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Order Statistics in Artificial Evolution

Stephane Puechmorel' and Daniel Delahaye?

! ENAC
7, Avenue Edouard Belin
31055 TOULOUSE CEDEX
? CENA

Abstract. This article deals with the exploitation of statistical infor-
mation from extremes values of an evolutionary algorithm.

One can use the fact that upper order statistics of a sample converge to
known distributions for improving efficiency of selection and crossover
operators.

The work presented in this paper is restricted to criteria defined on real
vector spaces. It relies on an underlying canonical model of genetic algo-
rithm, namely tournament selection and uniform crossover. Nevertheless,
the results obtained so far encourage further investigations.

1 Introduction

Evolutionary computation is recognized to be highly successful in solving real
world optimization problems. Its robustness and ability to locate efficiently
global optima among many local ones allows treatment of cases for which other
methods fail. However, most of these properties rely on stochastic exploration of
the search space and if the complexity of one iteration is low, the overall cost of
the algorithm can be high due to the number of samples needed for locating the
global optimum. Moreover, a compromise must be done between exploring the
search space in order to find new candidate points and exploiting the already
computed ones. Careful balancing is the key of speed-up in evolutionary compu-
tation and is a major area of research. The selection operator is the one which
has greatest influence on this and several procedures has been designed, so that
exploration or exploitation is enforced. There is two main classes of selection
operators:

— Selection based on fitness. Operators belonging to this class use the value of
the criterion to compute selection probabilities. The historical ’spin wheel
selection’ is one of them, like the ’stochastic remainder’ which has better
properties.

— Rank based selection. In this case, only the relative value of the criterion is
used. All operator from this class may be thought as a two stage procedure:
first sort the population, then draw with a given law inside the sorted sample.
The popular tournament selection is rank based, and has a nice behavior on
a broad range of problems. Furthermore, it is possible to tune the selection
pressure by merely changing the size of the competitors pool.



In the following, we will restrict our attention to rank based selection, which
will be the start point of our analysis (it is a quite consensual fact that rank
based operators and specially tournament selection are among the best selection
procedure available for evolutionary computation. Many of our own simulation
agree with that point of view).

Another aspect of evolutionary algorithms is the design of mutation and
crossover operators. Generally, mutation is an operator which avoids being
trapped in local solutions and allows to enlarge the exploration scale. On the
other hand, crossover are frequently used. In the following, we will address the
problem of finding the global optimum of a criterion furnished by a real valued
function f over an hyper-rectangle [, [a;, b;] so that operator will act on real
vectors. Barycentric crossover is by far the most commonly used in this case. It
is easy to see that the effect of crossing two parents is a uniform random trial
on a segment containing them. The so called uniform crossover, that is drawing
a new random linear combination for each component of the parent vectors is
more efficient on many problems. Here again, it is easy to figure out that this
operator samples points from a uniform deviation in the hyper-rectangle of IR™
defined by the parents (the hyper-rectangle defined by two points z and y of R"
is the closed set H(z,y) ={u e $"|Vi=1...n,2; <u; <y,;}).

Gathering the previous notes, the process underlying a whole generation
inside an evolutionary algorithm may be described by a sampling distribution
based on mixed uniform deviates on hyper-rectangle and depending only on the
previous population. This point of view has been adopted in [DMPJ01]. An
evolutionary algorithm may then been seen has a measure valued dynamical
system. Using asymptotic properties of upper order statistics, it is possible to
compute a threshold above which samples may be considered as belonging to a
neighborhood of a maximum, while samples below will be assumed to belong to
an exploratory pool. The sampling distribution obtain at each generation will
then be a mix of a uniform deviate on the complement set of the hyper-rectangle
containing all extreme samples and an exploitation distribution defined on this
hyper-rectangle.

Simulation results on standard test problems will be presented and a compar-
ison done with the standard tournament selection - uniform crossover algorithm.

2 Asymptotic Law of Extremes

In this section we will collect some classical results about limiting distributions of
order statistics. Fundamental references are [Zhi91], [dH81]. Let E be a compact
of R? and let {X1,...Xn} a size n sample of common distribution P on E.
Finally, let f : E — IR a P-measurable function. For a measurable subset U C E,
the essential supremum of f on U, denoted essupfy, is defined as follows:

— Define the function Fy :t € R — P ({u € U|f(u) < t});
— esssup fy = inf{t|Fy(t) = 1}.

The essential supremum is the value that will be searched by a stochastic algo-
rithm : high values taken by f on zero measure subsets will not be taken into



account. With the notations above, let M be the essential supremum of f on F
and F' be Fg. Put
VieeR" -1 - F(M—271);

V' is said to be of regular variation at infinity if it exists a real number o > 0

such that for all ¢ > 0:
Vte)

z—lr-ir-loo Vix) B
The exponent « is called the tail index of the distribution F. When V is
of regular variation, there exists a limiting law for the sample maximum
ny = sup{Xj,... Xy} in the following sense. there exists real sequences
(¢n)new, (dn)nenN such that:

—Q

lim F"(cpx+dy) = Ya(z).

n——+00

With F' the distribution function and v, defined by

exp(—(—z)*) ,z <0,
1/1a(1?){ P 1 .z >0.

One choice of such sequences is d, = M,Vn and ¢, = F~1(1 — n~1) (the
notation F~'* denotes the right limit). Many cumulative density functions are
of regular variation. This is obviously the case if we can find « > 0, 5 > 0) such
that :

Fz)=1-p(M —2)* 4+ o((M — z)%).

It may be noticed that the definition of regular variation can be extended by
relaxing the assumption on the limit expression and imposing only that there
exists an mapping h : IRT — IR™ such that:

. Vi(tr)
AP V@)

= h(t).

However, in this case we have for (t;,t5) € R*?:

o Vitater) Vi)
h(tyts) —mEIEOOW V(z)

= h(t)h(ts).

It is a well known fact that continuous solutions of this functional equation are
precisely of the for t*, so that it turns out that the first form has full generality.
Regular variation is not a stringent assumption. Most cumulative distribution
functions obtained from maximization problems belong to this class. Further-
more, it can be shown [Zhi91] that o = d/2 in the case of a class C? criterion
with maxima inside F and uniform sampling in E. Following [Pic75], we define,
for a threshold values v, the conditional excess distribution function F, as:

()~ F(v)

F.t) = P({u € Blv < f(u) < 1))/P({u € E|f(u) 2 v}) = o0

,t>v.



If F,, has regular variation of tail index «, putting v = M — 0~! and \ < 1, one
has
V() —V(ATL0)

F,(M - X071 = 0 )

so that
lim F,(M - "1 =1-)\".
0—+o0
Except for the cases which can be analytically solved, the value of the tail index
a can be estimated from the sample. Hill [Hil75] designed such a conditional
maximum-likelihood estimate of «, which is easily computable:

k—1 -1
. o lo —i
B = (zkgmm . log(m_k))

where 77 > ... > ny are the order statistics of the sample and k is chosen from
N so that imy_, o0 EN~1 — 1.

3 Tournament Selection Analysis

3.1 Basic Results

Let n, m be integers such that n > m > 1. A (n, m)-tournament selection from
a population (X;);=1..n of size N produces individuals, first by uniformly sam-
pling n individuals from the population (the pool of competitors), then selecting
the m individuals with the highest (or lowest for minimization) criterion value.
Increasing n increases the selection pressure and propension to elitism. Since
pools of competitors are obtained by independent uniform sampling, noting will
change if we apply a permutation ¢ to the population and apply tournament se-
lection to the new population (X,;))i=1,... . Among possible permutations, one
may choose to order population in increasing order. Inside a pool of n individ-
uals, those m with highest criterion value will be simply those with m highest
indices. Formally, once the population has been order, one may describe the
process of selecting m individual out of a pool of n by sampling the m highest
order statistics from a discrete uniform law in the set {1,..., N}, then selecting
individual with matching indices. Join density of the m upper order statistics
Nn—m-+1, - - -, n Of 1 independent uniform random variables is given by [Rei89]:
n—m

Ty

Pt (L1 -y T ) = 10! 1 < ... < Typ -

(n—m)!’

For algorithmic implementation, it is convenient to realize sampling by successive
draws from conditional laws. This can be done with the following procedure:

— Draw the real random variable y,, by sampling a real1 uniform random vari-
able ¢ in the interval [0, 1], then computing v, = t" .



— Assuming y.1 has been obtained, yj is obtained by sampling ¢ and com-
puting yj, = 1t
— When all the y; has been obtained, multiply each by N and round the result

towards the nearest integer to obtain selected indices.

Some useful results may be obtained from this simple computation. First of all,
probability of selecting the maximum of the sample increases nearly linearly
with n in the case of large populations. In fact the probability of selecting the
maximum in a population of size N and a (n, 1)-tournament with the rounding
procedure described above is given by :

1 n
1—(1--—) .

n —1
2N+O(N ).

Second, in the case of a general (n,m)-tournament and if m is large (thus n),
the selection of last individuals is close to uniform sampling (conditionally to the

least index value obtained so far). A survey of properties of tournament selection
may be found in [Bli97].

which can be expanded as

3.2 Limiting Distributions in Tournament Selection

As most evolutionary operators, selection may be viewed not as an operator
evolving individuals but probability distributions [DMPJO01]. The most attractive
feature about that is the ability to use classical convergence proof (fixed point
theorems for example) instead of complicated probabilistic arguments. From that
point of view, an evolutionary algorithm is a measure valued dynamical systems,
which evolves empirical (that is to say sum of point distributions) measures. It
may be noted that a weak law of large numbers exists within this frame, when
the population size go to infinity. Our purpose is to restrict our attention to the
tournament selection operator and to show how to use results on the asymptotic
law of extremes. Let E be a Banach space (which will be IR" in our application),
B(E) its Borel field and let P(FE) the set of probability measures on E. The total
variation distance on P(E) is defined by:

d(p,v) = |lp—vl|= sup |u(A)—v(A).
AEB(E)

In the case of densities (with respect to the Haar measure on E), and confusing
the notation of density and measure, we have the well known equality:

ln=vll =5 [ ) = v(@)lde

Now, let i be a density and let f : ' — IR be the criterion to be maximized
that will be assumed of being twice continuously differentiable. The density of
the best individual on a tournament of size n is given by:

np()p ({ul f(u) < f(2)})"



Let ¢ be the operator on probability measures associated with tournament se-
lection. Taking densities pu, v, we have:

l6(k) / (@) (L))" = (@)L )"

with L) = {u € E|f(u) < f(z)} the sub-level set of f on value f(x). We can
then write :

() -
- / ((2) = V)L™ = VD)L = L)l

<5 [ @)~ vialide + 5 [ v@)nLye)t = nlLyn) e
E E
Now, sincept(Ly(z))" ! <1 and v(Lp,))" ! <1, we get

(L) (L))" )] < (=D)AL )" sl L)™' < (n=1) =]

Finally .
o) — 6()] < "

=2l
so that ¢ is Lipschitz.
From now on we assume that the set of critical points of f is finite and

f reaches its maximum. Let p € P(E); the ¢u-measure of A € B(E) can be
computed:

ov(4) =n /A (@) (L )" e
M
—n / (L) / 1F() (=) dwol, (2)dt
OL:NA

—0o0
where M is the maximum of f and dvolz, is the canonical volume form on the
level set L;. To analyse further the behaviour of this measure, assume first that
1 belongs to the domain of attraction of the weibull law, that is to say there
exists a sequence (a,) such that
Jim Ly, ="t <0,

and assume that f has a unique maximum at x(, and is A-convex. Let A be
limited by a level set at the value ty. Then, for n large enough, the ¢y measure
of A may be approximated by

M
I(4) =n / b1 (M—)° / 1F/ ()|~ (=) dwol., ()dt
to OL:NA

with 6, > 0. Since f is C? and A-convex, there exists K > 0 such that outside
Ly, those inequalities hold:

Al = zoll < If'(@)]| < Kl — ol .



Therefore

1 M _pe _
K 1nft0 e On(M—t) faLmAHz—xOH Lu(z)dvoly, (2)dt < I(A),
_ M ) _
I(A) < A 1nft0 e~ 0n(M—t) Jor,oa Iz = 2ol = u(2)dvoly, (2)dt .

4 Algorithm

Asymptotic distribution of order statistics allows some statistical inference about
the value of the true maximum of a function given a sorted sample. Furthermore,
rank based selection process like tournament naturally uses order statistics since
relative value of individuals are used. To demonstrate the interest of statistical
inference based on extreme values distribution, we have modified a standard
tournament selection based on genetic algorithm so that sample values that may
be considered as extremes will be specially treated.

4.1 Tail Index Estimation

Some runs of the standard GA has been done in order to test for adjustment of
the distribution of population order statistics to a Weibull law.Since empirical
distribution function can be easily computed from the sorted population the
Kolmogorov-Smirnov test was used . For most generations, conformance of the
upper order statistics to the asymptotic law is accepted. However, during some
transition phases this property is lost and upper values no longer obey to a
Weibull law. Hill tail index estimator yields values that have the same order of
magnitude than the theoretical value for a C? criterion, but variation is high
from a generation to another.

Maximum-likelihood estimation of both the tail index and the essential supre-
mum of the criterion has been tried too, but increased computational cost (im-
plicit equation solving) is a major drawback. Furthermore, tail index obtained
by this procedure is close to the Hill estimator.

4.2 Genetic Operators on Extreme Values

It is easy to see that uniform real crossover is in fact uniform sampling in
the hyper-rectangle defined by the two parents. That observation shows that
some speed-up in convergence may be obtained by restricting the use of uniform
crossover to individuals representing extreme values of the population. The only
remaining point is to defined which values may be considered as extreme. The
problem has been addressed in [GO03] but the solution found is computationally
expensive (successive Kolmogorov-Smirnov goodness of fit tests). Following the
same idea, we make adjustment tests but starting from the upper fifth distinct
values of the population the increase by a fixed amount until KS test failed. We
enforce that the number of tests be under some given number.



5 Results

Different test functions have been used in order to compare our method with a
classical GA :

Sphere filz) = Zzzf[ x? —10000 < x; < 10000
Ackley fo(x) = —c1.exp (S1(x)) —exp (S2(x))+ |—10000 < z; < 10000
te +e
S1 =~/ x Zi\il x?

with g, — & >l cos (c3.w;)
c1=20¢c=02c¢c3 =27

Griewank | f3(@)= o Sy — iy cos (%) + 1 [~10000 < @; < 10000

Rosenbrook f4(:c)=Zi]i_01100*(x12 —xi1)?+ (1 — 1) -30 <z; <30

All the functions have to be minimized and have their minimum at 0 unless
the Lenard-Jones function for which only an experimental mininum is used (best
known min=-128.287 for 30 atoms). It must be noticed that both algorithms use
the same selection scheme (stochastic remainder without replacement which is
not the best) and do not use any scaling or sharing operators.

Our goal being to compare the influence of domain chromosome and order
statistics we wanted them to work exactly the same way from the selection point
of view.

The number of evaluations being different at each generation for those two
algorithms, the number of generations has been adapted in order to maintain
the same number of evaluations for all experiments.

Notice that the following curves have been adjusted in order to represent
both results on the same graph. Those adjustments have been done on both
axes. The “x” axis address the number of evaluations for our GA and must be
scaled for the standard GA (x 20). The “y” axis represent the fitness given by
both algorithms. The given results are so different that a logarithm scale has
been used to see both curves.

The parameters used for our GA are the following:

individuals 100 generations 500
probability of crossover 0.4|probability of mutation 0.3

For the Rosenbrook, Lennard-Jones the number of generations has been extended
to 1500 and 2500 respectively. The experiments have been done on a PentiumlII
300 MHz and last 7 minutes for N=200 and 14 minutes for N=2000 (N is the
dimension of the state space). It must be noticed that other experiments has
been done for the same functions with the optimum moved in the state space
(without symmetries) and the given results are quite similar.



Function fi |fe f3 |4
Standard AG - N=200 [10621|11598 [11.98/20.11
Domain AG - N=200 |2.28 |0 0.32 0.96
Standard AG - N=2000[910° |8.710%(20.45|165.8
Domain AG - N=2000 (622 222 |3.38 |1.11

Function f5 N=200|fs N=90 (30 Atoms)
Standard AG[15.610° [-77.21
Domain AG 254 -125.91

Criterium minimization
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Fig. 1. Objective evolution for the Ackley function



Criterium minimization
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6 Conclusion

This paper shows the gain given by the mix of extreme values inference and
artificial evolution. On one side, the main advantage of order statistics for opti-
mization is their abilities to summarize the properties of an entire domain with
a “small” sample. On the other side, the evolution process of GA is able to build
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the most adapted chromosome to environment given by the fitness landscape.
The mixing of both methods really increase the performances of GA by guiding
the exploration and exploitation phases. For all tests, results produced by this
new GA, are better than those given by a classical GA.

Notice that this algorithm may be still improved in the following way:

— use of a better selection scheme;
— the order statistics may control the drawing of individuals;



— pools of samples may be stored to reduce the number of functions of evalu-

ation.
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