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Abstract—This paper focuses on the estimation of the aircraft
mass in ground-based applications. Mass is a key parameter
for climb prediction. It is currently not available to ground-
based trajectory predictors because it is considered a competitive
parameter by many airlines. There is hope that the aircraft mass
might become widely available someday, but in the meantime it
is possible to estimate an equivalent mass from the data already
available, assuming the thrust to be known (maximum or reduced
climb thrust for example).

In a previous paper ([1]), two mass estimation methods were
compared using simulated data. In this paper, we compare these
two mass estimation methods using Mode-C radar data. Both
methods estimate the aircraft mass by fitting the modeled energy
rate (i.e. the power of the forces acting on the aircraft) with the
energy rate observed at several points of the past trajectory.
The first method, proposed by Schultz et al. ([2]), dynamically
adjusts the weight parameter so as to fit the energy rate, using an
adaptive sensitivity parameter to weight each observation. The
second method, introduced in one of our previous publications
([1]), estimates the mass by minimizing the quadratic error on
the observed energy rate, taking advantage of the polynomial
expression of the modeled power when using the BADA model.

The actual mass is unavailable in our radar data. However, we
can use the estimated mass to compute a trajectory prediction.
This prediction is then compared to the actual trajectory giving
us some insight on the accuracy of the estimated mass. We have
compared the obtained predictions with the ones obtained using
the BADA reference mass. The root mean square error on the
predicted altitude is reduced by 45 % using the least squares
method. With the adaptive method this error is divided by two.

Keywords: aircraft trajectory prediction, mass estimation,

BADA, energy rate, specific power

INTRODUCTION

With the emergence of new operational concepts ([3], [4])

centered on trajectory-based operations, predicting aircraft

trajectories with great accuracy has become a key issue for

most ground-based applications in Air Traffic Management

and Control (ATM/ATC). Some of the most recent algorithms

applied to ATM/ATC problems require to test a large number

of alternative trajectories. As an example, in [5] an iterative

quasi-Newton method is used to find trajectories for departing

aircraft, minimizing the noise annoyance. Another example

is [6] where Monte Carlo simulations are used to estimate the

risk of conflict between trajectories, in a stochastic environ-

ment. Some of the automated tools currently being developped

for ATC/ATM can detect and solve conflicts between trajec-

tories, using Genetic Algorithms, or Differential Evolution or

Particle Swarm Optimization ([9])

To be efficient, all these methods require a fast and accurate

trajectory prediction, and the capability to test a large number

of “what-if” trajectories. Such requirements forbid the sole

use of on-board trajectory prediction, which is certainly the

most accurate, but is not sufficient for these most promising

applications. Even with the existing (or future) datalink capa-

bilities that could transmit the on-board prediction to ground

systems, there remains a need for a fast and accurate ground-

based prediction.

Most trajectory predictors rely on a point-mass model to

describe the aircraft dynamics. The aircraft is simply modeled

as a point with a mass, and the second Newton’s law is

applied to relate the forces acting on the aircraft to the

inertial acceleration of its center of mass. Such a model is

formulated as a set of differential algebraic equations that

must be integrated over a time interval in order to predict the

successive aircraft positions, knowing the aircraft initial state

(mass, current thrust setting, position, velocity, bank angle,

etc.), atmospheric conditions (wind, temperature), and aircraft

intent (thrust profile, speed profile, route).

Unfortunately, the data that is currently available to ground-

based systems for trajectory prediction purposes is of fairly

poor quality. The speed intent and aircraft mass, being con-

sidered competitive parameters by many airline operators, are

not transmitted to ground systems. The actual thrust setting

of the engines (nominal, reduced, or other, depending on

the throttle’s position) is unknown. There are uncertainties

or noise in the Weather and Radar data. Some studies ([10],

[11], [12]) detail the potential benefits that would be provided

by additional or more accurate input data. In other works,

the aircraft intent is formalized through the definition of an

Aircraft Intent Description Language ([13], [14]) that could

be used in air-ground data links to transmit some useful data

to ground-based applications. There is hope that, in the future,

all the necessary data required to predict aircraft trajectories

will be available. In the meantime, we propose to learn some

of the unknown parameters of the point-mass model – typically

the aircraft mass – from the data that is already available.

Focusing on the aircraft climb, we are interested in this

paper in estimating the aircraft mass, which is one of the key

parameters for climb performance, using the past trajectory

points. This approach, where some unknown parameters are

adjusted by fitting the model to the observed past trajectory,

is not new. The past publications following this path ([15],

[16], [17], [18], [2], [19], [20], [21]) propose several methods,

with different choices for the adjusted parameter (mass, or
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thrust, for example), the modeled variable that is fitted on past

observations (rate of climb, energy rate), and the algorithm

that is applied (stochastic method, adaptive mechanism, least

squares, etc.).

Among the publications dealing with mass estimation, let us

cite [15], where Warren and Ebrahimi propose an equivalent

weight as a workaround to use a point-mass model without

knowing the actual aircraft mass. Nominal thrust and drag pro-

files are assumed. The equivalent mass is found by minimizing

the gap between the computed and observed vertical rates. A

second study ([16]) raises doubts about the reliability of the

vertical rate for this purpose, and suggests to use the energy

rate instead. The proposed method is tested on simulated

trajectories only. In more recent works, Schultz, Thipphavong,

and Erzberger ([2]) introduce an adaptive mechanism where

the modeled mass is adjusted by fitting the modeled energy

rate with the observed energy rate.

This adaptive method provides good results on simulated

traffic and this method has also been successfully applied on

actual radar data ([22], [23]).

In [19], [20], we use a Quasi-Newton algorithm (BFGS)

combined to a mass estimation method to learn the thrust pro-

file minimizing the error between the modeled and observed

energy rate. The thrust law, once learned on historical data,

is used to predict the future trajectory of any new aircraft,

together with the mass estimated on the past trajectory points.

This method has been tested on two months of real data,

showing good results. Concerning the mass estimation method,

we showed that, when using the BADA1 model of the forces

(or a similar model), the aircraft mass can be estimated at

any past point of the trajectory by solving a polynomial

equation, knowing the thrust setting at this point. When using

several points, and assuming a constant mass over the whole

trajectory segment, the mass can be estimated by minimizing

the quadratic error on the energy rate.

In the current paper, we propose to compare the least

squares method and the adaptive method using Mode-C radar

data. A similar study ([1]) was done on synthetic data. This

study has shown that both methods perform well on noisy

data with a slight advantage to the least squares method. In

this paper, we compare these two methods using actual radar

data. However, the actual mass is not available, making the

comparison of the methods more tricky. Thus, we used two

different ways to evaluate the performance. The first way is to

use the estimated mass to predict the trajectory and compare

the accuracy obtained with the two estimated mass. The second

way is to estimate a mass on the future points of the trajectory.

This mass is compared to the mass estimated on the past

points.

The rest of this paper is organized as follows: Section I

describes the forces’ model and the equations governing the

aircraft dynamics. Section II describes the two mass estimation

methods. The data and experimental setup are detailed in sec-

tion III, and the results are shown and discussed in section IV,

before the conclusion.

1BADA: the Eurocontrol Base of Aircraft DAta

I. MODELS AND EQUATIONS

A. Aircraft Dynamics with the Effect of Wind

Ground-based trajectory predictors used for air traffic man-

agement and control purposes usually rely on a simplified

point-mass model to predict aircraft trajectories. In such a

model, all forces acting on the aircraft body are exerted at the

center of mass, making several simplifying approximations.

The inertial moments and angular accelerations of the aircraft

around its center of gravity are not included in the model.

The aircraft is modeled as a point of mass m, subject to the

second Newton’s law that gives us the inertial acceleration
−→ai =

d
−→
Vi

dt
=

−̇→
Vi of the center of mass (the dot above a vector

denotes the time derivative of this vector):

m
−̇→
Vi =

−→
Thr +

−→
D +

−→
L +m−→g (1)

In equation (1), mass is considered a stationary variable2 for

what concerns its impact on the aircraft dynamics. At a larger

scale, though, the fuel burn and the consequent loss of mass

must be taken into account when integrating the equations

to predict the future trajectory. Concerning the forces, it is

assumed that the thrust
−→
Thr exerted by the aircraft engines is

aligned to the airspeed vector
−→
Va, and in the same direction.

The drag
−→
D exerted by the relative wind on the flying airframe

is also aligned to
−→
Va, by definition, and in the opposite

direction. The lift force
−→
L caused by the motion of the

airframe through the air is perpendicular to these vectors and

in the plane of symmetry of the aircraft. The flight is assumed

to be symmetric and there is no aerodynamic sideforce. The

effects of Earth rotation on the aircraft dynamics are neglected

(flat Earth approximation).

The effect of wind
−→
W on the aircraft velocity and accelera-

tion cannot be neglected, however. It can be written as follows:

−→
Vi =

−→
Va +

−→
W (2a)

−→ai =
−̇→
Va +

−̇→
W (2b)

We can project equation (1) onto the airspeed vector
−→
Va

axis. This gives us the following equation, where “.” denotes

the dot product of two vectors:

m
−→
Va.

d
−→
Vi

dt
=
(
−→
Thr +

−→
D +

−→
L +m−→g

)

.
−→
Va (3)

Combining equations (2) and (3), and introducing h the

geodetic height of the aircraft, and ḣ = dh
dt

the inertial

vertical velocity (counted positive upward), equation (3) can be

reformulated as a law governing the total energy rate, denoting

WUp the upward component of the wind:

(
Thr −D

m

)

Va

︸ ︷︷ ︸

specific power

= VaV̇a + gḣ
︸ ︷︷ ︸

specific energy rate

+ (
−̇→
W.

−→
Va − gWUp)

︸ ︷︷ ︸

wind effect

(4)

Expressing the power of the forces acting along the true

airspeed axis, and the total energy (kinetic and potential) of

2We assume in fact that d
dt
(mVi) = mV̇i, and neglect the impact of ṁ

on the acceleration.
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the aircraft gives us an interesting insight to equation (4). We

can see how the aircraft dynamics are governed by the specific

power (i.e. power per unit of mass) and energy rate:

Power = (Thr −D)Va (5a)

Energy =
1

2
mV 2

a +mgh (5b)

Power

m
=

d

dt

(
Energy

m

)

+ (
−̇→
W.

−→
Va − gWUp) (5c)

For historical and technical reasons, the geodetic altitude

h and the inertial vertical velocity ḣ are not much used in

air traffic control operations. Instead, a pressure altitude Hp

(also called geopotential pressure altitude in [24]) is computed

on board the aircraft and transmitted to ground systems by

Mode-C or Mode-S transponders. The relationship between

the pressure altitude and the geodetic altitude is the following,

with T denoting the air temperature, and ∆T is the difference

with the temperature that would occur using the International

Standard Atmosphere (ISA) model:

gḣ = g0

(
T

T −∆T

)
dHp

dt
(6)

Neglecting the vertical component of the wind WUP and

using the relationship between ḣ and Ḣp stated in equation (6),

equation (4) can be re-written as follows, introducing g0 the

gravitational acceleration at mean sea level, and a corrective

factor related to the temperature:

Thr −D

m
Va

︸ ︷︷ ︸

specific power

= Va

dVa

dt
+ g0

(
T

T −∆T

)
dHp

dt
︸ ︷︷ ︸

specific energy rate

+
d
−→
W

dt
.
−→
Va

︸ ︷︷ ︸

wind effect

(7)

Considering an aircraft trajectory picked up from historical

data, the energy rate and wind effect (right-hand part of

equation (7)) can be computed at any point of the observed

trajectory. The specific power (left-hand part) is a function of

the mass m and the thrust and drag forces (Thr and D).

In the rest of this paper, we focus on estimating the mass

for climbing aircraft, using equation (7). In the two methods

presented in section II, the mass is adjusted so that equation (7)

is satisfied. This requires a model of the thrust and drag forces.

B. Modeling the Forces

Using equation (7) to actually compute a trajectory requires

a model of the aerodynamic drag D of the airframe flying

through the air. We also need a computational model of the

engines’ thrust Thr. In our experiments, we used version 3.9

of the Eurocontrol Base of Aircraft Data (see [25]) to compute

these forces.

The BADA model provides different parametric models of

the thrust force Thr for jet, turboprop, and piston engines (see

section 3.7 of [25]). These models are tuned by regression

using manufacturers’ data. They allow us to compute the

standard maximum climb thrust Thrmax climb as a function of Hp,

∆T , and Va:

Thrmax climb = f1(Hp, Va,∆T ) (8)

Given S the wing surface and Φ the bank angle, the equation

for the drag D is the following:

CL =
2mg0

ρV 2
a S cosΦ

(9a)

CD =aD + bDC2
L (9b)

D =
CDρV 2

a S

2
(9c)

The coefficients aD and bD are values depending on the phase

of flight (landing gear up or down, flaps extended, etc.).

With the atmosphere model and the equations of [24], the

air density ρ and temperature T can be expressed as a function

of the temperature differential ∆T . So the drag is as a function

of the aircraft mass m, the true air speed Va, the geopotential

pressure altitude Hp and the temperature differential ∆T .

Moreover, one can notice that the drag D is a polynomial

of the second degree with respect to the mass that has the

following form:

D = f2(Hp, Va,∆T ) +m2
× f3(Hp, Va,∆T,Φ) (10)

C. Fuel consumption

A fuel consumption model is also required when computing

a full trajectory. In climbing phase, the fuel consumption is

modeled by equation (11), where the mass variation dm
dt

is

described as a function of Hp, Va and ∆T .

dm

dt
= −f4(Va, Hp,∆T ) (11)

II. MASS ESTIMATION

The two mass estimation methods compared here rely on the

idea of adjusting the mass m in order to equalize the specific

power and the specific energy rate.

In order to be more specific, let us introduce P and Q,

defined as follows, considering equations (5) and (7) :

P = Power −m×

[
d

dt

(
Energy

m

)

+ (
−̇→
W.

−→
Va)

]

︸ ︷︷ ︸

Q

(12a)

Q = Va

dVa

dt
+ g0

(
T

T −∆T

)
dHp

dt
+

d
−→
W

dt
.
−→
Va (12b)

The quantity Q is the sum of the energy rate and wind

effect. It can be computed at any point of the past trajectory

using the recorded radar track, Weather data, and equations (2).

Considering the forces model given by equations (8) and (9c)

in section I-B, only the mass m is missing to compute the

power. Thus, at each point i of the trajectory, the power is

a function Power(mi) of the mass mi at point i. The total

energy model equation (7) becomes:

Pi(mi)

mi

= 0 ⇔ Poweri(mi) = miQi (13)
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A. The Adaptive Method

The idea of the adaptive method introduced by Schultz et

al. in [2] is to dynamically adjust the weight mg so that the

modeled energy rate (i.e. the power of the forces acting on the

aircraft) fits the observed energy rate. The weight is adjusted

for each new trajectory point and the weight update depends

on a sensitivity parameter which is dynamically adapted,

comparing the energy rate error of the new observation to

the average value over the five last points. Small values of

the sensitivity parameter compensate for the volatility of radar

track data, giving less importance to the outliers (i.e. the points

that differ too much from the average), whereas high values

allow the algorithm to better follow the energy rate variations.

Let us now describe more formally the two parts of this

adaptive algorithm: the weight adjustment and the sensitivity

parameter adaptation. Due to our choice of notations and to the

form of our equation (7), and also because we adjust the mass

m instead of the weight mg, our description of the adaptive

method is slightly different from the one given by Schultz et

al.. Otherwise, the mechanism is exactly the same.

In the dynamic weight adjustment, the power at point i

is modeled using the previous mass mi−1. The current mass

mi is then obtained by applying equation (13), using Qi the

energy rate and wind effect observed at point i:

mi =
Poweri(mi−1)

Qi

. (14)

This equation (14) can be rewritten as follows:

mi = mi−1

(

1−
Pi(mi−1)

Poweri(mi−1)

)−1

. (15)

For the reasons explained at the begining of this section,

a sensitivity parameter βi is introduced in the update term of

equation (15). Finally, the mass is updated using the following

equation:

mi = mi−1

[

1 + βi

(
−Pi(mi−1)

Poweri(mi−1)

)]−1

. (16)

The sensitivity parameter βi is adapted by comparing the

observed variations of the energy rate, given by Pi(mi−1) in

equation (16), to the average variation over the five previous

points. The adaptation rule given in [2] is the following, where

∆Ėi =
Pi(mi−1)
mi−1gVa

(with our notations):

if i > 0 and ∆Ėi > 0.0001

and

∣
∣
∣
∣
∣

∆Ėi −∆Ėavg

∆Ėavg

∣
∣
∣
∣
∣
< 3

then

βi = max(0.205, βi−1 + 0.05)

else

βi = 0.005

(17a)

In equation (17), ∆Ėavg is the average value of ∆Ėi over the

last five previous points. Note that there might be less than

five points when the algorithm “warms up”, at the beginning

of the trajectory.

With this mechanism, if ∆Ėi is repeatedly high in the

same order of magnitude, βi will increase, strengthening the

adaptation. Otherwise, βi has a low value. As a consequence,

an isolated high ∆Ėi does not have a great impact on

the adaptation. This improves the robustness of this mass

estimation process.

The algorithm starts with an initial mass m0 (typically the

reference mass given by the BADA model). The mass variation

at each iteration is bounded: in our experiments, it is limited

to 2%3 of the reference mass. During the whole process,

the estimated mass is bounded within 80% and 120% of the

reference mass.

B. Least Squares Method

In the adaptive method presented in section II-A, the mass

is iteratively updated with each new trajectory point. The

algorithm starts with an initial mass m0 and ends up with

a final mass mn after n iterations.

In the least squares method, the mass is directly estimated

by minimizing the sum of the squared errors over n points.

The total error E being minimized is the following:

E(m1, . . . ,mn) =

n∑

i=1

(
Poweri(mi)

mi

−Qi

)2

(18a)

=

n∑

i=1

(
Pi(mi)

mi

)2

(18b)

The mass variation is ruled by equation (11) (see sec-

tion I-C). With this equation, the mass mi at point i and time

ti can be written as a simple function of the final mass mn,

knowing the values of the state variables (temperature, altitude,

velocity, etc) observed at point i. The mass at point i is the

following, with f4 modeling the fuel burn:

mi =≃ mn + δi (19)

The quantity δi =
n−1∑

k=i

f4(tk+1)+f4(tk)
2 (tk+1 − tk) can be

computed from the available data for every point i of the

observed past trajectory. Therefore, the sum of squares error

E can be rewritten as follows:

P̃i(mn) = Pi(mn + δi) (20a)

E(mn) =

n∑

i=1

(

P̃i(mn)

(mn + δi)

)2

(20b)

The aircraft mass is estimated by minimizing E(mn) given

by equation (20b). This minimization can be done efficiently

when using the model of forces provided by BADA. With this

model, the power (Poweri(mi)) can be expressed as a second-

degree polynomial of the mass mi, using the functions f1, f2,

and f3.

Consequently, P̃i(mn) = Poweri(mn+δi)−(mn+δi)Qi is

a second-degree polynomial of the final mass mn. The overall

error E is a sum of rational terms (i.e. ratios of polynomial

functions). The minimum m∗ of this function satisfies the

3This value differs from the one given in [2], but it gives better results in
our experiments.
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equation E ′(m∗) = dE
dm

(m∗) = 0. When introducing a

common denominator in E ′, the equality E ′(m∗) = 0 becomes

a polynomial equation of degree at most 3(n−1)+4. Solving

such a high degree polynomial might be a difficult task due

to numerical issues [26]. Therefore, instead of minimizing

E we minimize an approximation Eapprox as defined by

equation (21) below:

Favg(mn) =
1

n

n∑

i=1

(mn + δi) (21a)

Eapprox(mn) =

n∑

i=1

(

P̃i(mn)

Favg(mn)

)2

(21b)

With this approximation, the optimal mass m∗ must satisfy

the fourth-degree polynomial equation (22) below, in order to

cancel out E ′
approx.

n∑

i=1

P̃i(m
∗)
[

P̃i

′

(m∗)Favg(m
∗)− P̃i(m

∗)Favg
′(m∗)

]

= 0

(22)

One can solve analytically this fourth-degree polynomial

equation using Ferrari’s method. However, even for a third-

degree polynomial, analytical methods might not be numeri-

cally stable [27]. In our experiments, we used the numerical

method4 provided by the GNU Scientific Library. This nu-

merical method appears to be as fast as the analytical method

in our experiments. Among the four potential solutions given

by this numerical method, we select the solution5 in ]0; +∞[
minimizing Eapprox. The obtained value is the estimated

aircraft mass m∗ at point n.

III. DATA AND EXPERIMENTAL SETUP

A. Data Pre-processing

Recorded radar tracks from Paris Air Traffic Control Center

are used in this study. This raw data is made of one position

report every 1 to 3 seconds, over two months (July 2006, and

January 2007). In addition, the wind and temperature data from

Météo France are available at various isobar altitudes over the

same two months.

The raw Mode C altitude6 has a precision of 100 feet. Raw

trajectories are smoothed using splines. Basic trajectory data

is made of the following fields: aircraft position (X ,Y in a

projection plan, or latitude and longitude in WGS84), ground

velocity vector Vg = (Vx, Vy), smoothed altitude (Hp, in feet

above isobar 1,013.25 hPa), rate of climb or descent
dHp

dt
. The

wind W = (Wx,Wy) and temperature T at every trajectory

point are interpolated from the weather datagrid.

Using the position, velocity and wind data, we compute the

true air speed Va. The successive velocity vectors allow us

to compute the trajectory curvature at each point. The aircraft

4This method of the GNU scientific library uses a balanced-QR reduction
of the companion matrix.

5Actually, under reasonable hypotheses on the observed variables, one can
prove that there is exactly one solution in ]0; +∞[ that cancels out E ′

approx.
6This altitude is directly derived from the air pressure measured by the

aircraft. It is the height in feet above isobar 1013.25 hPa.

bank angle is then derived from true airspeed and the curvature

of the air trajectory.

B. Filtering and Sampling Climb Segments

To compare the performances of the two methods, we focus

on a single aircraft type (Airbus A320). Our dataset comprises

all flights of this type departing from Paris-Orly (LFPO) or

Paris-Charles de Gaulle Airport (LFPG). Needless to say, this

approach can be replicated to other aircraft types and airports.

The trajectories are filtered so as to keep only the climb

segments. An additional 80 seconds is clipped from the be-

ginning and end of each segment, so as to remove climb/cruise

or cruise/climb transitions.

The trajectories are then sampled every 15 seconds. Each

climb segment contains 51 points. The altitude at the 11th

point is always 18,000ft. The first 11 points (past trajectory)

are used to estimate the mass. The remaining points (future

trajectory) are used to compute the error between the predicted

and actual trajectory.

IV. RESULTS

A. Trajectory Prediction using the Estimated Mass

In order to compute a trajectory prediction using the BADA

model, you have to specify a mass and a speed profile. Both

are usually unknown. In our experiment, we want to compare

the impact of the mass estimation methods. Thus, we assume

the speed profile to be known; the prediction is computed

using the observed speed Va
(obs) on the future points of the

trajectory. The trajectory is computed using the speed profile

Va = Va
(obs)(t) and the estimated mass. With this setup,

the predicted speed is equal to the observed speed whereas

the predicted altitude can be very different from the observed

altitude depending on the mass used.

Some statistics on the differences between the predicted

altitude and the observed altitude are presented on the table

III. In addition to the two estimated methods, we have also

computed the trajectory using the reference mass mref given

by the BADA model. The performance obtained with this mass

is the baseline performance. Using the least squares method,

method mean stdev mean abs rmse max abs

mref -83 1479 1168 1482 5495
Adaptive -303 685 582 749 5535

Least Squares -532 653 631 843 6033

Table I: These statistics, in feet, are computed on the differ-

ences between the predicted altitude and the observed altitude(

H
(pred)
p (m̂11)−H

(obs)
p

)

at the time t = 600 s.

the root mean square error on the altitude at a 10 minutes look-

ahead time is reduced by 45% when compared to the baseline.

The adaptive method reduces this root mean square error by

50%. The predicted altitude underestimates the observed one,

especially when using the least square method.

However, the maximum error on the predicted altitude is

higher using estimation methods than using the reference mass.

There are different sources of errors: measurements error,

errors on the model of forces, and error on the thrust setting.



6

●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

50

100

150

0 200 400 600
t [s]

sp
ec

if
ic

 e
n
er

gy
 r

at
e 

[W
/k

g]

●

Poweri(m̂11)

m̂11

Qi

Figure 1: This figure portrays the computed specific energy rate
Poweri(m̂11)

m̂11
and the observed specific energy rate Qi. In this

figure, m̂11 was estimated with the least squares method. The largest error on the predicted altitude at the time t = 600s is

obtained with this trajectory.

We have assumed a max climb thrust setting on past and

future points. This hypothesis might not be true. For instance,

the observed specific energy rate can exhibits large variation

not in compliance with a max climb hypothesis. This case is

illustrated by the figure 1.

B. Distribution of the Estimated Mass

The figure 2 is the distribution of the estimated masses

obtained with the two methods. The masses estimated by

the adaptive method are comprised between 51,200 kg and

76,800 kg. This is due to the mechanism bounding the

mass during the adaptive process. On the contrary, the mass

estimated by the least square method is not bounded. With this

method, some estimated masses are larger than the maximum

mass in the BADA model. Such high estimated mass is not

realistic. If we consider that the BADA model of forces is

exact, this suggests that the hypothesis of a max,climb thrust

is not true for all the past points of these trajectories.

C. Estimation of the “Actual” Mass Knowing the Future

Trajectory

On our radar data set, the actual mass is unavailable. Thus,

we cannot compare the estimated mass m̂11 with the actual

mass. However, we can estimate a mass m̂51,future using the

41 future points of the trajectory. From the mass m̂51,future,

we can compute the mass m̂11,future at the 11th point using

the fuel consumption model with the equations (19). With the

table II, we can observe that the predictions obtained with the

least squares method are more accurate than the ones obtained

with the adaptive method. The adaptive method underestimates

Adaptative

Least Squares
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Figure 2: Distribution of the estimated masses obtained with

the two methods.

the mass needed to make a good prediction. This is probably

due to the fact that in the adaptive method, the last points have

more impact on the estimation process than the first ones.

With the least squares method, the mass is adjusted so that

the sum over all the points of the square difference between
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method mean stdev mean abs rmse max abs

Adaptive 358 569 543 672 3303
Least Squares -63.1 121 105 137 817

Table II: These statistics, in feet, are computed on the differ-

ences between the predicted altitude and the observed altitude(

H
(pred)
p (m̂11,future)−H

(obs)
p

)

at the time t = 600 s.

specific power and observed energy rate is minimized. Let us

note m̂LS
11,future the mass m̂11,future estimated using the least

squares method.

Using the statistics presented in the table III, we can observe

that the mass m̂11 estimated on the past points overestimates

the mass m̂LS
11,future on average by 1.27 % for the adaptive

method and 2.46 % for the Least Squares method. This means

that the specific power increases between the past points

and the future points. This is in accordance with previous

publications ([19], [20]) on the same radar data. In these

publications, a thrust setting profile is learned from historical

data. The learned thrust setting found is increasing with respect

to the altitude. With the table III, we can note that the root

mean square error on the mass is divided by two when

compared to the baseline.

method mean stdev mean abs rmse max abs

mref 0.366 7.56 5.93 7.57 31.7
Adaptive 1.27 3.28 2.71 3.52 21.7

Least Squares 2.46 3.26 2.94 4.08 34.9

Table III: These statistics, in percentage, are computed on the

relative differences between the estimated mass on the past

point and on the future points
m̂11−m̂LS

11,future

m̂LS
11,future

.

D. Assessment of the Prediction Accuracy

In the least squares method, the mass m̂11 is estimated using

the past points by fitting the computed specific power to the

observed specific energy rate. We might gain some information

by looking on how good this fit is. In order to measure this

goodness of fit, with the equation (23) we introduce e[i:j] (m)
the root mean square error on the points i to j of the difference

between the observed specific energy rate and the computed

specific power using the mass m.

e[i:j] (m) =

√
1

j − i+ 1
E [i:j]

approx (m) (23)

This value is computed on each trajectory using its past points.

The figure 3 presents the absolute error on the altitude at

t = 600 s with respect to e[1:11]
(
m̂LS

11

)
. Using these plotted

points we have applied a local linear quantile regression giving

us an estimation of the 95 % quantile. Due to the lack of points

above 40 W/kg, this estimation might not be reliable. Below

40 W/kg, we can note that the 95 % quantile increases with re-

spect to e[1:11]
(
m̂LS

11

)
. With e[1:11]

(
m̂LS

11

)
= 2 W/kg, 95 % of

the error are inferior to 1,123 ft. If e[1:11]
(
m̂LS

11

)
= 32 W/kg,

95 % of the error are inferior to 2,200 ft. Thus, using only the

past points of the trajectory, the error e[1:11]
(
m̂LS

11

)
is a good

indicator on how accurate will be the prediction.
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Figure 3: Relation between e[1:11]
(
m̂LS

11

)
and

the absolute error on the predicted altitude∣
∣
∣H

(pred)
p (m̂LS

11 )−H
(obs)
p

∣
∣
∣ (t = 600 s). The red line is

the estimated 95 % quantile. It is obtained by local linear

quantile regression [28].

CONCLUSION

To conclude, let us summarize our approach and findings,

before giving a few perspectives on future works. In this study,

we compare two mass estimation methods (adaptive and least

squares), using real Mode-C radar data. The adaptive method,

recently introduced by Schultz et al. in [2], dynamically

adjusts the weight to fit the modeled energy rate to the

observation. The least squares method was proposed in [1].

This method minimizes the sum of squared errors on the

energy rate, using several points of the past trajectory. It takes

advantage of the fact that the specific power is a polynomial

function of the mass when modeling the thrust and drag forces

with the BADA model. Although it is model-dependent, we

believe that the least squares method could be extended to

some other point-mass models.

The two mass estimation methods are tested on a set of

actual radar trajectories. For that purpose, the estimated mass

is used to compute a trajectory prediction. The accuracies

of the predicted trajectories obtained are compared between

the two methods. The root mean square error on the altitude

is reduced by at least 45 % when compared to the root

mean square error obtained using the BADA reference mass.

The adaptive method is slightly more accurate than the least

squares method. In order to quantify the error on the estimated

mass, an “actual” mass is estimated using future points. The

root mean square error of the relative difference between

this actual mass and the estimated mass is below 4 %. The

mass estimated by the least square method is obtained by

minimizing the sum of square error between the computed
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specific power and the observed specific energy rate. On this

study, we have seen that this minimized error is a good

indicator on how accurate the prediction is.

From an operational point of view, the resulting improve-

ment in the climb prediction accuracy would certainly benefit

air traffic controllers, especially in the vertical separation task

as shown in [2].

In future works, it could be interesting to compare the

two methods, adaptive and least squares using a thrust setting

profile learned from historical data. Such a profile has been

learned in previous works [19], [20]. With this thrust setting

profile, the mass will be no longer overestimated. The least

squares method is too sensitive to outliers. In order to mitigate

the impact of outliers, we may investigate robust estimators

instead of the least squares estimator. These different masses

might be also used in a Machine Learning approach. They

could be used to learn the estimated “actual” mass for instance.
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