
HAL Id: hal-01011095
https://enac.hal.science/hal-01011095

Submitted on 23 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What should adaptivity mean to interactive software
programmers?

Mathieu Magnaudet, Stéphane Chatty

To cite this version:
Mathieu Magnaudet, Stéphane Chatty. What should adaptivity mean to interactive software pro-
grammers?. EICS 2014, ACM SIGCHI symposium on Engineering interactive computing systems,
Jun 2014, Rome, Italy. pp 13-22, �10.1145/2607023.2607028�. �hal-01011095�

https://enac.hal.science/hal-01011095
https://hal.archives-ouvertes.fr

What Should Adaptivity Mean
to Interactive Software Programmers?

Mathieu Magnaudet
Université de Toulouse - ENAC

7 avenue Edouard Belin
31055 Toulouse, France

mathieu.magnaudet@enac.fr

Stéphane Chatty
Université de Toulouse - ENAC

7 avenue Edouard Belin
31055 Toulouse, France

chatty@enac.fr

ABSTRACT
Works about adaptability and adaptivity in interactive sys-
tems cover very different issues (user adaptation, context-
aware systems, ambient intelligence, ubiquitous computing),
not always with the explicit goal of supporting programmers.
Based on examples that highlight how weakly discriminative
the present terminology is, we propose to separate two con-
cerns: adaptivity as a purely analytical concept, relative to a
given viewpoint on the software rather than to its very struc-
ture, and its programming as a non specific case of reactive
behavior. We describe how simple adaptive behaviors can be
programmed with simple interactive behavior patterns, and
how more complex patterns can be introduced for intelligent
adaptation. Finally we describe an application where, rely-
ing on the principles exposed in this paper, interaction and
adaptation are combined in a simple and innovative manner.

Author Keywords
Adaptive software, plasticity, responsive design, context-
sensitive applications, software architecture, programming,
theory of interactive systems.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces: D.2.11.Software engineering: Software Architectures

INTRODUCTION
Software adaptivity is a long time concern in the research do-
main of interactive computing systems that can be traced back
at least to 1975 and John H. Holland’s seminal work [22]. In
the early 80s, the adaptivity of user interfaces, broadly under-
stood as the self-modification of a system under context vari-
ations, arose as a significant issue in the improvement of us-
ability [23]. However subsequent works in this domain forked
in various directions depending on the context considered:
while early works focused on user adaptation and user mod-
eling [29], the spreading of new execution platforms, such as
PDAs, tablet PCs and smartphones, shifted the focus to inter-
action devices [36, 16]. In the meantime, the generalization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EICS 2014, June 17–20, 2014, Rome, Italy.
Copyright c© 2014 ACM 978-1-4503-2725-1/14/06 ...$15.00.
Include the http://DOI string/url which is specific for your submission and included in
the ACM rightsreview confirmation email upon completing your ACM form.

of small sensors in computing systems (light, temperature,
humidity, etc.) raised the more general issue of adapting soft-
ware applications to their physical environment [21]. At the
same time, progress in distributed architectures brought for-
ward the issue of adaptation to new services or new software
components in the execution context of an application [6].

During this process a number of sub-communities addressing
specific issues have emerged: user modeling, sensor mod-
eling, middleware, adaptation policy, model-based adapta-
tion, to cite but a few. Each sub-community has developed
their own concepts and vocabulary (e.g. adaptation, plastic-
ity, context-aware application). From a theoretical point of
view this situation is quite unsatisfactory: if we agree that the
science of human-computer interaction is also a theoretical
endeavor and cannot be reduced to a collection of methods or
good practices, we have to work toward the clarification of its
basic concepts and progress toward their unification.

But this is not simply a matter of theoretical aim. Heteroge-
nous concepts yield heterogenous software tools, introduc-
ing unnecessary complexity for programmers. Developing
an adaptive software that includes several of the dimensions
cited above (natural environment, input devices, user’s cogni-
tive abilities for example) can be a daunting task. This might
explain why the computing industry has introduced “respon-
sive design”, a less ambitious but more practical concept for
adapting interactive applications to their execution environ-
ment. If we want support for adaptivity to find its way into
operating systems, like it happened for touch interaction and
gesture recognition, eliciting concepts that are simple enough
to be embedded in programming tools is a key step.

This article is a contribution toward this goal. We show that
the entanglement of programming issues and adaptivity con-
cepts from the state of the art can be untangled into separate
concerns: an analysis framework of software adaptivity on
the one hand, a set of simple programming concepts on the
other hand.

Firstly, we propose a new analysis framework for software
adaptation. We show that there is no clear cut division that
emerges from previous works between programming adap-
tation and programming interactive behavior. We propose a
definition in which adaptivity appears as quality of interac-
tive behavior, that often has no particular relevance to pro-
gramming. We then turn to the practical consequences of our
definition. We obtain confirmation on standard adaptation
situations that no dedicated primitives are required to pro-

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

13

gram adaptive processes: the simple “event - control - action”
schema can be tailored for this purpose. Finally, we further
validate these principles by demonstrating them on a full-size
concrete application, using an existing reactive programming
framework.

PREVIOUS WORK

Adaptation to the user
Adaptive interfaces emerged as a research topic in the 1980s
(cf. [29] for a review). Simply stated, the idea was that the
software must adapt to users rather than the opposite. Users
were mostly considered for their cognitive skills, and the
topic was strongly associated to cognitive ergonomics. Ac-
cording to Greenberg and Witten [18] for instance, the con-
dition of interface adaptation is that the software manages a
model of its users. They proposed to define adaptation as
the automatic transformation of this model during the use of
the software. They also introduced a now common distinc-
tion between automatic transformations and transformations
operated by the user via configuration parameters, or by a de-
signer in a process of reengineering.

In this context, adaptive user interface were considered a con-
sequence of the automatic transformation of a user model.
The main difficulty was to find the rules allowing to infer
the (cognitive) state of users from their actions. This goal
created a clear connection between adaptation and the field
of artificial intelligence [27]. In more recent works, the fo-
cus has moved toward neuroscience with the introduction of
physiological sensors and neuroimaging [31, 34]. With these
techniques, the user model has been enriched with new di-
mensions such as affective state [37] or stress level [20], but
the principles of adaptation remain the same.

Adaptation to the context
With the 1990s and the increasing variety of computer form
factors (larger display sizes, then PDAs, mobile phones,
tablet PCs), and more recently new sensors (acceleration,
light, pressure, humidity, etc.), new adaptation concerns ap-
peared. We can distinguish at least three of them: adaptation
to the execution platform [36, 28], adaptation to the environ-
ment [33], adaptation to the applicative context [30]. These
various dimensions of adaptation are often gathered under the
general expression “context-aware systems”. Many of these
works propose model-based solutions to the problem of con-
text variation. Models range from complex ontologies [12,
19] to more partial models of the context or of some parts
of the software system [17, 13]. They are usually associated
with algorithms, inference rules or policies specifying how to
modify an application according to the modeled context di-
mensions (cf. [3] for a review).

There is no consensus, however, about what exactly must be
included in the context of an application: authors each choose
their own focus of interest and propose their own characteri-
zation of what they take to be the relevant context of an ap-
plication. This ranges from technicalities to topics that are
closer to user-centered adaptation: physical properties, sur-
rounding objects, user emotional state, etc.). By contrast Dey
and Abowd [14] propose a general definition:

Context: any information that can be used to char-
acterize the situation of entities (i.e., whether a person,
place, or object) that are considered relevant to the inter-
action between a user and an application, including the
user and the application themselves. Context is typically
the location, identity, and state of people, groups, and
computational and physical objects.

This definition clarifies the common focus of all these works:
the interaction between the user and the software. It is prag-
matic and flexible, with the drawback that it does not provide
an absolute definition, independent of any application.

Adaptation in software architecture
Another area of research is more focused on the pragmatics
of implementing software. Historically this was first docu-
mented when the domain of interactive software architecture
emerged in the 1980s from the need to adapt existing applica-
tions to graphical user interfaces. The Dialogue layer in the
Seeheim model [32] partly serves this purpose. The Func-
tional Core Adapter in the Arch model has the explicit role
of permitting the adaptation of a functional core to various
interaction layers, and reciprocally [4].

Note that this is quite remote from the definition proposed
by Greenberg and Witten for adaptation: here, adaptation is
not even a matter of configuration parameters but of sheer
reengineering. The adaptation is not relative to the user or
the environment, but to the programming interface of soft-
ware components. It is only recently that connections have
appeared with context adaptation, with the proposal to han-
dle software components and input devices through a unified
component model [10].

Meanwhile, this type of adaptation has become a general is-
sue in software engineering. Software reengineering, Web
services and ubiquitous computing each have brought their
own needs, leading to various solutions. This even includes
network security, where adaptive architectures have been pro-
posed to manage the variations in the security level of physi-
cal networks [5]. Solutions such as aspect-oriented program-
ming [24] or component-based architectures (Enterprise Java
Beans, Corba Component Model) are related to this issue of
supporting programmers who manage the adaptation of soft-
ware components [26].

Lessons learned
From this overview of previous works we propose two
lessons. The first is that adaptivity encompasses a huge va-
riety of works, especially when context and context-aware
systems are understood in such a wide sense as in Dey’s and
Abowd’s definition. Building a set of core concepts that can
be derived for each kind of adaptation could help to offer
more integrated support for adaptivity.

The second lesson is that, in contrast with what happened in
the software engineering field, research on adaptation in inter-
active software has been carried out in relative independence
from research on programming concepts. Studying how the
core concepts of adaptivity relate to those of interactive soft-
ware programming could also be beneficial.

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

14

In the next two sections we study these two lessons in more
detail so as to propose an analysis of adaptivity and its rela-
tions to interactive software programming.

ADAPTIVITY, A MATTER OF POINT OF VIEW
From the above overview, can we derive a definition of soft-
ware adaptivity that may be used for providing support to pro-
grammers? For this, we need to overcome a few difficulties
and come back to the roots of the concept of adaptivity.

Software adaptivity: from a fuzzy concept...
A closer look at the concept of software adaptation as it is
presented in the literature reveals some ambiguities. The first
resides in the distinction between the transformations that are
applied automatically and those that are applied by the user
via a configuration menu for example. Only the former are
usually considered as adaptations proprio sensu, but some-
times the difference can be tenuous. In [34], for example, the
authors investigate the possibility to detect the mental load of
the user so as to adapt the user interface accordingly. But,
interestingly, other works propose to use the exact same tech-
nique as a means to add an explicit control device to a system,
i.e. as a new input modality [38]. Technically and from the
information processing point of view, there is no significa-
tive difference between these two situations: in both cases the
goal is to enable the software to react to a specific brain pro-
cess detected by a neuroimaging device. The difference lies
in the voluntary versus involuntary nature of a specific brain
process of the user; the former will be classified as interaction
the latter as adaptation. Equally ambiguous situations can be
found with eye tracking, RFID or movement detection. In
these cases, the difference is more in the eye of the observer
of the human-machine interaction than in the software itself.
This raises an even wider question, that of the actual differ-
ence between adaptivity and plain interactivity: if the same
piece of interactive software can be used for both, what use is
the distinction to programmers?

Even if we take the more relaxed definition of context adap-
tation, we are faced with similar difficulties. While this is not
often stated in the literature, it is useful to remind that con-
text is a relative concept: it can only be defined with regard to
something, a task or an event for example. For adaptive user
interfaces, the context is usually that of the current activity of
the user and, taken in a wide sense, it encompasses everything
that can affect this activity. But, here too, the difference be-
tween an activity and the context of this activity seems to lie
very much in the eye of the observer (the user, the designer,
the scientist). Consider for instance the accelerometers that
are now embedded in most smartphones. They typically al-
low to adapt the graphical interface to the orientation of the
phone, but they are also used as an input modality in many
applications, especially games. Thus what was considered as
a ”context sensor” for some activities is also an input modal-
ity for other activities. Once again, not only is it difficult to
come up with a clear cut application of the proposed defi-
nition, but we also have two processes that are similar from
from the programmer’s point of view and different from other
points of view.

... to a relative concept
The above examples emphasize how much the categorization
of a process as an adaptive one depends on the chosen point
of view on the human-machine system. The distinction works
well enough if we consider users and their activities, or what
a given designer takes to be the users’ task, or the human-
computer interaction itself. From these points of view, adap-
tivity encompasses all transformations that are not directly
caused by deliberate actions of the user. The other transfor-
mations, voluntarily triggered by the user, are considered as
classic cases of interaction.

On the contrary, from the pure software point of view there
is no difference. Programmers are concerned by the interac-
tions of their software with its whole environment, not only
with the user. May the action be voluntary or not, the inten-
tion explicit or not, the process can always be described as an
association between an event and a transformation: detection
of a change in the environment (user’s actions included), then
modification of the state of the software.

Thus, if one is interested by the usability of a system, the
concept of adaptation can be useful as an analysis tool for
the processes that surround the user’s activity. But for those
involved in the programming of these processes, this concept
does not seem to offer very much.

Alternatively, the distinction is sometimes founded on what is
considered to be the function of a software system. In these
cases, adaptation characterizes software transformations that
maintain its main functionality. This is perfectly illustrated by
the works on plastic interfaces [9], where transformations of
the user interface are oriented toward the maintenance of the
functionality of the software. Here too, adaptation offers an
analysis tool to identify what must be transformed and when.
However this tells little about how to program such processes.

Also note that other points of view on systems are possible.
Consider for instance an air traffic control room with a num-
ber of “open positions”, each consisting of a workstation and
two operators. The control room, considered as a system,
adapts to the level of traffic: when the level increases, con-
trollers trigger de-grouping transformations in which the soft-
ware helps them to move part of the traffic to newly opened
positions. This makes the whole human-computer system
adaptable to its context. What is particularly interesting here
is that a system engineer would perceive this as an adapta-
tion process, while neither the programmers nor the users or
the interaction designers would. Still, the software needs to
support it.

The notion of point of view seems crucial to understand adap-
tive processes in interactive software. This will appear more
clearly by analyzing the very concept of adaptivity.

Back to the roots
Adaptivity is a concept inherited from biology. It refers to the
ability of a system to self-modify according to the evolutions
of its environment in order to maintain or enhance its viabil-
ity. Adaptivity is not an all or nothing phenomenon but rather
a continuum. Systems are more or less adaptive, depending
on both the variation range of the environmental properties

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

15

and the number of these properties. Moreover, not all evolu-
tions are viable; adaptation is a process of transformation un-
der constraints that must maintain the system in its so-called
viability kernel [2].

The fact that adaptive processes are oriented toward an end
(i.e. the maximisation of the viability of a system) is a crucial
feature of this phenomenon. Indeed, this is what distinguishes
adaptation from a simple mechanical transformation. Thus,
the expansion of an iron bar caused by heat is not considered
as an adaptive processes. But the thermoregulation mecha-
nisms of the living organisms are considered as such because
they are aimed at maintaining properties that are essential to
survival. Adaptivity of artificial systems obeys to the same
schema with the noticeable difference that viability criteria
are not intrinsic but defined from the outside, i.e. by the de-
signer, the human factors expert, the user, or any stakeholder
involved in the lifecycle of the system.

A new definition
Therefore, we propose to define adaptation as a function that
maps changes in an environmental state affecting the viability
of a system to evolutions in the state space of the system (i.e.
transformations) in order to maintain its viability.

Here, environment and transformation are taken as observer-
relative concepts. Each observer chooses to delineate a sys-
tem and its boundaries, the environment is everything that
is outside these boundaries, and transformations are all the
changes within the boundaries. For programmers, the system
consists of the software components they are in charge of, the
environment is everything else, and the transformations are
the modifications of the software components and their data.
These transformations may come out as graphical changes,
behavior changes, etc.

With this definition, software adaptivity clearly appears as an
external property that is relative to the criteria chosen by each
stakeholder to characterize the viability of a system. For in-
stance, from the point of view of the usability expert the via-
bility will be assessed against the usability criteria. Alterna-
tively, the software architect may characterize the viability of
a software as its ability to support updating processes, or the
addition of new components.

We are now able to explain why the same transformation pro-
cess may be characterized in the same time as an adaptive one
and as a simple interaction: it simply depends on the analysis
criteria. The automatic change of the luminosity of a screen
according to the variation of the ambient light is a simple in-
teraction in the eye of the programmer. But it is also an adap-
tive process for the ergonomist who studies how the ambient
light affects the visibility of a graphical component (and then,
the viability of the software) and how the change of the screen
luminosity can correct this issue.

Moreover this definition allows to qualify the roles of various
stakeholders in the engineering of adaptive software. Usabil-
ity experts or systems engineers are interested by the viabil-
ity of a transformation, that is by the relevance of a software
transformation for the maintenance of its function. Designers
are interested in the exploration of the transformations space.

Programmers are more interested in the means to observe the
environmental state and to relate it to a set of transformations.
Adaptivity becomes an explicit concern for them only in spe-
cific cases. This may be when the adaptation criterion is em-
bedded in the software itself, and they need to implement it.
This is typically the case of learning algorithms that have to
check whether a transformation is successful. Such software
could arguably be qualified as “self-adaptive” software.

Finally, this definition is broad enough to include the cases
of software adaptation triggered by software or platform evo-
lutions. For example the adaptation of an x86 application to
an ARM architecture and the refactoring of a component to
adapt it to a new version of a protocol, match the definition as
much as the resizing of a window to adapt to a new display.

PROGRAMMING ADAPTIVE SOFTWARE
The above definition is general enough to encompass the
whole range of adaptive phenomena. It also clarifies the dis-
tinction between a process of transformation and the finality
of this process. From this, we can infer that the programmer
is more concerned by the building of the transformation pro-
cess than by the specification of its finality. But we still need
to understand how programmers build the transformation pro-
cess into their programs: what are their responsibilities, what
support do they need? For this, we propose to use an anal-
ysis framework specifying the dimensions that structure this
space.

Extending an analysis framework
In [36], Thevenin and Coutaz propose a framework that char-
acterizes adaptation along four axes: actor, time, means, tar-
get. However, if adaptation is a relational property that de-
pends on a specific point of view on the mapping from envi-
ronmental changes to system transformations, then the frame-
work must be adapted to reflect this.

We propose to consider that software transformations are
themselves particular cases of software actions, along with
interactive behaviors such as beeps or color changes. Call-
ing “interaction” or “transformation” the effect of an action
results from the same choice of point of view as above. In
other words, all the software transformations considered for
adaptation are reactive behaviors and can be analyzed in
the unifying framework of reactive processes. Consequently,
we propose to consider that the framework describes reactive
processes in general, and to supplement it with an axis repre-
senting the possible observers of the system and their adapta-
tion criteria. It is along this axis that adaptive processes can
be distinguished from simple interaction.

The other dimensions of Thevenin and Coutaz remain fully
relevant in that they point to important distinctions regard-
ing the structuring of an interactive application. For instance,
there will be significant differences in the building of a soft-
ware if one wants it to react, at runtime, to a change of the
screen size rather than to recode it for each specific hardware
target. However, in order to more accurately capture the range
of possible reactive processes, we propose two additional ex-
tensions (Figure 1):

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

16

Figure 1. Analysis framework for reactive software processes, derived
from Thevenin and Coutaz [36]

• refine the Target and Means axes into Source, Mapping and
Action so as to denote what causes the process, what it
triggers, and how the decision is made;

• enrich the Actor and Time axes to capture such cases as the
redesign of a graphical component and the recompilation
of an application after the notification of an API change.

The result is a design space with five axes describing what
happens, how, when, whence and by whom, and one that
characterizes whether this qualifies as an adaptation process.

Where the application programmer’s work lie
Using our variant of Thevenin and Coutaz’s analysis frame-
work makes it easy to sort out what should be in the hands of
application programmers. It suffices for that to identify which
dimension in the design space should be assigned to whom.
Not only does this help defining responsibilities for program-
mers and programming environment architects and ensuring
the independence of their design choices. It also helps under-
standing what support programming primitives must offer in
priority to the programmers of adaptive applications.

• The Observer dimension is not relevant to programming
and can safely be ignored.

• What Sources and what Actions are used in a given appli-
cation are the programmers’ choice. However, defining the
range of available sources and actions is the responsibil-
ity of the programming framework: does it provide sup-
port for multitouch devices, or only for classical pointing
devices? Does it allow the design of rich graphical com-
ponents, or only classical WIMP widgets? Consequently,
these dimensions should be assigned to the framework pro-
grammer rather than the application programmer.

• Similarly, the Time and the Actor of the transformation
strongly depend on the programming environment. Con-
sider for instance the adaptation of an application to a new
processor architecture. Currently, programmers must de-
cide and implement this adaptation themselves because the
application is unable to do it. In the future, this might
become a feature of a programming environment that in-
cludes support for adaptation. As above, these dimensions

concern more the framework programmer than the applica-
tion programmer.

• The Mappings between sources and actions are where the
intrinsic programming complexity resides. For any inter-
active behavior, the task of application programmers it to
select the right mapping between sources and actions, or to
build the appropriate mapping if necessary. This applies to
adaptive software as well. All user interface frameworks
support variants of “when this then that”, and some offer
state machines. For more complex cases, such as intelli-
gent adaptation, programmers must build their own solu-
tions from the basic mappings available. This is similar
to using the control structures of standard programming
languages to build dedicated algorithms, potentially very
complex.

The proposed definition and analysis framework hence trans-
late to the following hypothesis regarding application pro-
grammers: their task consists in using and creating mappings
between events and transformations, therefore any program-
ming environment that provides the appropriate primitives for
creating mappings can be used without introducing dedicated
primitives.

ADAPTATION IN A REACTIVE ARCHITECTURE
If the above hypothesis is valid, the primitive constructs of
a classical reactive programming framework should be suf-
ficient to address the whole range of adaptive processes de-
lineated by our design space. We now test this hypothe-
sis with the “event-control-action” schema from the reac-
tive programming paradigm, refined into a an “event-control-
transformation” schema. We show how this simple schema
can be used to account for a series of classical adaptation sce-
narios.

Coupling sources and transformations
Simple (source, transformation) couples can be used to ex-
press a wide variety of behaviors:

• event sources, taken in a very broad sense as described
in [11] ou [10], may be an input device consciously ma-
nipulated by a user, a physiological sensor, a physical sen-
sor, a software component reporting the hardware config-
uration of the execution platform (displays, network, pro-
cessor, etc.), and so on. The only requirement is that the
programming environment provides these sources to the
programmer so as to cover the desired part of the design
space.

• Transformations can range from a simple variation of a
graphical property to a complex restructuring of a compo-
nent tree or to the loading of new software modules. Just
as for the event sources, the limits to the expression of in-
teractive processes are those of the actions made available
by the programming environment.

With this schema in hand, we can easily describe some clas-
sic cases of adaptive processes. For instance, a Web service
provider announces a change in their protocol through a ded-
icated service, application vendors develop an event source

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

17

that catch such announcements and couple a rebuild action to
it. Or a physiological sensor detects inappropriate attention
patterns in a user, this is coupled to an animation that make
the display vibrate so as break the attention pattern.

Figure 2. Simple binding between an event and a transformation

Continuous change
Another classic adaptive process is the adaptation to a con-
tinuous change in the application context. For example the
continuous variation of ambient light, or more usual, the pro-
gressive resizing of the application window. In such cases we
need a mapping that propagates the current value each time
it changes, this is a typical dataflow mapping. However, the
connected transformation does not need to be equally con-
tinuous, it may respond to various thresholds. In this case
the mapping must be composed of a data flow block supple-
mented with a switch that will point to one branch or the other
(figure 3).

Figure 3. Composition of a dataflow and a switch

Dynamicity
The appearance and disappearance of an object in the sur-
roundings of an application are classic sources of adaptive
processes. Object is here taken in a very wide sense that
includes input devices, users, software components, and so
on. Such processes can be modeled by a component that en-
capsulates a monitoring process and that sends events when
detecting that objects have appeared or disappeared. The ap-
propriate control mapping is a simple binding that will trigger
a specific transformation when receiving this event (figure 2).
Of course the transformation itself may be complex, for ex-
ample a transformation of the behavior of some interactors
when a specific input device is plugged, however the map-
ping linking event and transformation is quite simple.

Complex algorithms
At first sight, artificial intelligence seems to offer a more chal-
lenging example of adaptation for our analysis schema. How-
ever it is no more the case if we regard it as a mapping of a
higher degree of complexity. A neural network, for example,
is an input/output structure that may be connected to one or
several event sources on one side and to a set of transforma-
tions on the other side. The specificity of this mapping is that

the link between events and transformations may change with
time according to the change in the connection weights made
by a learning algorithm.

Figure 4. Learning algorithms as a complex mapping

Discussion
As we have seen, the proposed schema (event - control - trans-
formation) provides an analysis tool that accounts for various
classical adaptation scenarios. This provides initial validation
not only of the schema, but also of part of the definition it is
derived from: it makes sense to reduce adaptive behavior to
interactive behavior as far as the programmer is concerned.

The above analysis also shows how the chosen schema
helps to clarify in what cases programmers need to perform
adaptation-specific programming tasks. Arguably, only the
creation of dedicated control structures can be considered as
such. This would be consistent with the classical distinction
between adaptation in general and self-adaptive systems: the
level of self-adaptation is probably correlated to the complex-
ity of the algorithms involved in the control structures.

In order to further validate the proposed definition through
the chosen programming schema, we have applied it to the
implementation of an actual interactive software.

EXAMPLE APPLICATION
The djnn programming framework [1] implements the gen-
eral event - control - action schema. We used it to implement a
software prototype featuring various cases of interaction and
adaptation, relying solely on the event - control - transforma-
tion principle.

A ground control station for UAVs
In the context of a research project dedicated to cooperation
between humans and machines, we have developed a proto-
type ground control station for squad of civil unmanned aerial
vehicles (UAV). This prototype is aimed at replacing the user
interface of the open source Paparazzi system [7] in the fu-
ture. Some of the requirements for this software are related
to our concerns:

• the ground station must run on a classical desktop com-
puter as well as on a tablet PC equipped with a touchscreen
and stylus;

• it must be ready for multimodal interaction;

• the user interface must automatically adapt to changes
in the operational configuration (network connectivity be-
tween the UAVs, current phase in the mission).

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

18

This makes it a concrete example of the issue we are dis-
cussing in this paper. We could have dealt with the require-
ments by choosing some conceptual frameworks from the lit-
erature, one for shared control and one for multimodality.
But for our programmers, most concepts derived from these
frameworks would have been irrelevant for the task. For ex-
ample the question of who must take the control on the system
and when is not their concern but those of the designer or the
architect of the system. They are just interested in how to
map a specific control source onto a specific set of transfor-
mations.

In the following, we illustrate how the principles described
in the previous section can be used to build such mappings,
which provide additional examples of the wide variety of
mappings that the reactive architecture allows.

Figure 5. The main window of the UAV application

Application structure
This application is visually architectured in two main parts:
a map picturing the flight area and a side panel containing
various state indicators about each vehicle (figure 5). These
indicators are packed in what is classically called a strip (fig-
ure 6). The flight plan of the UAVs are organized in series
of waypoints that can be displayed and handled on the map.
When the user selects a vehicle, various components appear
and allow the user to interact with the UAV, by selecting a
waypoint in its flight plan for example.

The application is implemented with the Java API of Djnn, a
programming environment that implements the principles of
reactive programming described earlier. In particular, Djnn
comes with a series of control structures that all rely on the
source-action principle and that correspond to the various
mappings described in the previous section.

In addition, Djnn implements a model-based architecture in
which the structure of an application is represented by com-
ponents that can be created, assembled and destroyed in ex-
actly the same way as the data manipulated by the application.
This allows to trigger transformations of the application (e.g.
the replacement of a visualization panel) with the same mech-
anisms as simple color or position changes. Consequently,
all transformations of the software can be programmed ac-
cording to the same source-action mappings, provided that
the necessary event sources are available.

N/AETA:
00:11Stage:
00:11Time:

Holding point
Block

-120m
Target +1.5↗

205.0m
Alt.

10m/s
Speed

80%
Motor

3D

None

Auto2
StatusLink

12.5
Battery

Set.PFDNav

00:14:05MicrojetUAV_2

Figure 6. “Strip” gathering the various state information of a vehicle

Event sources
The application is sensitive to events from the UAV squad as
well as user events.

UAVs are equipped with autonomous squad flight capabilities
and the communication between the UAVs and the ground
station relies on a dynamic routing protocol. Changes in the
squad configuration or in the routing configuration, as well as
alarms from UAVs (e.g. “short fuel”) are transmitted to the
application and must trigger reconfigurations of the user in-
terface. For instance, in case of an emergency the application
should restructure the interface so as to force the operator to
focus on a UAV, with all the relevant information easily avail-
able. A first implementation step has consisted to make all
these messages from the UAVs and routers available to the
rest of the application in the same form as input events.

The user events are the usual ones: mouse clicks, touch panel
touches, etc. A future version of the application includes
unconscious input, provided by physiological sensors (EEG,
near infra red). For this reason, and because the application
must run on various platforms, the application must be able
to transform its internal wiring according to the available de-
vices. As above, this is possible because events such as the
connection and disconnection of input devices are available
to the rest of the application.

In the following we give an overview of three kinds of cou-
pling between events and transformations of the application.
All are implemented according to very similar patterns, with
the same mappings. From the user’s point of view, some of
these couplings will appear as simple interaction, others as
adaptive processes, others with no clear status. The homoge-
neous implementation model allows to explore design spaces
where the difference between adaptation and interaction is not
important.

Basic interaction
Like most of the graphical user interfaces, our application
proposes many examples of simple interactions such as state
change on mouse press or graphical object dragging. This
is the case for the waypoints, which can be in four different
states (figure 7). The transitions between the states are trig-
gered by the user’s actions on a mouse or a touch screen.

The coupling between events and changes is described with a
finite state machine that governs the branches of a switch as
explained in [11]. Each transition corresponds to a coupling,
where the event is for instance a mouse press or a screen touch
and the transformation is the activation or the deactivation of
a graphical object.

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

19

Switch

Unselected

Selected

Edit

FSM wp/press wp/move

button/press

edit/press

timer/end

button/press

Lon. 0.0000.000 000Lat. Alt.

Name

Name

Name

Name

Lon. 0.0000.000 000Lat. Alt.

0.000Lon.

Alt. 000

0.000Lat.

Drag

Figure 7. Waypoint state change triggered by a user action

Recomposing the visual architecture
The reorganization of the visual architecture is a classic case
of adaptation [35]. In its current version, our application of-
fers two kinds of such a reorganization. The first one is trig-
gered by an alarm coming from the anti-collision system of
the UAVs. The event is a message received on a software bus,
that contains the ID of the concerned vehicles as well as the
avoidance strategy they have adopted. In our application, this
message is encapsulated in a TCAS-alert component that rep-
resents the various properties of the alert. When a message
arrives, this component is activated. This activation is bound
to the activation of visual components that display the alert
parameters. Consequently, the user’s current activity is inter-
rupted by the disappearance of all the usual displays (flight
plan, altitude controller, etc.), that are replaced by the alti-
tude of the vehicles involved, their slope and the avoidance
strategy.

This transformation implements a new distribution of author-
ity. It is aimed at improving the awareness of operators and
preventing them from further actions on the flight parameters
that could jeopardize the automatic avoidance strategy. While
this can be described as a typical scenario of adaptation, the
event mappings involved in this process are the same as in
the previous case: a subscription to an event TCAS-alert that
activates a few components.

Another classic case of graphical reorganization is the one
motivated by a change in the dimensions of a container (win-
dow, panel, widget, etc.). The strip panel offers two levels of

Figure 8. Animated strip adaptation, or manual strip resizing

graphical reorganization. The first is a simple size reduction
of the panel itself when the main display becomes too small.
The second level is a complete reorganization of the strips
themselves when the panel becomes too small. This can hap-
pen when the application is run on a smaller display, when the
main window is resized or when the user decides to reduce the
size of the panel. In addition, when the user acts on the panel
she directly takes the control over the animation of a smooth
graphical transformation inspired from [15] (figure 8).

This transformation cannot be described by a simple finite
state machine because of its progressiveness. The mapping
involved here is a combination of dataflow components and
finite state machines. The interesting point is that the same
transformation can be triggered and controlled in two differ-
ent ways, either automatically on window resizing or manu-
ally on direct user action. In other words the same compo-
nent, driven by the same mapping, can be triggered in both a
way that is pure interaction and a way that is a fairly complex
case of adaptation.

Adapting interaction styles
The third kind of coupling proposed by our application con-
cerns the modification of the behavior of some graphical com-
ponents according to the hardware architecture and the avail-
able input devices. The transition from a classic computer
equipped with a mouse and a keyboard to a tablet PC with a
touchscreen raises several known problems. One of them is
the fact that a finger on a touchscreen can hide a too small
target, leaving the user without feedback. The usual solu-
tion [25] that we have adopted consists in the addition of a
deported feedback over small components (figure 9). The
other issue comes from the fact that most touchscreens have
no hovering events [8]. It is thus necessary to transform the
state machine that governs the buttons according to the cur-
rent input device.

Figure 9. Dual behavior of the buttons

Here, we have two kinds of transformation, a graphical one
and a behavioral one, both triggered by appearing/disappear-
ing of an input device. The corresponding adaptation is ob-
tained by coupling these transformations to events such as
“new touchscreen available” and “new mouse available”. For

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

20

simple hardware configurations (one mouse or one touch-
screen), it is enough to group these couplings in a finite state
machine, which is not much different from that of section
“Basic interaction” above. The only significant difference is
the nature of the events that trigger the transitions.

This series examples demonstrate that if some situations can
be distinguished from the user’s point of view, or from the
observer of human-computer interaction, from the program-
mer’s point of view they can be analyzed according to the
same canonical schema. Furthermore, some combinations
can be imagined that defeat all attempts at strict categoriza-
tion of software behavior.

CONCLUSION
In this article, we have addressed support for adaptation under
a new angle: the point of view of programmers of interactive
software. We have untangled the concerns from software ar-
chitecture and those from adaptive systems so as to propose
two independent albeit compatible models.

On one hand we came up with a definition and a design space
for software adaptivity that is grounded in the more general
definition of system adaptivity. On the other hand creating
adaptive software comes through as a straightforward appli-
cation of the reactive programming model. In simple cases,
adaptation can managed with usual software patterns for in-
teractivity. In more complex cases, control patterns are re-
quired but the reactive model still holds.

Not only does this offer some clarifications on software adap-
tivity, it also opens new opportunities for designing control
structures for elaborate adaptive behaviors. This paves the
way to innovative combinations of interaction and adaptation,
and to a better integration of interactive software and intelli-
gent systems.

ACKNOWLEDGEMENTS
This work was funded by the ARTEMIS JU and the French
government through project D3CoS. The authors are grate-
ful to Stéphane Conversy and to the reviewers of a previous
version of this article for their constructive comments.

REFERENCES
1. http://djnn.net.

2. Aubin, J.-P., Bayen, A., Bonneuil, N., and Saint-Pierre,
P. Viability, Control and Games: Regulation of complex
evolutionary systems under uncertainty and viability
constraints. Springer, 2005.

3. Baldauf, M., Dustdar, S., and Rosenberg, F. A survey on
context-aware systems. International Journal of Ad Hoc
and Ubiquitous Computing 2, 4 (2007), 263–277.

4. Bass, L., Pellegrino, R., Reed, S., Seacord, R.,
Sheppard, R., and Szezur, M. R. The Arch model:
Seeheim revisited. Presented at the CHI’91 User
Interface Developers Workshop, Apr. 1991.

5. Ben Mahmoud, M., Larrieu, N., Pirovano, A., and Varet,
A. An adaptive security architecture for future aircraft
communications. In Proceedings of IEEE/AIAA DASC
2010 (2010), 3.E.2–1–3.E.2–16.

6. Bencomo, N., and Blair, G. Using architecture models to
support the generation and operation of
component-based adaptive systems. In Software
Engineering for Self-Adaptive Systems, LNCS 5525.
Springer, 2009.

7. Brisset, P., and Hattenberger, G. Multi-UAV control with
the paparazzi system. In Conference on Human
Operating Unmanned Systems (2008).

8. Buxton, W. A. S. A three-state model of graphical input.
In Proceedings of INTERACT’90, Elsevier (1990).

9. Calvary, G., Serna, A., Kolski, C., and Coutaz, J.
Transport: a fertile ground for the plasticity of user
interfaces. ISTE Ltd and John Wiley & Sons, Inc., 2011,
343–368.

10. Chatty, S., Lemort, A., and Valès, S. Multiple input
support in the IntuiKit framework. In Proceedings of
Tabletop 2007, IEEE computer society (2007).

11. Chatty, S., Sire, S., Vinot, J., Lecoanet, P., Mertz, C.,
and Lemort, A. Revisiting visual interface
programming: Creating GUI tools for designers and
programmers. In Proceedings of UIST’04,
Addison-Wesley (Oct. 2004), 267–276.

12. Chen, H., Finin, T., and Joshi, A. An ontology for
context-aware pervasive computing environments. The
Knowledge Engineering Review 18, 3 (2003), 197–207.

13. Collignon, B., Vanderdonckt, J., and Calvary, G.
Model-driven engineering of multi-target plastic user
interfaces. In Proceedings of ICAS 2008, IEEE
Computer Society Press (2008), 7–14.

14. Dey, A. K., Abowd, G. D., and Salber, D. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications.
Human-Computer Interaction Journal 16, 2 (2001),
97–166.

15. Dragicevic, P., Chatty, S., Thevenin, D., and Vinot, J.-L.
Artistic resizing: A technique for rich scale-sensitive
vector graphics. In Proceedings of UIST’05, ACM
(2005), 201–210.

16. Dragicevic, P., and Fekete, J.-D. The input configurator
toolkit: Towards high input adaptability in interactive
applications. In Proceedings of AVI’04, ACM (2004),
244–247.

17. Gajos, K., and Weld, D. S. Supple: Automatically
generating user interfaces. In Proceedings of IUI’04,
ACM (2004), 93–100.

18. Greenberg, S., and Witten, I. H. Adaptive personalized
interfaces - a question of viability. Behaviour and
Information Technology 4, 1 (1985), 31–45.

19. Gu, T., Pung, H. K., and Zhang, D. Q. A
service-oriented middleware for building context-aware
services. Journal of Network and Computer
Applications 28, 1 (2005), 1–18.

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

21

http://djnn.net

20. Healey, J., and Picard, R. Detecting stress during
real-world driving tasks using physiological sensors.
IEEE Transactions on Intelligent Transportation
Systems 6, 2 (2005), 155–166.

21. Henricksen, K., and Indulska, J. Developing
context-aware pervasive computing applications:
Models and approach. Pervasive and Mobile Computing
2, 1 (2006), 37 – 64.

22. Holland, J. H. Adaptation in natural and artificial
systems. MIT Press, 1975.

23. Innocent, P. Towards self-adaptive interface systems.
International Journal of Man-Machine Studies 16, 3
(1982), 287 – 299.

24. Kiczales, G. Aspect-oriented programming. ACM
Computing Surveys 28, 4es (1996).

25. Martin, B., Isokoski, P., Jayet, F., and Schang, T.
Performance of finger-operated soft keyboard with and
without offset zoom on the pressed key. In Proceedings
of Mobility’09, ACM (2009), 59:1–8.

26. McKinley, P., Sadjadi, S., Kasten, E., and Cheng, B.
H. C. Composing adaptive software. Computer 37, 7
(2004), 56–64.

27. McTear, M. User modelling for adaptive computer
systems: a survey of recent developments. Artificial
Intelligence Review 7, 3-4 (1993), 157–184.

28. Nilsson, E. G., Floch, J., Hallsteinsen, S., and Stav, E.
Model-based user interface adaptation. Computers and
Graphics 30, 5 (2006), 692–701.

29. Norcio, A. F., and Stanley, J. Adaptive human-computer
interfaces: A literature survey and perspective. IEEE
Transactions on Systems, Man, and Cybernetics 19, 2
(1989), 399–408.

30. Papazoglou, M., Traverso, P., Dustdar, S., and Leymann,
F. Service-oriented computing: State of the art and
research challenges. Computer 40, 11 (2007), 38–45.

31. Parasuraman, R. Neuroergonomics: Research and
practice. Theoretical Issues in Ergonomics Science 4,
1-2 (2003), 5–20.

32. Pfaff, G. E., Ed. User Interface Management Systems.
Eurographics Seminars. Springer, 1985.

33. Schmidt, A., Beigl, M., and Gellersen, H.-W. There is
more to context than location. Computers and Graphics
23, 6 (1999), 893 – 901.

34. Solovey, E. T., Girouard, A., Chauncey, K., Hirshfield,
L. M., Sassaroli, A., Zheng, F., Fantini, S., and Jacob,
R. J. Using fNIRS brain sensing in realistic HCI
settings: experiments and guidelines. In Proceedings of
UIST’09, ACM (2009), 157–166.

35. Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel,
N. User interface façades: Towards fully adaptable user
interfaces. In Proceedings of UIST’06, ACM (2006),
309–318.

36. Thevenin, D., and Coutaz, J. Plasticity of user interfaces:
Framework and research agenda. In Proceedings of
INTERACT’99, IOS Press (1999).

37. Wang, H., Prendinger, H., and Igarashi, T.
Communicating emotions in online chat using
physiological sensors and animated text. In CHI ’04
Extended Abstracts, ACM (2004), 1171–1174.

38. Wolpaw, J. R., Birbaumer, N., McFarland, D. J.,
Pfurtschellere, G., and Vaughan, T. M. Brain-computer
interfaces for communication and control. Clinical
Neurophysiology, 113 (2002), 767–791.

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

22

	Introduction
	Previous work
	Adaptation to the user
	Adaptation to the context
	Adaptation in software architecture
	Lessons learned

	Adaptivity, a matter of point of view
	Software adaptivity: from a fuzzy concept...
	... to a relative concept
	Back to the roots
	A new definition

	Programming adaptive software
	Extending an analysis framework
	Where the application programmer's work lie

	Adaptation in a reactive architecture
	Coupling sources and transformations
	Continuous change
	Dynamicity
	Complex algorithms
	Discussion

	Example application
	A ground control station for UAVs
	Application structure
	Event sources
	Basic interaction
	Recomposing the visual architecture
	Adapting interaction styles

	Conclusion
	Acknowledgements
	REFERENCES

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 51.84, 35.87 Width 247.16 Height 44.51 points
 Origin: bottom left

 1
 0
 BL

 5
 CurrentPage
 5

 CurrentAVDoc

 51.8398 35.8718 247.1555 44.5089

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 10
 0
 1

 1

 HistoryList_V1
 qi2base

