat informally. In the present paper we give a full math-
ematical description of this heuristic, including the structure of some algorithmic procedures
which are used to implement the main steps of the heuristic.

Let us consider a graph G = (V, E) with V set of vertices, with cardinality n, and E set of
edges, with cardinality m. Let S C V be a subset of vertices. Then the degree k; of a vertex
i belonging to V' (i.e., the number of its neighbors) can be separated into two components
kin(S) and k2%(S), which represent respectively the number of neighbors of i inside S and
the number of neighbors of i outside S.

Radicchi et al. [20] give the following definition for a set of vertices S forming a community
in the weak sense:

PBLACIEDBLAIC)

i€S ies
That is, S is a community in the weak sense if and only if the sum of all degrees within §' is
larger than the sum of all degrees joining S to the rest of the graph. As this condition can be
used ([20]) as a local stopping criterion in hierarchical clustering, it has been used by Wang et
al. [21] to define a community S indivisible if there is no bipartition, (S, S2) of S, such that
both S; and Sy satisfy the weak condition.
In [1] the definition of community in the weak sense is extended into a criterion for a bipar-
tition to be optimal: one seeks to maximize the minimum, for both classes S7 and Ss of the
bipartition of S (such that S; U Sy =5, S1 NSy =10, S1,S2 # 0), of the ratio of inner edges
to cut edges:

F(S1,52) = max min (r(S1).7(S2)

where for a subgraph S the ratio r(S) is given by:
r(S) =Y kM(S)/ Y k(S).
i€S €S
This definition is strenghten to be used in a hierarchical divisive clustering algorithm, by
introducing a parameter o and by quantifying how much the number of inner edges is larger

than the number of cut edges. Thus, the condition becomes:

STER(S) = a S k(S), 1)

ieS €S
In case of equality, the coefficient « is equal to the ratio of twice the number of edges within
the community S divided by the number of edges within the cut of that community. It is
called the edge ratio [1]. Then, hierarchical divisive clustering algorithm, where at each step
a bipartitioning of the current subgraph is done, one can then seek the maximum value of
a for which the subgraph to be bipartitioned will be divisible. So, the problem of detecting
indivisible communities is also solved. The crucial step of bipartitioning in a hierarchical
divisive clustering algorithm is also the most computationally demanding. The VNS based
heuristic presented in this paper is aimed at performing efficiently this algorithmic step.

The paper is organized as follows. In Sect. 2 we recall the structure of a hierarchical
divisive clustering algorithm and introduce VNS to perform its main computational step.
Sect. 3 presents the details of the algorithmic structure of some subroutines which are used
to implement the main steps of the heuristic. A few results about algorithmic complexity
are also discussed. In Sect. 4 the results of computational experiments performed on a set of
instances from the literature are presented and discussed. Sect. 5 concludes the paper.

2 Divisive hierarchical clustering using VNS

2.1 Basic notation

Let us consider an unweighted graph G(V,E) with vertex set V' = {v1,...,v,} and edge
set £ = {e1,...,en}. Let k; denotes the degree of vertex v; € V. Let A = aj; be the
corresponding adjacency matrix (a;; € {0,1}) and H = h;; be the adjacency list, i.e., raw i
contains the list h;;, 7 = 1,...,d; of vertices that are adjacent to vertex v;.

2.2 Divisive hierarchical clustering

Hierarchical divisive clustering heuristics (see, e.g. [2]) proceed, in a top-to-bottom approach,
from an initial partition of the graph containing all its n vertices, iteratively bipartitioning
a subgraph, until a partition into n clusters is obtained, or the value of a chosen objective
function is not improved anymore. At each step of a divisive clustering algorithm, one must
select a cluster among the ones obtained at the previous hierarchy levels and divide it into
two. At the first step, the first bipartition is done on V. Let £ in {1,...,n} be the index of
the subgraph S* selected to be bipartitioned during a step of the divisive algorithm. After
a bipartition into subsets of vertices S; and Ss, we obtain S¢ = S} and S¢*! = S,. Then ¢
is increased by one and all process repeated. In the present study, the objective function is
based on the edge-ratio criterion (1). So, for each bipartition, the objective function value
f(S1,S2) is computed. If it is greater than or equal to one, i.e., the subgraph that one seeks
to bipartition is divisible, then the obtained subgraphs are added to the list P of subgraphs
to be considered for bipartition.

The corresponding pseudo-code is given in Algorithm 1. Notice that bipartitioning is done

by Variable Neighbourhood Search, so an appropriate function BVNS is called to perform the
bipartitioning steps. It is described in details in Sect. 3.

Function DHC-VNS (m,n, A, P)

1 0=1,8"={vy,...,v,},P =10

2 while |S?| > 1 do

3 S1, Sy < BVNS (S%) // Find bipartition of S* according to f(S1,5);
4 if f > 1 then

5 | P =PUargmin f(S,52)

Se — Sl; SZJFI — 52

+—1+1

Among {S',..., S}, select cluster with the largest cardinality

© ® N o

Exchange its position with S*

Algorithm 1: Divisive hierarchical clustering algorithm with VNS for bipartitioning

3 Variable Neighborhood Search for edge-ratio clustering

Variable Neighbourhood Search (VNS) is a metaheuristic aimed at solving combinatorial and
global optimization problems. It is based on the idea of a systematic change of neighbourhood
combined with a local search to escape the current local optimum. The main ingredients of
such heuristic are thus given by a local search procedure, shaking, i.e., a procedure to perturb
the current solution, and a procedure to update the current solution. The reader is referred
to [15, 7, 8, 9, 10] for an introduction of VNS and its main applications.

In this section, a detailed description of the proposed Variable Neighborhood Search is
given, together with pseudo-codes for its main procedures.

3.1 Initialization

The VNS for bipartitioning starts with a random partition of the current vertex set S' = S1US3,
S1N Sy = (), where the cardinality of the first set is § (|.S1| = [5]). In that way, two subgraphs
G1 = (51, E1) and Gy = (S2, E2) are obtained. A third set of vertices Sz = V' \ {S1 U Sy} is
also handled through the execution of the algorithm. Obviously, at the first iteration S3 = ().
Let P, denotes all possible partitions of vertex set Sy, where £ represents the hierarchy level of
the divisive hierarchical clustering algorithm. In order to simplify notation, in the following
we will omit the index /.

3.2 Data structure and objective function

Let S be a set of vertices to be bipartitioned into S; and S;. A bipartition is represented in
the computer memory in the following way:

x = {x1,...,7)5} — indices of vertices that belong to S

5 — 1 if xjeSl
10 if x5 €5,

and the following variables are used to update the objective function values:

n1 — number of vertices in set St;

ng — number of vertices in set So;

ns — number of vertices in set Ss;

m1 — number of edges in subgraph Gy;

ms — number of edges in subgraph Go;

¢1 — number of cut edges with one end point in S; and another in V' \ S; = Sp U S3;

co — number of cut edges with one end point in Sy and another in V'\ Sy = S7 U Ss;

k:;" — inner degree of vertex v; (both end points belong to either S; or S3);

kU — cut (outer) degree of vertex v; (number of links of v; with vertices from different sets);

krest = k; — ki(S),v; € S — “rest” degree of vertex v;, where k;(S) denotes the degree of the
vertex in the subgraph of G induced from vertices of S;

f1 =22 — ratio for subgraph Gr;

Cc1

fo =222 —ratio for subgraph Gs;

Cc2

f =min{fi, fo} — objective function value.

Note that all values from above can be computed if a partition (Si,S2,53) is known
(S; € P). Therefore, instead of n; we could in fact put ni(S1), instead of mg we could put
ma(S2), etc. Also note that the degree of each vertex v can be presented as

k’u — k;}n + k5Ut + k;est
with respect to the current partition of V' in three subsets.

At each step of the divisive hierarchical clustering algorithm, the problem is to find a
bipartition of the current S into S; and Ss such that the largest value between the objective
functions associated to the corresponding subgraphs, fi and fo, is as small as possible. The
objective function of the edge-ratio clustering at each iteration of the divisive algorithm can
be presented as follows

f(51,82) = Smaxpmin{fl(sl)vfz(sz)} (2)

1,02€

where S; USy =S and S; N Sy = 0.

Proposition 1 Given a graph G(V, E) and the bipartition of its vertezx set V into sets S1 and
Sa, computing the objective function value (2) is in O(|E)).

Proof. In order to compute f, we need to find mi,meo,c; and cy. For each vertex v; we check
if hj; belongs to Sy or S (i.e., we check if 6(hj;) = true or false). If both §; and d(h; ;) have
the same value, the corresponding inner degree (m; or my) is increased by one. Otherwise,
cut degree (c; or c2) is increased by one. Since the number of elements in H is m = |E| we
need O(m) calculations. o

3.3 Allocation local search

Local search in the proposed VNS is based on the selection of the entity (vertex) whose
associated local change (move) gives the best improvement of the objective function value,
and on the update of all entities involved in the problem after that move.

Assume that any solution (57, S2,.53) is known. We use an allocation move as a local change.
It comnsists in taking some entity v from S = S; U Sy and changing its allocation: if v € 51
then, after the allocation move, it will belong to So and vice-versa.

The vertex whose allocation change improves the most the objective function (2) is selected
and all variables updated accordingly. The datailed algorithms are given below.

3.3.1 Move.

In Algorithm Move(v, f,d) input values are the index of entity v that will change its member-
ship, the current objective function value f and the current solution §. We also assume that
values of mq,mo, c1 and cy are known as well.

Function Move(v, f,d)

1 if 6, then

2 mmy < mq — k™ mmg < mo + kS4

3 cey < cp + kit — keut — frest

4 cey < co + ki — kSt 4 grest

else

5 mmy < my + kf,“t; mmeg < Mgy — k;"
cey < cp + ki — gout 4 grest

7 | ceo co + KM — kUt — frest

fi LML fo ¢ 22 f o min{fy, fo}

ccy cco

o

Algorithm 2: Allocation move

Notice that mmy, mme, cc; and cco are used to temporally denote the values of m1,ma, 1
and co; these values will be actually changed once the move to be performed is selected.

Proposition 2 Let v be a vertex that moves from one subset to another. If v € Sy then the
new objective function value is

2. (mg — k) 2+ (mg + k)

new 3
fY = min{ . , .
c1 + kin — kgut — krest’ ey 4 kin — kgut 4 frest

}.

If v € Sy then

2 - (mq + kS¥) 2. (mg — k)
c1 + kf}n _ kgut + kgest’ co + k%n _ k;gut _ kzest }

1% = min{

Proof. A new value of the objective function, by definition is

new new
2mj 2my

new } (3)

S = mind [, 54} = min{

crew 7l
If v € 57 changes its membership to S, then we have:
e = my — k" (1)
g = m + kg (5)

because the new number of inner edges m; in S; is reduced by k" (the inner degree of v)
(see (4)), and the number of edges in Sy is augmented by the cut degree of v (see (5)). The
numbers of cut edges ¢; and co of S7 and So are updated as follows:

C;Lew =c + kf]n o k$Ut o kzest (6)
C?wa =cy+ k:}n o kgut + k;‘est (7)

Indeed, since v moves to Sa, the number of cut edges c}“* of Sy is increased by its inner degree

in S (+k); also, it is reduced by k% since its cut degree contributes to inner degree of So;
finally, all vertices from S\ (S1 U S2) connected with v after the move to Se do not produce
cut edges of S; anymore (—k7est).

Observe that ¢’ = 5" only if S =V, i.e., at the first hierarchy level ¢ = 1, where subset
S35 =) and therefore the rest degrees are equal to 0. Similarly for (7).

If vertex v belongs to S2 and moves to S7, then new numbers of inner and cut edges in .51

and Sy are
iy = my kS (®)
e)
Cflzew =c + k:'f;n _ kgut + k‘ZGSt (10)
Cgew =y + kf}n o k,gut o k;est (11)
Substituting (6) - (11) into equations (3) we get the result. o

3.3.2 Update.

Once the entity v improving the most the objective function value is selected, a move is done
and the current solution as well as all the variables that we keep during the search are updated.
In order to get a new value improving the objective function, both f{*** and f3°* have to be
larger than f, since the minimum of these two values should be larger than f. Let us first
assume that v € S is moved to S3. Besides updating values with formulas (4) - (11), we

also need to update the number of vertices of S; (reduced by 1), and the cardinality of Sy
(increased by 1):

ni =mn; — 1, ny* =ng + 1. (12)

In addition, inner and cut degrees of vertices that are adjacent to the moved vertex v have to
be updated.

Proposition 3 Let v be a vertex that changes its membership and let u be any adjacent vertex
tov ((v,u) € E). Then values of new inner and cut degrees of u are:

i) K = kv — 1, kS = kS 1, if both v and u belong to the same subset;
u u u u

i) B =k 41, kS =k — 1, if v and u are in different subsets.
u u u u

Proof. As mentioned earlier, u; = hy;, j = 1,...,k, indicate all adjacent vertices of v. There
are k, of them since k, is the degree of v. Let us denote with £ and k¢ a new values of
inner and cut degrees (after the vertex v is moved from one to another subset of vertices),
respectively. Then four different cases can occur.

Case 1. v € S7 and u; € S1. Then I_f:f}; = k:f[; —1 and l?:fj;t = kfjjt +1;
Case 2. v € S7 and u; € S3. Then l?:fZ = kf]} +1 and I;:qiqjt = kfj;t -1
Case 3. v € Sz and u; € S1. Then]_CZT]L = k;’]‘ +1 and l?:fjjt = k‘fjjt -1
Case 4. v € Sy and u; € S3. Then l;:ff; = kfjj —1 and I;:ffjt = kfjjt + 1.

So, cases 1 and 4 give the same outcome in updating degrees of adjacent vertices to v, and
the same holds for cases 2 and 3. Thus, we get the result. o

Algorithm Update(i, f,d) summarizes the above updating procedure. Input values are
given by vertex v (that changes its membership), a solution ¢ and the objective function value
f. Notice that all other values mentioned before (ni,ns2, mq, etc.) are also input values,
however we do not put them in the input list for the sake of readability.

Function Update(v, f,0)

1 if §, then
2 n+<n—1linyg+no+1
3 mi < mip — kf)n; me <— Mo + kf)m
O Iy Ly
5 | oo oot KM — Rout 4 frest
else
6 ngkng—l;m%nl—i—l
7 my < mi + kf,“t; Mo < Mg — kf)"
8 | ¢ <y o+ kin — ot 4 rest
o | o oot i — kUt — frest

10 Y kgut; kguf — kf‘}”; kf)" —y
11 for j =1,k, do

12 r < hij

13 if (0, A dy) V (—0, A —6,) then

O R i L
else

15 | ket ket — 15 ki ki 1

2. 2. -
16 f1 < =75 fo = =225 f < min{f1, fo}
17 Oy < —0y;

Algorithm 3: Updating values after allocation move

In line 1 we check if v € 5. If so, all variables are updated: in line 2 the cardinality of .St
is reduced by one (n; < n; — 1), and cardinality of Sy increased by one (ng < ng + 1). The
total number of inner and cut degrees of both sets (57 and S3) are updated in lines 3, 4 and
5 respectively. From step 11 to 15 the degrees of vertices adjacent to v are updated. Similar
steps are repeated if v € So. Finally, the new objective function is computed, and membership
of vertex v flipped.

The following proposition can be easily deduced looking at the given pseudo-code.

Proposition 4 The worst case complexity of algorithm Update is in O(kmaz), where kyagy s
the maximum degree of G.

Note that, comparing the result of Proposition 2 with the result of Proposition 1, we see that
the number of operations is decreased by order of m — k4, by updating.

3.3.3 Local search algorithm.

A local search, or steepest descent procedure, is built on the idea of moving vertices from one
subset to another until an improvement in the objective function value, i.e., until f™%* > f,
is obtained. The vertex whose change of membership produces the maximum improvement
is chosen to make a new partition. Such partition corresponds to a local maximum of the
optimization problem.

Algorithm Best-Impr-LS(z, fopt,0) describes the steps of the proposed Allocation local
search.

Function Best-Impr-LS(z, fopt, 6)
fopt < 00; improve < true
while Improve do
Improve < false
for i =1,n do
V< T
if k5% > 0 then
Move(v, f,9)
if f < fopt then
L fopt — f; W< v

improve <— true

© 0 N o oA W N =

=
o

if =improve return
| Update(w, £.4)

=
=

Jury
N

Algorithm 4: Best improvement Allocation (re-assignment) local search

The following property holds.

Proposition 5 The time complexity of one iteration of the local search algorithm is O(n).

Proof. The proposed local search is based on the move procedure, which is repeated n times.
The results follows from the observation that the procedure move is O(1). o

3.4 Shaking

Since the solution of bipartitioning S is represented with a binary vector d(z;), the natural
way to introduce a distance into the solution space is to use the Hamming distance. That is,
we say that the two solutions x and y are at distance k if their Hamming distance is equal to
k, i.e., the minimum number of changes of zeros to ones (or reciprocally) required to change z
into y is equal to k. We build the shaking procedure on this concept, perturbing the current
solution z to a new vector which has Hamming distance k from it. This means that k zeros
or ones are switched to their opposite value. In other words, k entities change their original
cluster.

Therefore, our Shake(k,d) procedure works as described in Algorithm 5.

10

Function Shake(k,)
1041

2 while ¢ < k do

3 r<+ 1+ (|S|—¥¢) Rand
V4 Ty

Update(v, f,d)

0+ 0+1;

(2B BN

Algorithm 5: Steps of Shaking operator

3.5 Basic VNS for edge-ratio clustering

The basic VNS heuristic for edge-ratio clustering is straightforward, once the local search and
the shaking procedures have been introduced. It is summarized in Algorithm 6. Note that
BVNS is called at each iteration of the divisive hierarchical clustering Algorithm 1 to perform
bipartitioning.

Function BVNS (4, kmaz, tmaz)

1 Initialization(d)

2 repeat

3 k+1

4 repeat

5 §’ + Shake(k,d) /* Shaking */

6 0" < Best-Impr-LS(¢/, f) /* Local search */

7 k—k+1 /* Next neighborhood */

8 if f(8") < f(d) then

9 | 60" k«1 /* Make a move */
until £ = kpee

10 t + CpuTime ()

until ¢t > 00

Algorithm 6: Basic VNS for edge-ratio clustering

In Algorithm 6, kpae and t,,4: represent respectively the maximum number of explored
neighborhoods and the maximum cpu time used in the stopping criterion.

4 Computational results and analysis

The proposed VNS heuristic for edge-ratio clustering is validated on a set of 11 problems
from the literature, corresponding to various real-world applications. They are: Zachary’s
karate club dataset [23], describing friendship relationships in a karate club; Lusseau’s dolphins
dataset [14], describing communications between dolphins; Hugo’s Les Misérables dataset [11],
describing characters in Victor Hugo’s masterpiece and their interactions; Krebs’ political

11

books dataset [12]; a dataset representing the schedule of football games between American
college teams [5]; a dataset dealing with connections between US airports [19]; a dataset on a
coauthorship network of scientists working on network theory and experiment [17]; a network
describing electronic circuits [13]; a network representing e-mail interchanges between members
of a university [6]; a network giving the topology of the Western States Power Grid of the
United States [22] and a network of authors collaborations [19]. All considered networks are
undirected and unweighted, without loops.

We compare the results obtained using the VNS proposed in this paper for edge-ratio
bipartitioning in a divisive hierarchical algorithm (Algorithm 1) with the results obtained
solving, at each iteration of the divisive algorithm, the bipartition problem by an exact algo-
rithm. An exact solution of the bipartitioning problem based on the edge-ratio criterion was
proposed in [1]. In that paper, a mathematical programming formulation is proposed where
the edge-ratio « is maximized subject to non-linear and non-convex constraints, coming from
the products of a with binary variables. An exact algorithm is then obtained fixing the value
of « to solve a linear program in 0-1 variables, and then proceeding with a dichotomous search
on the values of . Specifically, one strarts with a value of a equal to 1. If there is no feasible
solution for that value, the network is indivisible and one stops, otherwise the value of « is
doubled and feasibility checked until a value is attained for which the weak condition cannot
be satisfied. This gives an upper bound @ and the previous value of « gives a lower bound a.
Then the dichotomous search proceeds by considering the mid value of the interval [, @] (see
[1]). It turns out that this exact algorithm is very time consuming even for small or medium
size datasets (i.e., with a few hundred of vertices).

We implemented BVNS with the value of k4, set to min{50,n/2}. Tests were run on AMD
Opteron 2 GHz CPU, 128 GB RAM. Results are shown in Table 1.
Networks are listed together with their number of vertices n and number of edges m. We
report the cpu time (seconds) to obtain clustering solutions by a divisive hierarchical algorithm
using the VNS and the above exact algorithm for the bipartitioning problem solved at each
hierarchical level.

dataset n m | Time VNS (sec.) | Time exact (sec.)
karate 34 78 0.0 62.10
dolphins 62 159 9.99e-3 172.2
les miserables I 254 1.99e-2 283.49
political books | 105 441 1.99e-2 716.45
football 115 613 3.99e-2 11780.79
Usair97 332 | 2126 0.62 3752906.94
netscience main 379 914 1.14 2347.24
s838 512 819 0.64 12612.53
email 1133 | 5452 6.84 -
power 4941 | 6594 29.80 -
erdos02 6927 | 11850 35.50 -

Table 1: Comparison of results obtained using VNS and an exact algorithm for bipartition
according to the edge-ratio criterion, on datasets from the literature

It appears that the proposed VNS for edge-ratio is very efficient in terms of quality of ob-

12

‘communities

BigEast =

Mid American »
MidAmerican
AtlanticCoast >
Confer, USA «

BigTwelve ~
Western Athl, o

PacificTen 8

Figure 2: Partition and dendrogram obtained for dataset football

tained bipartitions and in terms of computational time. It allows us to solve the bipartitioning
problem at each hierarchical level significantly faster than exact bipartitioning, reducing the
computational time up to 7 orders of magnitude. This allows us to solve larger problems,
increasing the number of problems that we can solve using the exact method. In terms of
quality of the solution, the proposed VNS also appears to be efficient. In the most of the
cases, we obtain the same partition using VNS and the exact bipartitioning method. We give
in Figures 1 and 2 two examples of obtained partitions, and the corresponding dendrogram
illustrating the hierarchical divisive algorithm.

5 Conclusions

We proposed a Variable Neighborhood Search heuristic for solving the bipartitioning problem
in a hierarchical divisive graph clustering algorithm, according to the recently introduced
edge-ratio criterion. Neighborhoods to be used in the VNS are defined using the Hamming
distance. We describe the proposed local search and shaking procedures, the latter used to
perform systematic perturbations of the current incumbent solution. We give a full description
including the pseudo-codes of the procedures used to implement the main steps of the heuristic.

13

Mountain West =

SunBelt &

Computational results show that VNS, compared to exact bipartitioning, gives good quality

results significantly reducing the computational time.

References

1]

S. Cafieri, P. Hansen, and L. Liberti. Edge ratio and community structure in networks.
Physical Review E, 81(2):026105, 2010.

S. Cafieri, P. Hansen, and L. Liberti. Locally optimal heuristic for modularity maximiza-
tion of networks. Physical Review E, 83(5):056105, 2011.

S. Cafieri, P. Hansen, and N. Mladenovi¢. Edge-ratio network clustering by variable
neighborhood search. 2013. submitted.

S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75-174, 2010.

M. Girvan and M. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, USA, 99(12):7821-7826, 2002.

R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas. Self-similar community
structure in a network of human interactions. Physical Review E, 68:065103, 2003.

P. Hansen and N. Mladenovi¢. Variable neighbourhood search: Principles and applica-
tions. European Journal of Operations Research, 130:449-467, 2001.

P. Hansen and N. Mladenovié¢. Variable neighbourhood search. Oxford University Press,
Oxford, 2002.

P. Hansen and N. Mladenovi¢. Variable neighbourhood search. Kluwer, Dordrecht, 2003.

P. Hansen, N. Mladenovié¢, and J.A.M. Pérez. Variable neighbourhood search: methods
and applications. 4OR, 6:319-360, 2008.

D.E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing.
Addison-Wesley, Reading, MA, 1993.

V. Krebs. http://www.orgnet.com/ (unpublished).
Uri Alon Lab. http://www.weizmann.ac.il/mcb/UriAlon/.

D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, and S.M. Dawson. The
bottlenose dolphin community of doubtful sound features a large proportion of long-
lasting associations. can geographic isolation explain this unique trait? Behavioral Ecology
and Sociobiology, 54(4):396-405, 2003.

N. Mladenovi¢ and P. Hansen. Variable neighbourhood search. Computers and Operations
Research, 24:1097-1100, 1997.

M. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review FE, 69:026133, 2004.

14

[17] M. E. J. Newman. Finding community structure in networks using the eigenvectors of
matrices. Physical Review E, 74:036104, 2006.

[18] M. E. J. Newman. Networks: an introduction. Oxford University Press, 2010.
[19] http://vlado.fmf.uni-1j.si/pub/networks/data/.

[20] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identi-
fying comminities in networks. Proceedings of the National Academy of Sciences, USA,
101(9):2658-2663, 2004.

[21] J. Wang, Y. Qui, R. Wang, and X. Zhang. Remarks on network community properties.
Journal of Systems Science and Complezity, 21(4):637-644, 2008.

[22] D.S. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393(6684):409-410, 1998.

[23] W.W. Zachary. An information flow model for conflict and fission in small group. Journal
of Anthropological Research, 33:452-473, 1977.

15

