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ABSTRACT
Air traffic control systems become more and more congested
due to the increase of demand.One way to reduce this con-
gestion is to modify the flight plans (slot of departure and
route of aircraft) in order to adapt the demand to the avail-
able capacity. This paper addresses the general time-route
assignment problem which can be stated as follows : one
has to find an optimal time of departure and an op-
timal route for all the aircraft involved in the con-
sidered airspace, in order to minimize the associated
congestion and the induced delay . This problem is a
multi-objective NP Hard problem. We perform our research
on the application of multi-objective stochastic methods on
real traffic data without using the flow network concept, but
by simulating the flight of each aircraft. The first results
show that our approach is able to reduce congestion of the
French airspace by a factor 2.

1. INTRODUCTION
Airspace congestion is due to aircraft which are located in

the same area during the same period of time. When a flight
plan is deposit, aircraft has to follow a legal route and has
to be assigned to a slot (time period of the day). Congestion
being related with aircraft located at the same place during
the same period of time, it can be reduced by moving air-
craft in time (slot allocation) or in space (route allocation).
This global assignment is called bi-allocation problem. This
bi-allocation has a price which is related with the amount of
delay produced by the slot allocation and the extra-distance
(and delay) due to the route changes. This bi-allocation
problem is then a multi-objective problem for which conges-
tion has to be reduced with the minimum amount of delay.
Historically, arrival slot allocation is the most current way
to avoid congestion in the terminal area of airport. When
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an airport is plan to undergo congestion due to an exceed
of demand, the involved aircraft are delayed at the depar-
ture airports in order to avoid them to be delayed in the sky
at the terminal area. This principle has been extended for
the en-route sectors (sectors between terminal areas) and
insures that sector demands are always under the capac-
ity. Those operational concepts are based on human oper-
ator (for instance the slot allocation is given by controllers
who are located at the CFMU (Central Flow Management
Unit)) and could be enhanced by the use of optimization
techniques. The first part of this paper describes the pre-
vious related works trying to use mathematical model in
order to optimize the route and slot allocations. The second
part gives the details of the associated mathematical model-
ing and explains why multi-objective genetic algorithms are
needed to solve this problem. The third part describes the
multi-objective genetic algorithm principle and the fourth
part presents how they have been implemented to solve our
problem. Finally the fifth part gives the result produced by
our method for a real instance of the problem (one day of
traffic over the French airspace).

2. PREVIOUS RELATED WORKS
Traffic assignment techniques have been developed in a

way to reduce congestion in transportation networks by spread-
ing the traffic demand in time and space. Historically, those
techniques have been applied to road traffic assignment due
to the strong level of congestion encountered in this domain.
Those techniques try to find an optimal route, or an opti-
mal time of departure, or both, for each individual in a way
to reach a dynamic system-equilibrium. This equilibrium
have been introduced by Wardrop en 1952[14] and is a tar-
get which represents the best assignment of the demand to a
transportation network. The complexity induced by the dy-
namic traffic assignment is strong, especially when route and
time of departure are simultaneously optimized. This prob-
lem is NP HARD [1] and may have several optima [8]. Due
to this complexity, the problem is always partially solved
for simplified instances :[3]. In the same time, specific ap-
proaches have been developed to solve this route-time al-
location problem (space-time network : [15]; variational in-
equality : [11];optimal control : [9];simulation :[4];dynamic
programming (Ground Holding Problem) :[2, 10]). All the
previous approaches solve partially the bi-allocation prob-
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lem and propose solutions for slot allocation only, route al-
location only or both for very small instances of the problem.
Because of the strong complexity associated to the discrete
bi-allocation problem, new mathematical model have been
developed in order to find approximate solutions. Those
models use stochastic optimization techniques and address
large instances of the problem within a reasonable computer
time[6, 12].Those approaches are mono-objective and try to
minimize the congestion in the sector. The present approach
is the multi-objective extension of the work presented in
the paper [12] for which the delay minimization has been
included straightly in the objectives. The following part
will then remind the model used in the paper [12] and will
present how the delay minimization has been included to
build a multi-objective genetic algorithm.

3. MATHEMATICAL MODEL
Congestion in the airspace is due to aircraft which have

close positions in a four dimensional space (one time dimen-
sion and 3 space dimensions). It is then relevant to inves-
tigate ways to separate aircraft in this 4 dimensional space
by changing their slots of departure (time separation) or by
changing their routes (spatial separation) or both. Those
changes must be done in a way that takes into account the
objectives of the airlines :

• the moving of the slot of departure must be done in a
limited domain (otherwise, for instance, some aircraft
will be forced to take off at 2:00AM to reduce the con-
gestion of the day but at this time there will be no
passenger to carry);

• the new slot of departure must take into account the
connections between flights (as a matter of fact some
aircraft have to wait the arrival of some previous flights
to take off (hub phenomenon));

• the possible routes must not generate too large addi-
tional distances.

So, for each flight, a new pair (slot of departure, route) will
be chosen from two discrete and finite sets :

• a set of possible slots of departure (around the original
slot of departure) ;

• a set of routes which do not increase too much the total
path length and are approved by the airline company
the flight belongs to.

After taking off, the aircraft will follow its flight path and
will generate congestion in the different sectors encountered
and also at the arrival airport when arriving. According to
the controllers themselve, the workload induced in a control
sector is a function of the three main following criteria :

• the conflict workload that results from the different
actions of the controller to solve conflicts.

• the coordination workload related to the information
exchanges between a controller and the controllers in
charge of the bordering sectors or between a controller
and the pilots when an aircraft crosses a sector bound-
ary;

• the monitoring aims at checking the different trajecto-
ries of the aircraft in a sector and induces a workload.

As it has been noticed before, slot allocation has a price
which can be measured by the amount of delay produced by
the new flight planning. This objective can be measure by
the number of minutes of delay given to the aircraft. When
an aircraft is assigned to a new route, it has to fly an extra-
distance which produces a delay at the destination airport.
This delay has a higher price compared to the ground hold
delay; one minute of such a delay is equivalent to three min-
utes of delay on the ground [7].

A pair of decision variable (δi, ri) is associated with each
flight in which δi is the advance or the delay from the original
slot of departure and ri is the new route. With this notation,
(0, r0) will be considered as the most preferred choice from
the user point of view. Those two decision variables (δi,ri)
will be chosen from two finite-discrete sets : Δ for the slots
and R for the routes. More precisely the structures of Δ
and R are the following :

Δ = −δm,−δm + 1, ....,−1, 0, 1, ..., δp − 1, δp

R = r0, r1, r2, ..., rmax
(1)

For which δm, δp are respectively the maximum advance
and the maximum delay permitted for a flight. Those lim-
its can be different for each flight. The routes are ordered
according to the induced cost for the associated flight. So
r0 is the best one and rmax the worst.

When a flight has to be connected to some arriving flights,
its slot of departure must be later than the time of arrival of
the previous flights and separated from them by a minimum
amount of time (τ). So, when a slot of departure is changed,
one must first check that this new schedule matches the con-
necting constraint. This will ensure that the random point
generated in the state domain by the stochastic optimization
process will always satisfy the connection constraint. The
first objective of our problem consists in the congestion
minimization. This objective is defined in the following
way : “ one must try to reduce congestion in the most over-
loaded sectors” ; this will spread the congestion over several
sectors. So, we have :

y = min

k=PX
k=1

 
(
X
t∈T

gW t
Sk

)φ × (max
t∈T

gW t
Sk

)ϕ

!
(2)

where :

• Pt∈T
gW t

Sk
: is the sector Sk smoothed1 congestion

surface computed during the day.

• maxt∈T
gW t

Sk
: is the maximum sector smoothed con-

gestion reported during the day.

• P is the number of elementary sectors.

• φ and ϕ are weight factors

The congestion reduction objective of each individual will be
normalized into an objective maximization (y1) by defining
the ratio of the congestion associated with the initial plan-
ning (ref : before the changes) and the distribution given

1This smoothing is done by the mean of a moving time win-
dow which averages the congestion over D

2
slots in the past

and D
2

slots in the future
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by the chromosome (chrom :after applying the changes of
the flight plans) :

y1(chrom) =
y(ref)

y(chrom)
(3)

So, when y1(chrom) > 1, it means that the induced conges-
tion is lower than the reference one.

The second objective which has been considered is the
delay and extra-distance minimization. When an air-
craft i is supposed to take off during the slot tk and receives
a regulation and takes off during the slot tn the induce delay
is given by δs(i) = tn − tk. If the slot allocation is optimized
for the long term schedule, it is possible to produce nega-
tive slot in order to better reduce the congestion, then the
regular time of departure of the aircraft is modified and the
induce “delay” could be given by δs = |tn−tk|. After taking
off, aircraft can use a longer route which induces a longer fly
time. This extra flying time costs about three times more
than a delay on the ground :δr(i) = 3∗ (Tr −T0) where Tr is
flying time of the actual route and T0 the flying time of the
shortest route. So, the total delay cost for a flight i is given
by δ(i) = δs(i) + δr(i). In order to insure the equity2 be-
tween aircraft, the second objective is built by the mean of
a quadratic summation of delays instead on a regular linear
one :

y2 =

NX
i=1

δ(i)2 (4)

This problem is a strong NP HARD multi-objective prob-
lem[12] with non-separable state variables. So, one must
solve a multi-modal multi-objective combinatorial optimiza-
tion problem in a huge space with non-separable decision
variables. Currently, only multi-objective genetic algorithm
stochastic optimization is well adapted to address this kind
of problem.

4. MULTI-OBJECTIVE GENETIC ALGO-
RITHM

Multi-objective optimization can be defined as the prob-
lem of finding a vector of decision variables which satisfies
constraints and optimizes a vector function whose elements
represent the objective functions. These functions represent
a mathematical description of performance criteria which
are usually in conflict with each other. Hence, the term
”optimize” means finding such a solution which would give
the values of all the objective functions acceptable to the de-
signer. Genetic algorithms (GAs) [13] are problem solving
systems based on principles of evolution and heredity. A GA
maintains a population of individuals which represents po-
tential solutions to the problem at hand and is implemented
as some (possibly complex) data structures. Each solution
xi is evaluated to give some measures of fitness in order
to apply the selection process. The genetic operators are
applied to produce new solutions. There are unary transfor-
mations (mutation type), which create new individuals by a

2For the same among of delay, say 150, the lin-
ear objective

P
δ(i) is independent of the distribution

(150+0+0=50+100+0=50+50+50) but the quadratic form,P
δ(i)2 is minimum when the distribution of delays is bal-

anced (1502 = 22500 > 502 + 1002 = 12500 > 502 + 502 +
502 = 7500)

Tournament
Selection

λ

μ

POP(k)

POP(k+1)

Crossover
Pc

Mutation
Pm

Nothing
1−(Pm+Pc)

Figure 1: Classical Genetic Algorithm with Tourna-
ment Selection

small change of a single individual and higher order trans-
formations (crossover type), which create new individuals
by combining parts from several (two or more) individuals.
The structure of our genetic algorithms is summarized on
figure 1. A genetic algorithm works on a full ordered fitness
in order to apply a selection operator. Having several ob-
jective, a map between those criteria and the scalar fitness
has to be found. This mapping is given by the Pareto rank
computation of the non dominated solution ranking algo-
rithm [5]. This algorithm works on a set of points of the
state domain for which the associated objectives are known.
From this initial set, the algorithm extracts the solution
which are not dominated 3 by any other. The first step
consists in creating two subsets related with the domination
property : dominated and non-dominated. To do so, each
element of the original set is compared with the other ones
until it is found one which dominates it, so this element is
put into the dominated subset. If no so, it is put in the
non-dominated subset. The first non-dominated subset is
then call front 1. Afterwards, the process is repeated on the
dominated subset and the front 2 subset is created. This
process ends when the dominated subset is empty. The fig-
ure 2 describes the process and the figure 3 shows the induce
classification in the objective space. Each element of the
original set is then labelled with the associated Pareto front
which produce a classification between individuals in the ob-
jective space. The fitness of an individual is then computed
by using a decreasing mapping of the rank number. So, the
individual from the first rank will have a higher fitness than
those from the rank two and so on. The function that has
been used in our experiment is the following :

Fitness(i) = exp (1 − Rank(i)) (5)

3Suppose two objective vectors �A and �B are given. A The

solution �A is said to dominate the other solution �B, if both
following conditions are true :

1. The solution �A is no worse than �B in all objectives ;

2. The solution �A is strictly better than �B in at least one
objective.

A solution �x∗ is said to be Pareto optimal if there exist no
feasible vector �x which would decrease some criterion with-
out causing a simultaneous increase in at least one other
criterion. Pareto optimum almost always gives multiple so-
lutions called non-inferior or non-dominated solutions. The
set of all such solutions which are non-dominated constitutes
the Pareto front. These solutions are in the boundary of the
design region, or in the locus of the tangent points of the
objective functions.
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Figure 2: Domination ranking algorithm

f  (min)1

f  (min)2

Front 3
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Figure 3: Front ranking

When selection is used straightly on such a fitness, it can
be noticed that individuals converge toward the best Pareto
front but they are not spread on it. In order to avoid this
miss-spreading, a sharing in the objective space has been
included. This sharing is computed for each front and must
insure that the worst individual from the previous front (in
the increasing order) will be always better than the current
one from the shared fitness point of view. The sharing fitness
is then given by :

fitsh(k) = fit(k) −
„

mi − 1

Nk

«
dk.0.99 (6)

where mi =
PNk

j=1 Sh[d(�yi, �yj)] where Nk is the number of
individuals of the Pareto front of rank k and mi is the ob-
jective space sharing function of the individual i which mea-
sures the local level of aggregation around individuals with :

Sh(d) =

(
1 −

“
d

σshare

”α

if d < σshare

0
(7)

where dk = fit(k)−fit(k+1). For our experiments the value
a delay being much larger than the values of the congestion
reduction, a mathematical affinity has been included in the
objective distance measure in order to have a final isotropic
distance metric. This affinity produces a new distance met-
ric given by :

d(�yi, �yj) =

s
(yj1 − yi1)2

n2
c

+
(yj2 − yi2)2

n2
d

(8)

where nc and nd are weight factors. Finally, σshare has
been adjusted at 5% of the maximum observed distance from
the origin in the objective space (after correction with the
affinity).

5. APPLICATION TO AIRSPACE CONGES-
TION
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structure
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Advance Delay
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(b) The stochastic
trend

Figure 4: Special coding and stochastic problem spe-
cific knowledge

To make run this optimization process, a set of flights with
their original slots of departure and their original routes has
to be generated. Each flight is supposed to have also a set of
alternative slots and a set of alternative routes depending of
their own constraints. From those initial data, an air traffic
simulator generates a sample of the trajectories for all the
original routes and for all the alternative routes. Those sim-
ulations are done before the optimization process is started.
Based on those simulation samples, it is possible to compute
the induced congestion for any route/slot combination and
the associated delays also.

5.1 Data Coding
A straight forward coding has been used in the sense that

each chromosome is built as a matrix (see fig. 4–(a)) which
gather together the new slot movings (for the times of depar-
ture) and the new route numbers (for the flight paths). The
initial population is generated by random trials of such ma-
trices. The coding has been improved by including problem
knowledge in the chromosome. To be able to identify the
aircraft involved in the biggest sector congestion, new infor-
mation has been added into the chromosome which indicates
for each gene, the maximum level of sector congestion en-
countered during a flight. When an aircraft is involved in a
congestion peak, and when its time of departure is changed,
the following conclusions can be given (see figure(see fig. 4–
(b)) :

• if the aircraft enters a congestion zone when the asso-
ciated congestion level is increasing, a congestion re-
duction can be expected by advancing the entering of
such aircraft.

• if the aircraft enters a congestion zone when the as-
sociated congestion level is decreasing, a congestion
reduction can be expected by delaying the entering of
such aircraft.

• else pure random move of the time of departure is ap-
plied.

Based on those conclusions, it is possible to compute a stochas-
tic trend for each flight knowing the congestion encountered
during the flight. Those two indicators (the level of encoun-
tered congestion and the stochastic trend) have been added
to the chromosome and will be used by the recombination
operators in order to speed up the evolution process.
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5.2 Crossover and mutation
The successive steps of the crossover operator are the fol-

lowing(see figure 5) :

• two parents are first selected ;

• the summation of the sector congestion levels is com-
puted for each flight in both parents. For a flight n,
total congestion level in the parent p will be noted W p

n ;

• an order relationship is then built with the total con-
gestion level in the following way :

– flight planning n in parent 1 is said to be “much
better” than flight planning n in parent 2 if W 1

n <
δ.W 2

n ; where δ ∈ [0.7, 0.95];

– flight planning n in parent 2 is said to be “much
better” than flight planning n in parent 1 if W 2

n <
δ.W 1

n ;

– flight planning n in parent 1 and in parent 2 are
said to be “equivalent” if none of the previous
relations matches;

• if a flight planning “is much better” in the first parent
than in the second then it is copied in the second ;

• if a flight planning “is much better” in the second par-
ent than in the first then it is copied in the first ;

• if the two flight planning “are equivalent” they are
randomly exchanged with a fixed probability (0.5) ;

In order to create new genes in the chromosomes, a muta-
tion operator has to be developed (see figure 6). This op-
erator affects more often the flights involved in the highest
peaks of congestion, and also determines whether it is “more
suitable” to delay or advance a flight (see fig.4–(b)). So to
compute the stochastic trend over all the sectors, the signed
indicator Tn ∈ [−1, 1] is computed; it is a kind of bias to ad-
vance or delay each flight. Tn is a signed pondered (by the
encountered flight congestion) summation over sectors. The
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Figure 7: Pareto front of the 1th June 1996 (
√

y2 =
f(y1). The vertical axis (y2) has been presented with
a square root in order to have shorter numbers)

sign indicates the sector state during the entry of the flight
(congestion increase or decrease). The mutation operator
works in the following way :

• a threshold congestion level (Wh) is randomly chosen
in [0, Wmax] (where Wmax is the maximum level of
congestion observed for the current generation) ; then
for each flight n in the chromosome the following is
applied :

• if (Wn > Wh) then the associated flight plan is modi-
fied :

– if Tn > rand (1) then a random future slot is
assigned to the flight.

– if Tn < − rand (1) then a random past slot is
assigned to the flight.

– otherwise we randomly affect the flight slot with
no preference for the advance or the delay.

• else the flight planning is unchanged;

6. RESULTS ON A REAL DAY OF TRAFFIC
The computations were based on a whole day of real traf-

fic data including 6381 flights that cross the French airspace.
The number of elementary sectors was 89. We consider also
that congestion of an elementary sector Sk at time period
t is equal to the congestion of the sectors grouping RSK

to whom it belongs (fW t
Sk

= fW t
RSk

) during the same pe-

riod (grouping is applied to address low traffic periods). By
this, we take into account the changes in the critical capac-
ities values during the day. Also, the critical capacity of
the prohibited sectors (as military sectors) is set equal to
0. The tests are performed with the elitism principle and
have been processed on a Pentium Pro 1GMhz computer
and need about 6 hours computing. The parameters for
our algorithm are : the smoothing window D = 5min ; the
population length poplength = 50; dt = 1min so, T = 1440
minutes for the day ; φ = 0.9 and ϕ = 0.1. The number
of generations : 300 ; and the maximum slots moving in
the future or in the past : 45 minutes. The result of the
algorithms is presented on the figure 7. This figure shows
the Pareto front evolution with generations. The first front
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(a) Before GA (b) After GA

Figure 8: Before and after GA

(generation 1) is located on the upper left corner and the
last one is symbolized with dash lines. Each dot is a po-
tential planning of our 6381 flights (slot and route alloca-
tion). At the end of the evolution, the algorithm produce
several solutions with different features from the objective
point of view. For instance the extreme solutions of the
front are (y1,

√
y2) = (4.58, 2640) and (1.24, 2190) and rep-

resent respectively a congestion reduction of 4.58 and 1.24
(compared with the initial planning) and a total amount
of delay of 210886 and 174939 minutes. This means that
if congestion has to be divided by 3.58, it will cost 210886
minutes of delay. It can be also noticed that the sharing
principle works well because the solutions are well spread
on the fronts. A good compromise would be the solution lo-
cated at :3.96, 2442 which induce a real cumulated delay of
195069 minutes. The associated congestion reduction profile
for this solution associated to the most congested sector is
given on figure 8. The vertical axis gives the absolute con-
gestion in the sectors, the second axis (0 − 700) is the time
of the days (2 minutes step) and the last one gives the sec-
tor numbers (only the congested sectors). It can be noticed
that the congestion has been strongly reduced.

7. CONCLUSION
This paper addresses the general problem of the reduction

of the air traffic congestion by optimizing the time of depar-
ture and the route of aircraft. To that end, Multi-Objective
GAs have been used with problem knowledge recombina-
tion operators which really improve the performances of the
algorithm. The model takes into account the connection
constraint and produces realistic solutions which could be
implemented for real traffic. The multi-objective optimiza-
tion gives several realistic solutions which could be analyzed
by experts. Those solutions are targets which reduce the
congestion in a significant way. The next step is to find a
principle which “forces” the demand moving toward those
targets by changing the time of departure and the route of
aircraft. This means that a congestion pricing has to be de-
veloped in order to keep equity between flights which choose
the shorter routes or the best slots and the ones which choose
a longer route or a worse slot (they have to pay less so they
will decide to do such a choice).
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