N

N
N

HAL

open science

Air traffic conflict resolution by genetic algorithms

Frédéric Medioni, Nicolas Durand, Jean-Marc Alliot

» To cite this version:

Frédéric Medioni, Nicolas Durand, Jean-Marc Alliot. Air traffic conflict resolution by genetic algo-
rithms. AE 1995, Artificial Evolution: European Conference, Sep 1995, Brest, France. pp 370-383,

10.1007/3-540-61108-8_ 51 . hal-01004091

HAL Id: hal-01004091
https://enac.hal.science/hal-01004091
Submitted on 3 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://enac.hal.science/hal-01004091
https://hal.archives-ouvertes.fr
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Algorithms

Frédéric Médioni Nicolas Durand Jean-Marc Alliot
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2. Ecole Nationale Supérieure d’Electronique, d’Electrotechnique, d’Informatique, et
d'Hydraulique de Toulouse

Abstract. The resolution of Air Traffic Control (ATC) conflicts is a
constrained optimization problem: the goal is to propose, for a certain
number, n, of aircraft, which might be in conflict in a near future, tra-
jectories that satisfy the separation constraints between aircraft, and
minimizes the delays due to the conflict’s resolution. The type of conflict
resolution trajectories we use allows to split the problem in two steps:
first we choose, and freeze, what we call a configuration of the problem,
i.e. for each aircraft, the direction in which the aircraft is diverted, and for
each pair of aircraft, which of the two aircraft passes first at the crossing
point of the two aircraft trajectories. We can then compute the optimal
trajectories corresponding to this configuration, by solving a simple lin-
ear optimization problem. Thus we can use an Genetic Algorithm, along
with a linear optimization algorithm, such as the simplez algorithm: the
elements of the population, on which the GA operates, code configu-
rations of the problem, and are evaluated using a linear optimization
program.The advantage of this approach is that we get, as well as the
fitness of an element of the population, the local optima corresponding
to the configuration coded by this element. The GA actually searches for
the global optimum among these local optima. We applied this methods
to conflicts in which up to 6 aircraft are involved, and obtained really
promising results.

1 Introduction

During the first years of civil aviation, the low performances of aircraft, and the
fact that they only flew under good visibility conditions, enabled pilots to ensure
their own safety. Then, aircraft began to fly faster, and needed to be able to fly
even under bad visibility conditions : there was a need for Air Traffic Control.
The constantly increasing number of aircraft flying at the same time in one given



area led to the division of the airspace in several sectors. The goal of Air Traffic
Control is to ensure the aircraft separation, i.e. the fact that the distance be-
tween two aircraft is larger than a given value (the standard separation), while
minimizing delays due to possible alterations of the aircraft routes. A conflict
is said to occur when two or more aircraft are not separated. Ensuring conflicts
resolution while minimizing delays is a complex problem, which is still empir-
ically solved by air traffic controllers. But this way of handling ATC conflicts
will probably not be efficient much longer, because the number of aircraft flying,
and therefore the number of conflicts to solve simultaneously, is increasing. The
automation of ATC would probably allow for a gain in capacity. Several studies
have been made in that direction :

— the SAINTEX project [AL92] works like an ezpert system, and tries to min-
imize delays in some cases.

— Karim Zeghal [Zeg93| presents reactive techniques, which are robust to per-
turbations, but do not lead to optimal trajectories.

— the AERA 3 project [NFC*83], [Nie89b], [Nie89a], only seeks for optimal
trajectories in the case of conflicts involving two aircraft.

— ARC 2000 [K*89], [FMT93], uses priority rules to limit the number of air-
craft involved in a conflict, and so be able of optimizing their trajectories.
There is no search for a global optimum.

— an ENAC and CENA research group has been using Genetic Algorithms
since 1992 to solve en route ATC conflicts, and to find optimal trajectories
for the aircraft (cf [AGS93], [DDAS94]).

We will now present another application a Genetic Algorithm, along with a linear
optimization algorithm, to the resolution of ATC conflicts.

2 Background

2.1 Hypotheses

The trajectories generated must meet several criteria: they must be compatible
with the aircraft performances; they must be simple enough to be easily trans-
mitted to pilots, either by the controllers, or automatically. This means that the
number of changes of heading, altitude, or speed, should be limited.

The hypotheses we will make are actually more restrictive: in the following,
we will assume that the aircraft trajectories are in an horizontal plane. We will
consider only conflicts involving aircraft flying at the same altitude. Furthermore,
we assume that aircraft speeds are constant.

2.2 The optimal collision avoidance trajectory

We will first consider conflicts involving only two aircraft, and alter the trajectory
of a single aircraft, and we will then extend the results of this study to the
resolution of conflicts involving n aircraft, where n > 2.



Let us consider two aircraft as two points on the Euclidean plane, a¢; and as.
At time ¢, their positions are given by the pairs of coordinates (z;(t),y:1(t)) and
(22(t), y2(t)). At time t, aircraft a; and ao are respectively at points Oy and Os,
and are supposed to reach points D; and D, at time ;. Let C be the point on
which the trajectories of the two aircraft would meet if there was no deviation.
The collision avoidance trajectories must then satisfy the following constraint:

Vi€ [to,ts], (21(t) —22(t))® + (12(t) — %2(¢))* > d° (1)

where d is the chosen horizontal standard separation.

We now want to find the optimal collision avoidance trajectory for aircraft
a; (the trajectory of aircraft a; remaining unchanged), i.e. the trajectory which
leads to the smallest increase of length, compared with the trajectory of a; with
no deviation, while satisfying constraint (1). It has been shown (cf [Dur94])
that in this case, the trajectory of a;, in the reference system of aircraft as, is
composed of three phases:

1. a line segment on which constraint (1) is not saturated;
2. an arc of circle on which constraint (1) is saturated;
3. a second line segment on which constraint (1) is not saturated.

Both line segments are tangent to the circle of center C and of radius d (see
figure 1). This type of trajectory is difficult to follow precisely for a pilot. This is
why we will introduce two other collision avoidance modellings, which will lead to
longer but easier trajectories: the turning point and the offset modellings. These
two modellings are presented and compared in [Dur94]. We briefly summarize
them here.

2.3 The turning point collision avoidance

The principle of the turning point modelling is simple: the two line segments
described above are extended until the arc of circle is reduced to a turning point
(cf figure 1).

It has been shown that under some additional hypotheses (ensuring that the
collision avoidance is started soon enough and that the angle between the initial
trajectories of the planes is not too small), the shortest turning point trajectory
with no conflict is no more than 5% longer than the optimal collision avoidance
trajectory (see [Dur94] for details).

2.4 The offset collision avoidance

The offset modelling for collision avoidance (cf figure 2) uses collision avoidance
trajectories which are parallel to the initial trajectories, but moved aside. The
collision avoidance trajectory is then composed of three linear phases:
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Fig. 2. The offset modelling

1. the initial phase: first, the aircraft veers off course with a certain angle (the
instial angle), until it reaches a certain distance from its original trajectory
(this distance is called the offset value). The direction to which the aircraft is
deviated is called the offset direction, the initial angle will always be counted
positive.

2. the aircraft then follows a trajectory which is parallel to its initial trajectory.

3. the aircraft finally gets back onto its initial trajectory, with an angle called
the final angle.

Both the initial angle and the final angle can be fixed. It will be the case in
the following. Furthermore, they will be equal, and their common value will
be noted 3. The duration of the second phase (i.e. the time during which the
aircraft flies along a line segment which is parallel to its original trajectory) has
no influence on the delay due to the collision avoidance. It should however be
made as short as possible: while on its deviated trajectory, an aircraft can get
in an unpredicted conflict with another one, and the aircraft should anyway be
back on its original trajectory when it arrives into a new control sector (about
ATC sectors, see [DASF94al, [DASF94b], [DAAS94], [DDAS94]).

When we limit the collision avoidance trajectories to those with an offset,
the search for the shortest one is a linear optimization problem, with linear
constraints (after some additional simplifications we will describe in the next
section). We will then extend these results to the case of a conflict involving n
aircraft. The turning point collision avoidance modelling leads to a shorter delay
than the offset collision avoidance modelling (¢f [Dur94]). But the technique we
are going to present now uses the fact that the offset modelling leads to linear
constraints.



3 A conflict involving n aircraft

Let us consider n aircraft, flying in one ATC sector, from time ¢, to time ¢¢, which
may get involved in conflicts. Clearly, the n aircraft are globally separated, if and
only if each of them is separated from the others (i.e. if and only if constraint
(1) is satisfied for each pair of aircraft).

We will now assume that ¢, = 0. Let us consider two aircraft, a; and a;. Let
¢i; be the angle between their original trajectories (see figure 3), i, (resp. t! )
the time at which a;’s original trajectory (resp. a;’s) intersects a}s (resp. a;’s),
and v; and v; the norms of the speed vectors of a; and a; (which are assumed to
remain constant on [t,,tf]). Let us consider the orthonormal basis (C;;, E;, E;),
where Cj; is the intersection of the original trajectories of aircraft a; and a;, and
where the x-axis (F;), is directed by a;’s speed vector (see figure 3).

Fig. 3. a conflict involving two aircraft, a single one being deviated.

By writing the coordinates of the aircraft a; and a; in this basis, as a function
of time ¢t € [to,ts], we get the following separation constraint, for t € [t,,%y]:

(v; — ;)22 + (2vw; COS(¢ij)(t§j + tfj) - 2’03-2:‘,::3- - 2vj2t;'fj) t
. .9 . 2
+u?tl;” vt — 2uth ot cos(gy) —d 20 (2)

3

It is a second degree inequation in ¢. Since it is true for a large enough ¢, it is
true for all if and only if its discriminant is negative, which leads to the following
inequation:

vi?v;%sin(¢i;)? (t5; — t2)% 2 d*(vi® + v;” = 2viv; cos(¢y;)) (3)
Which yields in turn the two following conditions, depending on which of the
two aircraft reach C;; (the intersection of the two trajectories) first:

— If aircraft a; passes behind aircraft a;, we get:



(t: = U)v;v, sin(¢i;) = d\/v‘ + v;2 — 2v;v; cos(¢;) (4)

— If aircraft a; passes behind aircraft a;, we get:

(8, — ti;)viv; sin(Bi;) > dy/vi? + v;2 — 2viv; cos(¢i;) (5)

Note: condition (3) is necessary and sufficient for separating two aircraft
on t €] — oo,+00[. We wanted a necessary and sufficient condition for their
separation for t € [t,,ts]. On this time interval, condition (3) is sufficient but
not necessary. The constraints we use are too strict, and we may miss optimal
admissible solutions. This can be limited by introducing a superior bound for
the offset values: if we know that two aircraft will be separated as long as they
are not deviated with an offset value larger to this superior bound, we do not
take into account the separation condition for these two aircraft (cf [Med94]).

The deviations of aircraft a; and a; change the relative positions of their two
trajectories. It changes the intersection time. Let us consider the consequences
of the offset collision avoidance on the separation constraints for aircraft a; and
aj, where 1 <1 < j < n.

The deviation of the two aircraft has two consequences on intersection times
tﬁrj and tf,j. These consequences depend on the offset angle, named 3, on the
offset direction, and on the offset value. If aircraft a; is deviated, with its offset
value being d;, we get:

-~ whatever the offset direction ma.y be, the deviation of the aircraft causes a

dit
delay, and ! ; increases of -*-ff-(i—

— When a;’s offqet direction is such that a;’s new trajectory is outside angle
03 —ﬂ’i@'—i— is added to ¢t ;. If a,’s new trajectory is inside this angle, this

value is subtracted from tz,j
— In the same way, when a;’s offset direction is such that a;’s new trajectory

. . T s di

is outside angle ¢, t; , increases of e e

Thus, by modifying tjj and tfj in conditions (4) and (5), we get a linear
inequation involving d; and d;. Its coefficients depend on the offset direction for
each aircraft, and for each pair of aircraft, on which one passes behind the other.

For instance, if both aircraft are deviated outside, as shown on figure 4, and
if a; passe behind a;, we get:

} 8 !
(t::j 4 di tan(%) & di cot(i;) i .dj =8 = d; tan(£)
v; ;i v; sin(¢ij ) I v;
_dj Cot((b;j) d;

v; v; sin(gi; ) Jviv; sin(éi;) — d\/v"2 +v;%2 = 2v;vjcos¢;; 20 (6)

This condition, as we mentioned before, is a sufficient condition for the sep-
aration of the aircraft, only during the second phase of the offset collision avoid-
ance trajectory (when the aircraft flies along a line segment, parallel to its orig-
inal trajectory). In the following, we will only consider these constraints. The
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Fig. 4. A conflict involving two aircraft, both of them deviated to the outside

initial and final phases of the offset collision avoidance (when the aircraft leaves
its original trajectory to get onto a parallel line segment, and when it gets back
onto its original trajectory) lead to non linear constraints, which we will ig-
nore. We will assume that aircraft are deviated soon enough, and will stay on
their collision avoidance trajectories long enough, to allow us to ignore these
constraints. :

We have so far implicitly assume that the original trajectories of aircraft
were secant. If the trajectories of two aircraft are parallel (the aircraft may face
each other, or one aircraft may fly fast behind a slower one), similar calculi lead
to similar linear conditions. What is now important to know is not whether a;
passes behind a;, or not, but whether a; passes to the left of a;, or to the right.
For the sake of simplicity, we will assume in the remainder of this article that
the trajectories of the planes are secant.

4 A linear, but strongly combinatorial problem

In the previous section, we established that, after some simplifications, the con-
ditions for the separation of each pair of aircraft, lead to a linear constraint.

So we have ﬂ"z—“ll linear constraints. We add to these constraints the following
ones: d; > 0 for 1 > ¢ > n, which leads to a total of % constraints, for a
conflict involving n aircraft (or ﬂ"z—”l constraints if we impose superior bounds
for the offset values d;).

We now want to minimize the global delay, i.e. the sum of the delays of
aircraft, due to the conflict resolution, under these constraints. The aircraft
are delayed only during the initial and final phases of the collision avoidance
trajectories. Their delay is a function of the initial angle 8. For an aircraft a;,
with offset value d; this delay is:

5 d; tan(g)
Uy



The sum of the delays is then, for the n aircraft:

— it 8
S(dryeydn) =23 ditan(s)
1=1

v;

This function is linear in d; for 1 < i < n.

When the directions of the offsets are fixed for all the aircraft, as well as
which aircraft passes behind the other for each pair of aircraft, the offset values
leading to the minimal global delay are the solutions of a linear optimization
problem, with ﬂ%"'ll constraints. This problem can be solved, by an algorithm
such as the simplez algorithm, for instance. But the best we will get can only
be a local optimum. We might even get no solution at all.

The linear constraints’ coefficients depend on the offset direction for each
aircraft and on which aircraft passes behind the other for each pair of aircraft.
So these data have to be fixed, before the linear optimization program is run.

If n aircraft are involved in the conflict to solve, there are PR possible com-
binations for these data. An exhaustive search for a global optimum among the
local ones would imply to solve as many linear optimization problems. When n
grows, this number quickly becomes too large: 32 768 for n = 5, 2 097 152 for
n==0.

Two questions naturally arise:

1. Isn’t there a fast way to establish that a whole class of such data com-
binations lead to a linear problem with no solution, and to ignore all the
combinations belonging to such a class 7

2. Isn’t it possible to group different combinations into one single connected
component onto which could be run an optimization program, even with
non linear constraints ?

Positively answer to one or both questions would have allowed to reduce the
number of combinations to take into account, either by ignoring some of them,
or by grouping several ones. Unfortunately, even in the very simple case of a
conflict involving only two aircraft, answers to these question are very complex
(they mainly depend on the value of the initial angles /3, compared to the angle
between the trajectories of the aircraft). It gets even more complex for three
aircraft, and doesn’t lead to a significant combinatorial simplification anyway

(cf [Med94]).

5 The use of Genetic Algorithms

These combinatorial difficulties lead us to try on this problem a Genetic Algo-
rithm, along with a linear optimization algorithm, such as the “simplex” algo-
rithm.



5.1 The algorithms

To solve the linear problems presented above, we use a program called Ip_solve,
elaborated by the Design Automation Section, Findhoven University of Tech-
nology. It uses a simplez algorithm, such as the one described in [OH68].

The Genetic Algorithm we use is similar to the ones that are described in
[Gol89] and [Mic92]: The elements of the initial population are randomly gen-
erated. Then each element is evaluated, by the computation of its fitness (the
more the element is adapted to the problem to solve the higher, its fitness is).
Then, mutation and crossover are randomly applied to the population elements,
with probabilities P, and P,,. At this point, a new population is created, and
this process is repeated. At each iteration, a new population is obtained. An
iteration is called a generation.

To avoid premature convergence toward a local optimum we use the sharing
technique, described in [GY].

5.2 The encoding

The chromosome of an element of population codes a situation from which the
linear optimization will be started: for each aircraft, the offset direction, and
for each pair of aircraft, which one passes behind the other. This is coded by an
sequence of 1”—("‘2—“2 bits, treated as an integer (or as several integers if n is large):
the n first bits code the offset directions for the n aircraft (1 for a deviation to
the left, O for a deviation to the right), and the ﬂnz—_ll bits, for each of the 1‘4(4“2_—11
pair of aircraft (a;, a;), with ¢ < j, which aircraft passes behind the other (1 if
a; passes behind a;, 0 otherwise).

All the chromosomes built this way do not correspond to solutions of the
collision avoidance problem. They code for linear problems, some of which are
unfeasible (i.e. have no solution), as we've already seen it. But we have no way
of knowing a priori which element of the population codes an unfeasible linear
problems. We will see in the remainder of this article how these elements will be
treated.

The mutation operator is classical: first, an element is chosen in the popu-
lation, with probability P,, ; then, one of the ﬂ’;—“l bits of its chromosome is
randomly chosen, and modified.

The crossover operator is the classical uniform crossover operator. Two ele-
ment are chosen in the population, with probability P., to be the “parents”. The
parents’ bits are randomly distributed between the two “children”. To accelerate
the algorithm’s convergence, we use a technique described by Samir Mahfoud
and David Goldberg in [MG92], which is inspired by the Simulated Annealing
algorithm. Each child is compared to its best parent. If the child’s fitness is
higher, it takes its parent’s place in the population. If the child’s fitness is lower,
it takes its poarent’s place with probability of law e*%, where A is the dif-
ference between the parent’s fitness and the child’s one, T' decreases along the
generations.



5.3 Implementation

Each chromosome codes for each aircraft, the offset direction, and for each pair
of aircraft, which one passes behind the other. We will say that a chromosome
codes for a configuration of the collision avoidance problem. As we have already
stated, for a fixed configuration, the optimal collision avoidance trajectories are
determined by the offset values, which are solutions of a linear optimization
problem. We can thus compute, for each element corresponding to a feasible
linear problem, the n offset values leading to the shortest delay, with a linear
optimization program, and then compute this delay.

It is natural to consider that the shorter this delay is, the better the cor-
responding configuration will be, and to take for the fitness of an element a
decreasing function of the delay given by the linear program applied with the
configuration coded by the element’s chromosome. However, some configurations
might lead to unfeasible linear problems, i.e. problems for which all constraints
cannot be satisfied at the same time. These configurations might be numerous,
and if the fitness of all corresponding elements is set to zero, the genetic algo-
rithm would lose much of its efficiency.

We want to evaluate these elements, to be able to compare one to the other.
A linear optimization problem is unfeasible when all of its constraints cannot be
satisfied simultaneously. We considered that a chromosome coding an unfeasible
problem is better than another one, when more of its constraints can be satisfied
simultaneously. So we evaluated these elements the following way: constraints of
the linear problem are removed one by one and the linear optimization program
is applied after each constraint’s removal until the problem is feasible. The con-
straints to be removed are chosen randomly, to avoid the side effects of possible
symmetries. The chromosome’s fitness is then given by a decreasing function of
the number of constraints that had to be removed to make the problem feasible.

The two different function used for the evaluation of the population’s ele-
ments have to be adjusted in order to ensure that any elements corresponding to
an unfeasible linear problem has a lower fitness than the ones which correspond
to feasible problems.

We actually used a slightly different technique to evaluate the elements corre-
sponding to unfeasible problems, which is better adapted to the collision avoid-
ance problem and more efficient. Instead of removing constraints one by one, we
remove them “aircraft by aircraft”: all the constraints in the coefficient of which
a given offset value appears are removed at a time. The results presented in the
next section were obtained using this technique.

6 Results

It is difficult to evaluate the results we obtained, as it is difficult to obtain, with
another optimization technique a solution known to be optimal we could compare
with our best solution. For a conflict involving up to six aircraft however, it is
still possible to treat all the possible configurations with a linear optimization



program, and to determine which one leads to the global optimum. For a six
aircraft conflict, this takes a little more than three hours (there are 2 097 152
different configurations).

We consider the following situation: all the aircraft fly at the same speed (400
knots), at time £, they are regularly distributed on a semi circle centered in C, of
radius 100 nautical miles, and their initial trajectories gather in C (see figure 5).
Note that the symmetry of this situation, useful for a man to understand it and
make sure there actually is a conflict, do not change the way the machine handles
it.
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Fig. 5. Optimal collision avoidance system for a six aircraft conflict.

There are two equivalent optimal solutions: either the five first aircraft are
deviated to the right, the sixth one goes straight, and for ¢ < 7, a; passes behind
a;, or the first aircraft goes straight, the five others are deviated to the left, and
for ¢ < 3, a; passes behind a,;. We represented this latter solution on figure 5.

Our algorithm found these two optimal solutions. We can compare, for a
conflict involving 6 aircraft the time needed to compute the delays corresponding
to all the configurations and the time required by our algorithm to reach the
optimum.

We ran our program 50 times on the situation presented above. We used
populations of 150 elements, and the number of generation was fixed to 98. 39
of the 50 runs lead to one of the two optimal solutions. The distribution of the
number of generation before one of the two optimal solution was found, over the
50 runs, is shown on table 1. For instance we found an optimal solution in less
than 20 generations 16 times.

The number of generations required to reach an optimal solution is not very
meaningful. We present in table 3 the mean value and the standard deviation,



Number of runs

needed

0-20

Number of generations

20 -40

40 - 60

60 - 80

80 - 98
no optimal solution found
in less than 98 generations

Table 1. distribution of the number of generation before an optimal solution is found

Number of calls to the
Number of runs linear optimization
program needed
2 0-10 000
18 10 000 - 20 000
8 20 000 -30 000
7 30 000 - 40 000
3 40 000 - 50 000
1 50 000 - 55 000
no optimal solution found
11 in less than 98 generations

Table 2. Distribution of the number of calls to the linear optimization program needed
before an optimal solution is found

over the 39 successful runs, of the CPU time, the number of elements evaluations
(Nb of evaluations), and the number of calls to the linear optimization program
(Nb of calls), required to reach an optimal solution. Table 2 shows the distribu-
tion of this number of calls to the linear optimization program. An exhaustive
search would require 2 097 152 calls to this program.

We obtained these results on a HP 720 station.

There are about 250 evaluations at each generation (each of the 150 elements
is evaluated, and some other evaluations are needed by the crossover operator).

For each of the first generations, up to as many as 1500 calls to the linear
optimization program may be required, whereas this number later decreases to
less than 300. Indeed, the evaluation of an element corresponding to an infeasi-
ble linear optimization problem requires several calls to the linear optimization
program (one after each removal of a group of constraints, the constraints being
removed “aircraft by aircraft”), until the problem is feasible. Generation by gen-
eration, the elements of population get globally better, the number of elements



Standard
Mean value|deviation

Time (s) 99.0 51.8
Nb of evaluation 9696 6707
Nb of calls 23193 11818

Table 3. Number of calls to the linear optimization program

that correspond to unfeasible problems decreases, and the mean value of the
number of constraints to remove also decreases.

With the numerical values we have used, the two optimal solutions led to a
9,6 minute global delay. Each time no optimal solution was found (11 runs out of
50), an under-optimal solution was found, leading to a 10,9 minute global delay.

7 Conclusion

Such a technique is useful to solve only highly combinatorial problems. For a
conflict involving three aircraft, only 64 calls to the linear optimization program
are required for an exhaustive search, and only 1 024 are required for a conflict
involving four aircraft. In these cases an exhaustive search will clearly be faster
than the technique presented here.

This technique allows to join the advantages of linear optimization (a quick
and efficient search for a local optimum) to those of genetic algorithms, which
help finding global optima, and often propose several different solutions to one
problem, which is of great interest if we want to help controllers by proposing
possible collision avoidance trajectories among which they will be able to choose,
rather than completely automate air traffic control.

The work we have presented here is a theoretical approach of the resolution
of ATC conflicts. We have made some strong hypotheses (plane trajectories
and conflicts, constant speed, separation conditions for all ¢ and not only for
t € [to,t5], etc). If a practical use of this technique is wanted, these hypotheses’
strength will have to be reduced (¢f [Med94)).

These results may probably be made better, by adjusting the coefficient that
are used by the algorithm (for instance to evaluate the elements). They are
nevertheless already really promising.
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