Charlie Vanaret Enac

Nicolas Durand
email: durand@recherche.enac.fr

Jean-Marc Alliot
email: jean-marc.alliot@irit.fr

Wind Mill Pattern Optimization using Evolutionary Algorithms

Keywords: J.6 [Computer-Aided Engineering]: Computer-aided design; D.2.2 [Software Engineering]: Design Tools and Techniques-Computer-aided software engineering wind energy, wind farm layout, optimization

When designing a wind farm layout, we can reduce the number of variables by optimizing a pattern instead of considering the position of each turbine. In this paper we show that when reducing the problem to only two variables defining a grid, we can gain up to 3% of energy output on simple examples of wind farms dealing with many turbines (up to 1000) while dramatically reducing computation time. To achieve these results, we compared both a genetic algorithm and a differential evolution algorithm to previous results from the literature. These preliminary results should be extended to examples involving non-rectangular farm layouts and wind distributions that may require pattern deformation variables in order to increase solution diversity.

INTRODUCTION

In the last 15 years, there has been growing interest and investment in renewable energy. Wind power capacity, for example, has risen from 17GW in 2000 to around 250GW in 2013, and the annual growth rate is currently between 10 and 20%. Consequently, the economic stakes and attempts to discover techniques for efficiently installing wind farms both onshore and offshore have increased dramatically; Gonzalez's recent review [START_REF] González | A review and recent developments in the optimal wind-turbine micro-siting problem[END_REF] lists almost 150 bibliographic references for the optimal wind-turbine micro-sitings problem.

Because turbines create a wake vortex that reduces the wind flow for neighbouring units, packing as many wind turbines as possible in a given area is inefficient. There are different wake vortex models; in this paper, we use the park model described in [START_REF] Neustadter | Method for evaluating wind turbine wake effects on wind farm performance[END_REF] to compute these wake effects. In this model the wake effects created by all turbines j for j = i on a turbine i changes the wind resource available to i along different directions by reducing the scale parameter c of the Weibull distribution estimated for the entire farm, which is also called the freestream wind resource. These effects depend on the relative location of the j turbines relative to i. Thus, for each turbine i, we have a parameter ci: its computation is complex and involves wind velocity deficits V defij that the turbine i experiences due to the influence of other turbines j , for j = i. The simple evaluation of one configuration is thus quadratic regarding the number of turbines. The algorithm we use to compute the wake effect is described in [START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF] and more information regarding the mathematics and the physics behind the calculation of the wake effect are in [START_REF] Kusiak | Design of wind farm layout for maximum wind energy capture[END_REF].

A variety of techniques have already been deployed to optimize wind farm layout but have so far proved relatively inefficient. Genetic algorithms were already used in [START_REF] Mosetti | Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[END_REF], and many other evolutionary or bio inspired techniques have been tested, including cell positioning (see for example [START_REF] Wan | Optimal micro-siting of wind farms by particle swarm optimization[END_REF][START_REF] Wan | Wind farm micro-siting by gaussian particle swarm optimization with local search strategy[END_REF]) or Evolutionary Strategies [START_REF] Kusiak | Design of wind farm layout for maximum wind energy capture[END_REF][START_REF] Andrew Kusiak | Power optimization of wind turbines with data mining and evolutionary computation[END_REF]. One of the most recent approach, [START_REF] Wagner | Optimizing the layout of 1000 wind turbines[END_REF], uses CMA-ES to position 1000 turbines but takes weeks to solve the problem.

Deterministic or greedy algorithms have also been used. [START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF] presents a deterministic algorithm that outperforms [START_REF] Wagner | Optimizing the layout of 1000 wind turbines[END_REF]'s CMA-ES algorithm computation time and seems to be one of the best algorithms known so far.

All these algorithms, whether stochastic or deterministic, try to optimize 2n variable models, were the variables, x and y, define turbine position. Inversely, [START_REF] Neubert | Maximum yield from symmetrical wind farm layouts[END_REF] tries to develop a model based on the optimization of regular patterns that can be described with fewer variables. GL Garrad Hassan GmbH has integrated this algorithm into WindFarmer's commercial software. Yet, even in the authors' own estimations, this approach is deemed inferior to the more global solution of optimizing individual turbine positions.

In this paper, we use [START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF]'s exact models and algorithms 1 to show that using regular patterns optimized by an evolutionary method outperforms current evolutionary and deterministic methods not only for computation times but also for power output in large (over 200 turbines)setups. We argue that when the number of variables becomes too large, the ES gets stuck in local minima whatever the computation time thus rendering methods with less variables more efficient. To prove our point, we employ here a very simple regular pattern model using only two variables. However we also present more elaborate models that could enhance future results.

WIND FARM MODELING

The most general model to optimize a wind farm takes into account the coordinates of each wind mill as variables and tries to optimize energy achievement with this set of positions. For a wind farm dealing with n wind mills, the number of variables is then 2 × n. For large wind farms, dealing with too many variables can become challenging. Reducing the number of variables in order to simplify the problem can thus be an effective workaround. [START_REF] Wang | Study on computational grids in placement of wind turbines using genetic algorithm[END_REF] have already studied mills on grids for simple cases by considering different grid types and then using a genetic algorithm to optimize them. However, they only took into account small (<60 mills) wind farms. [START_REF] Neubert | Maximum yield from symmetrical wind farm layouts[END_REF] further argue that grid patterns can also optimize a wind farm's visual impact and reduce cable and access road costs. Taking for example a 100 turbine farm, they compare a stochastic layout to a regular pattern on a 5 × 5km area, showing that the regular pattern only reduces the performance of the wind farm by 3%.

Even when dealing with the general model, defining the starting point for any optimization process can be challenging. Choosing mill positions randomly is difficult because a minimum distance between mills must be respected. For these reasons, it may be worthwhile, at least initially, to reduce the degrees of freedom in the optimization by only optimizing a simple pattern. This first pattern can then be used to create an initial staring point for another algorithm or to build an initial population for a different, populationbased algorithm.

In this paper, we define a simple wind mill pattern that can be optimized with an evolutionary algorithm in order to optimize the mill positions on a field such as that presented in [START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF]. The mill farm pattern only depends on 2 parameters: α determines the angle of the mills alignment with the longest edge of the field. δ measures the space between two lines of mills on the longest edge of the field. If the number of mills n is fixed, we try to set the mills up as regularly as possible. In figure 1, the length of the green line gives the available distance to regularly position the mills. A mill can be positioned at each edge of the field. If n is the total number of mills, l is the length of the green line and nc the number of times the green line is cut (reaches an edge of the field), then the distance between two mills is close to d = l (n-nc) . When δ and α are chosen, a simple process can position the mills regularly on the field according to the distance d previously calculated.

If the field shape (see figure 1) is different and contains one to the source code of [START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF][START_REF] Wilson | On learning to generate wind farm layouts[END_REF].

OPTIMIZATION TOOL

We do not necessarily need an evolutionary algorithm to solve a problem dealing with only two variables. However, the modeling presented here is deliberately simple and could be made more complex in the future to take into account different scenarios. We could, for example add homothetic deformations of the pattern which would add 3 variables per deformation to the problem: two variables would represent the coordinates of the homothetia center and one variable for its ratio. We could also optimize the number of turbines itself.

The problem would still require fewer variables than the 2 × n of the general approach, but it could potentially involve enough variables to justify using an evolutionary approach. Because we will add these complexities in our future work, we decided to test two Evolutionary Algorithms for the current problem. The first is a Classical Genetic Algorithm described in section 3.1 and the second is a Differential Evolution approach described in section 3.2.

Genetic Algorithm

Genetic algorithms (GA) mimic the process of natural evolution in that they model operations such as inheritance, mutation, selection, and crossover [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF]. Individuals gradually evolve at each generation and the population is partially replaced after crossover (with probability pc) and mutation (with probability pm) operations (Alg. 1). In the following, pc is set to 0.6 and pm to 0.2. N is the population size, and is set to 50. 100 generations are executed for each run.

Algorithm 1 Genetic algorithm

Our implemented genetic algorithm benefits from two classic improvements: sigma truncation scaling and clusterized sharing. The selection process then operates on the image of the cost value under the scaling and sharing functions. Scaling aims to modify the cost values to artificially reduce or amplify gaps between individuals' cost values, thus enhancing the exploration of the search-space. Sharing prevents the gathering of individuals around a prevailing optimum. Clusterized sharing is described in [START_REF] Yin | A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization[END_REF].

Differential Evolution

Differential evolution (DE) is inspired by genetic algorithms (mutation and crossover operations) and geometric research strategies (such as the Nelder-Mead method) [START_REF] Storn | Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces[END_REF]. A single operation performing mutation and crossover is used to combine the positions of existing individuals from the population. If the new position of an individual is an improvement, it is updated in the population, otherwise the new position is simply discarded (Alg. 2).

Algorithm 2 Differential evolution algorithm

Randomly initialize each individual Evaluate each individual while termination criterion is not met do for each individual i = 1, . . . , N in the population do Pick individuals xa, x b and xc from the population Compute new vector y i = (y i,1 , . . . , y i,n) T as follows:

for each dimension j ∈ {1, . . . , n} do Pick random number r j ∈ [0, 1] if j = R or r j < CR then y i,j ⇐ x a,j + F × (x b,jx c,j) else y i,j ⇐ x i,j end if end for Replace x with y if y improves the cost value end for end while Return the best individual(s) of the population xa, x b and xc are chosen at random, all distinct from each other and from xi. R is a random index ∈ {1, . . . , n} ensuring that at least one component of yi differs from this of xi. N is the population size, F ∈ [0, 2] is called the differential weight and CR ∈ [0, 1] is the crossover probability. In the following, N is set to 50, F to 1.5 and CR to 0.0. 100 generations are executed for each run. In order to test our pattern modeling we used results previously published by [START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF] on different wind farm sizes. Several scenarios were set up with varying numbers of turbines, and varying farm sizes. For n = 10, 20, 30, ...100 turbines, a quadratic farm of size 3km × 3km was used, and for n = 200, 300, 400, 500 and 1000 turbines, rectangular farms of 8km × 5km, 10km × 6km, 12km × 6km, 14km × 7km and 20km × 10km were chosen.

NUMERICAL RESULTS

Tables 1 and2 compare results obtained using a Local Search algorithm proposed by Wagner in [START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF] to the patterns we optimized with a Genetic Algorithm(1) and a Differential Evolution Algorithm(2). These results are summarized for the DE algorithm in figures 3 and 4.

For each scenario, we executed 100 runs. In Table [START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF]).

best and mean results obtained with our pattern with the Genetic Algorithm for 100 runs. Column 7 gives the standard deviation of the results. Column 8 gives the mean time necessary for 30 runs, in order to compare the order of magnitudes with Wagner's results. The time comparison itself is not very relevant, because the machines used are probably different, but the difference in magnitude (from 75 hours for n = 1000 with Wagner's method to less than 3 hours with the GA approach) shows the impact of dealing with very few variables. Comparing the number of evaluations is much more relevant. In his paper Wagner, uses 200 000 evaluations whereas the GA we implemented required only 4000 evaluations. The last column gives the gain(+) or loss(-) obtained on the mean value found with the GA compared to Wagner's results.

Results show that for big farms (≥ 200 turbines) using a local search algorithm is less effective than optimizing the farm pattern. Surprisingly, this is also true for small farms (≤ 50 turbines). For mid-size farms the local search algopresented by [START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF] gives better results. This is consistent with results presented by Neubert [START_REF] Neubert | Maximum yield from symmetrical wind farm layouts[END_REF]: for a 100 turbine farm, they obtained a 3% loss by using a regular pattern to optimize turbine positions.

Table 2 gives the same results for the DE approach and the conclusions are similar. This tends to show that the solution found is robust to the choice of the metaheuristic used. In bold we give the best results found for the two approaches.

CONCLUSION

Optimizing wind farm configuration is a challenging for pattern outperforms existing results on configurations involving large number of turbines. The gain obtained for farms of 400 and more turbines exceeds 3%, while reducing computation time by an order of magnitude.

The modeling is deliberately simple, as this paper's goal was to reduce as much as possible the number of variables of the general model while keeping excellent results: by reducing the size of the problem, we can focus on optimizing efficiently a small number of variables, and the loss due to the lack of generality of the model is more than compensated by a "better" optimization of the remaining variables.

There are now many directions for further research. On the one hand, this model can be complexified in order to create more elaborated shapes and to increase the variety of the solutions found. For example, we can imagine adding a number of homothetic deformations in the modeling. On the other hand these results can be used as a starting point for a single point optimization algorithm (such as simulated annealing or steepest descent) or to build a population of starting points for population based metaheuristics.

Figure 1 :Figure 2 :

 12 Figure 1: Wind mill field pattern modeling

Figure 3 :Figure 4 :

 34 Figure 3: Comparison (in %) of DE with TDA-100k on different number of turbines.

 Randomly initialize each individual Evaluate each individual while termination criterion is not met do Apply scaling and sharing to the cost values Replicate best-fit individuals Apply pcN crossovers and pmN mutations Evaluate the cost of newly generated individuals end while Return the best individual(s) of the population

Table 1 :

 1 1, the first columns give the size of the problem, the best and mean energy outputs in kW obtained by Wagner[START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF]. The computation time in minutes for the 30 runs executed by Wagner is given in the fourth column. Columns 5 and 6 give the Comparison of results obtained with TDA and GA on different number of turbines (time is for 30 runs as in[START_REF] Wagner | A fast and effective local search algorithm for optimizing the placement of wind turbines[END_REF]).

	n	TDA 200k	TDA 200k	time	GA	GA	GA	time	α	δ gain(+)
		Max	Mean (min)	Max	Mean	stdev (min)	opt	opt	loss(-)
	10	7.314e+04	7.309e+04	13 7.315e+04 7.314e+04 1.2e+01	6 810.14 0.495180	0.07%
	20	1.449e+05	1.448e+05	30 1.456e+05 1.454e+05 1.5e+02	2 789.71 0.531091	0.41%
	30	2.144e+05	2.135e+05	45 2.164e+05	2.162e+05 3.6e+02	2 746.27 0.038119	1.26%
	40	2.806e+05	2.791e+05	61 2.814e+05	2.808e+05 1.9e+02	3 919.46 0.592378	0.61%
	50	3.418e+05	3.412e+05	77 3.461e+05 3.461e+05 4.5e+00	3 745.07 0.737000	1.44%
	60 4.022e+05 4.011e+05	95	3.988e+05	3.954e+05 4.7e+03	4 692.07 0.745209	-1.42
	70 4.591e+05 4.555e+05	111	4.449e+05	4.443e+05 2.0e+03	5 0.726369	-2.46
	80 5.108e+05 5.090e+05	129	4.925e+05	4.921e+05 9.3e+02	7 499.77 0.674266	-3.32
	90 5.625e+05 5.609e+05	151	5.450e+05	5.419e+05 4.1e+03	7 431.46 0.725736	-3.39
	100 6.113e+05 6.083e+05	170	5.863e+05	5.796e+05 7.2e+03	6 395.30 0.645553	-4.72
	200	1.325e+06	1.323e+06	404 1.359e+06 1.359e+06 1.1e+01	16 727.00 0.688262	2.72%
	300	1.973e+06	1.971e+06	678 2.025e+06	2.024e+06 1.5e+03	26 735.16 0.741059	2.69%
	400	2.586e+06	2.584e+06	1020 2.666e+06 2.665e+06 4.0e+02	39 722.81 0.693413	3.13%
	500	3.251e+06	3.249e+06	1470 3.352e+06 3.352e+06 3.4e+02	53 724.88 0.739885	3.17%
	1000	6.454e+06	6.449e+06	4500 6.669e+06 6.668e+06 7.7e+02	166 709.31 0.694013	3.40%
	n	TDA 200k	TDA 200k	time	DE	DE	DE	time	α	δ gain(+)
		Max	Mean (min)	Max	Mean	stdev (min)	opt	opt	loss(-)
	10	7.314e+04	7.309e+04	13 7.315e+04	7.313e+04 1.2e+01	6 809.93 0.495069	0.05%
	20	1.449e+05	1.448e+05	30 1.456e+05 1.454e+05 1.4e+02	3 790.21 0.530879	0.41%
	30	2.144e+05	2.135e+05	45 2.164e+05 2.164e+05 1.8e+02	3 745.82 0.038130	1.36%
	40	2.806e+05	2.791e+05	61 2.814e+05 2.809e+05 2.2e+02	3 918.81 0.591977	0.64%
	50	3.418e+05	3.412e+05	77 3.461e+05	3.460e+05 3.0e+01	3 744.85 0.736872	1.41%
	60 4.022e+05 4.011e+05	95	3.988e+05	3.984e+05 3.9e+02	4 691.87 0.744932	-0.67%
	70 4.591e+05 4.555e+05	111	4.449e+05	4.446e+05 2.2e+02	4 566.21 0.726147	-2.39%
	80 5.108e+05 5.090e+05	129	4.924e+05	4.919e+05 2.6e+02	5 499.38 0.673879	-3.36%
	90 5.625e+05 5.609e+05	151	5.450e+05	5.441e+05 5.6e+02	6 431.32 0.725975	-3.00%
	100 6.113e+05 6.083e+05	170	5.862e+05	5.819e+05 2.2e+03	6 395.03 0.644272	-4.34%
	200	1.325e+06	1.323e+06	404 1.359e+06 1.359e+06 1.1e+02	14 727.05 0.688215	2.72%
	300	1.973e+06	1.971e+06	678 2.025e+06 2.025e+06 1.2e+03	23 735.13 0.741127	2.74%
	400	2.586e+06	2.584e+06	1020 2.666e+06	2.664e+06 3.3e+02	35 722.76 0.693168	3.10%
	500	3.251e+06	3.249e+06	1470 3.352e+06	3.350e+06 1.9e+03	50 724.75 0.739924	3.11%
	1000	6.454e+06	6.449e+06	4500 6.669e+06 6.668e+06 6.8e+02	162 709.26 0.693959	3.40%

Table 2 :

 2 Comparison of results obtained with TDA and DE on different number of turbines (time is for 30 runs as in