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ABSTRACT

When designing a wind farm layout, we can reduce the num-
ber of variables by optimizing a pattern instead of consider-
ing the position of each turbine. In this paper we show that
when reducing the problem to only two variables defining a
grid, we can gain up to 3% of energy output on simple exam-
ples of wind farms dealing with many turbines (up to 1000)
while dramatically reducing computation time. To achieve
these results, we compared both a genetic algorithm and a
differential evolution algorithm to previous results from the
literature. These preliminary results should be extended to
examples involving non-rectangular farm layouts and wind
distributions that may require pattern deformation variables
in order to increase solution diversity.

Categories and Subject Descriptors

J.6 [Computer-Aided Engineering]: Computer-aided de-
sign; D.2.2 [Software Engineering]: Design Tools and
Techniques— Computer-aided software engineering

Keywords

wind energy, wind farm layout, optimization

1. INTRODUCTION

In the last 15 years, there has been growing interest and
investment in renewable energy. Wind power capacity, for
example, has risen from 17GW in 2000 to around 250GW
in 2013, and the annual growth rate is currently between 10
and 20%. Consequently, the economic stakes and attempts
to discover techniques for efficiently installing wind farms
both onshore and offshore have increased dramatically; Gon-
zalez’s recent review [2] lists almost 150 bibliographic refer-
ences for the optimal wind-turbine micro-sitings problem.

*Ecole Nationale de I’Aviation Civile
fInstitut de Recherche en Informatique de Toulouse

jean-marc.alliot@irit.fr

Because turbines create a wake vortex that reduces the wind
flow for neighbouring units, packing as many wind turbines
as possible in a given area is inefficient. There are different
wake vortex models; in this paper, we use the park model de-
scribed in [7] to compute these wake effects. In this model
the wake effects created by all turbines j for j # ¢ on a
turbine ¢ changes the wind resource available to i along dif-
ferent directions by reducing the scale parameter ¢ of the
Weibull distribution estimated for the entire farm, which is
also called the freestream wind resource. These effects de-
pend on the relative location of the j turbines relative to
i. Thus, for each turbine ¢, we have a parameter c¢;: its
computation is complex and involves wind velocity deficits
Vdef;; that the turbine i experiences due to the influence
of other turbines j , for j # i. The simple evaluation of one
configuration is thus quadratic regarding the number of tur-
bines. The algorithm we use to compute the wake effect is
described in [9] and more information regarding the math-
ematics and the physics behind the calculation of the wake
effect are in [4].

A variety of techniques have already been deployed to op-
timize wind farm layout but have so far proved relatively
inefficient. Genetic algorithms were already used in [5],
and many other evolutionary or bio inspired techniques have
been tested, including cell positioning (see for example [12,
11]) or Evolutionary Strategies [4, 1]. One of the most re-
cent approach, [10], uses CMA-ES to position 1000 turbines
but takes weeks to solve the problem.

Deterministic or greedy algorithms have also been used. [9]
presents a deterministic algorithm that outperforms [10]’s
CMA-ES algorithm computation time and seems to be one
of the best algorithms known so far.

All these algorithms, whether stochastic or deterministic,
try to optimize 2n variable models, were the variables, x and
y, define turbine position. Inversely, [6] tries to develop a
model based on the optimization of regular patterns that can
be described with fewer variables. GL Garrad Hassan GmbH
has integrated this algorithm into WindFarmer’s commercial
software. Yet, even in the authors’ own estimations, this
approach is deemed inferior to the more global solution of
optimizing individual turbine positions.

In this paper, we use [9]’s exact models and algorithms!
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to show that using regular patterns optimized by an evo-
lutionary method outperforms current evolutionary and de-
terministic methods not only for computation times but also
for power output in large (over 200 turbines)setups. We ar-
gue that when the number of variables becomes too large,
the ES gets stuck in local minima whatever the computa-
tion time thus rendering methods with less variables more
efficient. To prove our point, we employ here a very simple
regular pattern model using only two variables. However
we also present more elaborate models that could enhance
future results.

2. WIND FARM MODELING

The most general model to optimize a wind farm takes into
account the coordinates of each wind mill as variables and
tries to optimize energy achievement with this set of posi-
tions. For a wind farm dealing with n wind mills, the num-
ber of variables is then 2 x n. For large wind farms, dealing
with too many variables can become challenging. Reduc-
ing the number of variables in order to simplify the problem
can thus be an effective workaround. [13] have already stud-
ied mills on grids for simple cases by considering different
grid types and then using a genetic algorithm to optimize
them. However, they only took into account small (<60
mills) wind farms. [6] further argue that grid patterns can
also optimize a wind farm’s visual impact and reduce cable
and access road costs. Taking for example a 100 turbine
farm, they compare a stochastic layout to a regular pattern
on a 5 x bkm area, showing that the regular pattern only
reduces the performance of the wind farm by 3%.

Even when dealing with the general model, defining the
starting point for any optimization process can be challeng-
ing. Choosing mill positions randomly is difficult because
a minimum distance between mills must be respected. For
these reasons, it may be worthwhile, at least initially, to
reduce the degrees of freedom in the optimization by only
optimizing a simple pattern. This first pattern can then be
used to create an initial staring point for another algorithm
or to build an initial population for a different, population-
based algorithm.

In this paper, we define a simple wind mill pattern that can
be optimized with an evolutionary algorithm in order to op-
timize the mill positions on a field such as that presented in
[9]. The mill farm pattern only depends on 2 parameters: «
determines the angle of the mills alignment with the longest
edge of the field. § measures the space between two lines of
mills on the longest edge of the field. If the number of mills
n is fixed, we try to set the mills up as regularly as possible.
In figure 1, the length of the green line gives the available
distance to regularly position the mills. A mill can be posi-
tioned at each edge of the field. If n is the total number of
mills, 1 is the length of the green line and n. the number of
times the green line is cut (reaches an edge of the field), then
the distance between two mills is close to d = ﬁ When
6 and « are chosen, a simple process can position the mills
regularly on the field according to the distance d previously
calculated.

If the field shape (see figure 1) is different and contains one

to the source code of [9, 14].
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Figure 1: Wind mill field pattern modeling

or more holes (forbidden zones), we would need to adjust d
in order to take into account the forbidden zones and place
the required number of mills on the field.

Figure 2: Wind mill field pattern modeling

3. OPTIMIZATION TOOL

We do not necessarily need an evolutionary algorithm to
solve a problem dealing with only two variables. However,
the modeling presented here is deliberately simple and could
be made more complex in the future to take into account
different scenarios. We could, for example add homothetic
deformations of the pattern which would add 3 variables per
deformation to the problem: two variables would represent
the coordinates of the homothetia center and one variable
for its ratio. We could also optimize the number of turbines
itself.

The problem would still require fewer variables than the
2 X n of the general approach, but it could potentially in-
volve enough variables to justify using an evolutionary ap-
proach. Because we will add these complexities in our future
work, we decided to test two Evolutionary Algorithms for
the current problem. The first is a Classical Genetic Algo-
rithm described in section 3.1 and the second is a Differential
Evolution approach described in section 3.2.

3.1 Genetic Algorithm

Genetic algorithms (GA) mimic the process of natural evo-
lution in that they model operations such as inheritance,
mutation, selection, and crossover [3]. Individuals gradually
evolve at each generation and the population is partially re-
placed after crossover (with probability p.) and mutation
(with probability p,,) operations (Alg. 1).



Algorithm 1 Genetic algorithm

Randomly initialize each individual
Evaluate each individual
while termination criterion is not met do
Apply scaling and sharing to the cost values
Replicate best-fit individuals
Apply pcN crossovers and py,, N mutations
Evaluate the cost of newly generated individuals
end while
Return the best individual(s) of the population

In the following, p. is set to 0.6 and p,, to 0.2. N is the pop-
ulation size, and is set to 50. 100 generations are executed
for each run.

Our implemented genetic algorithm benefits from two clas-
sic improvements: sigma truncation scaling and clusterized
sharing. The selection process then operates on the image of
the cost value under the scaling and sharing functions. Scal-
ing aims to modify the cost values to artificially reduce or
amplify gaps between individuals’ cost values, thus enhanc-
ing the exploration of the search-space. Sharing prevents
the gathering of individuals around a prevailing optimum.
Clusterized sharing is described in [15].

3.2 Differential Evolution

Differential evolution (DE) is inspired by genetic algorithms
(mutation and crossover operations) and geometric research
strategies (such as the Nelder-Mead method) [8]. A single
operation performing mutation and crossover is used to com-
bine the positions of existing individuals from the popula-
tion. If the new position of an individual is an improvement,
it is updated in the population, otherwise the new position
is simply discarded (Alg. 2).

Algorithm 2 Differential evolution algorithm

Randomly initialize each individual
Evaluate each individual
while termination criterion is not met do
for each individual i = 1,..., N in the population do
Pick individuals x4, X; and x. from the population

Compute new vector y; = (Yi,1,---,%in)" as follows:
for each dimension j € {1,...,n} do
Pick random number r; € [0,1]
if j = Ror r; < CR then
Yi,j <= Ta,j + F x (xb,j — (EC,J')
else
Yi,j < Tij
end if
end for
Replace x with y if y improves the cost value
end for
end while

Return the best individual(s) of the population

Xa, Xp and x. are chosen at random, all distinct from each
other and from x;. R is a random index € {1,...,n} en-
suring that at least one component of y; differs from this of
x;. N is the population size, F' € [0, 2] is called the differen-
tial weight and CR € [0, 1] is the crossover probability. In
the following, N is set to 50, F' to 1.5 and C'R to 0.0. 100
generations are executed for each run.

4. NUMERICAL RESULTS
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Figure 3: Comparison (in %) of DE with TDA-100k
on different number of turbines.
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Figure 4: TDA-100k (blue) and DE (red) execution
time on different number of turbines. Scale is loga-
rithmic in log,,(time).

In order to test our pattern modeling we used results previ-
ously published by [9] on different wind farm sizes. Sev-
eral scenarios were set up with varying numbers of tur-
bines, and varying farm sizes. For n = 10, 20, 30, ...100 tur-
bines, a quadratic farm of size 3km x 3km was used, and for
n = 200, 300, 400, 500 and 1000 turbines, rectangular farms
of 8km x 5km, 10km x 6km, 12km x 6km, 14km x 7Tkm and
20km x 10km were chosen.

Tables 1 and 2 compare results obtained using a Local Search
algorithm proposed by Wagner in [9] to the patterns we
optimized with a Genetic Algorithm(1) and a Differential
Evolution Algorithm(2). These results are summarized for
the DE algorithm in figures 3 and 4.

For each scenario, we executed 100 runs. In Table 1, the
first columns give the size of the problem, the best and mean
energy outputs in kW obtained by Wagner [9]. The compu-
tation time in minutes for the 30 runs executed by Wagner
is given in the fourth column. Columns 5 and 6 give the

— n
1000

L 1 nl
1000

b
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n TDA 200k TDA 200k | time GA GA GA | time o 0 | gain(+)
Max Mean | (min) Max Mean stdev | (min) opt opt loss(-)

10 7.314e+04 7.309e+04 13 | 7.315e+4-04 | 7.314e+404 | 1.2¢+01 6 | 810.14 | 0.495180 0.07%
20 1.449e+-05 1.448e+05 30 | 1.456e+4-05 | 1.454e4-05 | 1.5e4-02 2 | 789.71 | 0.531091 0.41%
30 2.144e+05 2.135e+05 45 | 2.164e4-05 2.162e+05 | 3.6e+02 2 | 746.27 | 0.038119 1.26%
40 2.806e+05 2.791e+05 61 | 2.814e+405 2.808e+05 | 1.9e+02 3 | 919.46 | 0.592378 0.61%
50 3.418e+05 3.412e4-05 77 | 3.461e405 | 3.461e+05 | 4.5e+00 3 | 745.07 | 0.737000 1.44%
60 | 4.022e+05 | 4.011e+05 95 3.988e+05 3.954e+05 | 4.7e+03 4 | 692.07 | 0.745209 -1.42
70 | 4.591e+05 | 4.555e+4-05 111 4.449e4-05 4.443e+05 | 2.0e+03 5 | 566.51 | 0.726369 -2.46
80 | 5.108e4-05 | 5.090e4-05 129 4.925e4-05 4.921e+05 | 9.3e+02 7 | 499.77 | 0.674266 -3.32
90 | 5.625e+05 | 5.609e+05 151 5.450e+05 5.419e+05 | 4.1e+03 7 | 431.46 | 0.725736 -3.39
100 | 6.113e4-05 | 6.083e4-05 170 5.863e+05 5.796e+05 | 7.2e+03 6 | 395.30 | 0.645553 -4.72
200 1.325e+06 1.323e+06 404 | 1.359e+4-06 | 1.359e+06 | 1.1e+01 16 | 727.00 | 0.688262 2.72%
300 1.973e+06 1.971e+06 678 | 2.025e4-06 2.024e+06 | 1.5e+03 26 | 735.16 | 0.741059 2.69%
400 2.586e+06 2.584e+06 1020 | 2.666e4-06 | 2.665e+06 | 4.0e+02 39 | 722.81 | 0.693413 3.13%
500 3.251e+-06 3.249e+-06 1470 | 3.352e4-06 | 3.352e+06 | 3.4e+02 53 | 724.88 | 0.739885 3.17%
1000 6.454e+06 6.449e+-06 4500 | 6.669e+06 | 6.668e+406 | 7.7e402 166 | 709.31 | 0.694013 3.40%

Table 1: Comparison of results obtained with TDA and GA on different number of turbines (time is for 30

runs as in [9]).

n TDA 200k TDA 200k | time DE DE DE | time «a o | gain(+)
Max Mean | (min) Max Mean stdev | (min) opt opt loss(-)

10 7.314e+04 7.309e+-04 13 | 7.315e+404 7.313e+04 | 1.2e401 6 | 809.93 | 0.495069 | 0.05%
20 1.449e4-05 1.448e+05 30 | 1.456e+05 | 1.454e+05 | 1.4e402 3| 790.21 | 0.530879 | 0.41%
30 2.144e+-05 2.135e+05 45 | 2.164e4-05 | 2.164e+4-05 | 1.8e+02 3 | 745.82 | 0.038130 1.36%
40 2.806e+05 2.791e+05 61 | 2.814e+405 | 2.809e+05 | 2.2e4-02 3 | 918.81 | 0.591977 0.64%
50 3.418e+05 3.412e+-05 77 | 3.461e+05 3.460e+4-05 | 3.0e+01 3 | 744.85 | 0.736872 1.41%
60 | 4.022e+05 | 4.011e+05 95 3.988e-+05 3.984e+05 | 3.9e+02 4 | 691.87 | 0.744932 -0.67%
70 | 4.591e4-05 | 4.555e4-05 111 4.449e4-05 4.446e+05 | 2.2e+02 4 | 566.21 | 0.726147 | -2.39%
80 | 5.108e4-05 | 5.090e4-05 129 4.924e4-05 4.919e+05 | 2.6e+02 5 | 499.38 | 0.673879 -3.36%
90 | 5.625e+05 | 5.609e+05 151 5.450e+05 5.441e+05 | 5.6e+02 6 | 431.32 | 0.725975 -3.00%
100 | 6.113e+4-05 | 6.083e4-05 170 5.862e+05 5.819e+05 | 2.2e+03 6 | 395.03 | 0.644272 -4.34%
200 1.325e+4-06 1.323e+06 404 | 1.359e4-06 | 1.359e+06 | 1.1e+02 14 | 727.05 | 0.688215 2.72%
300 1.973e+06 1.971e+06 678 | 2.025e4-06 | 2.025e+06 | 1.2¢+03 23 | 735.13 | 0.741127 | 2.74%
400 2.586e+06 2.584e+06 1020 | 2.666e+-06 2.664e+06 | 3.3e+02 35 | 722.76 | 0.693168 | 3.10%
500 3.251e+-06 3.249e+-06 1470 | 3.352e4-06 3.350e+06 | 1.9e+03 50 | 724.75 | 0.739924 | 3.11%
1000 6.454e4-06 6.449e+-06 4500 | 6.669e+06 | 6.668e+406 | 6.8e+02 162 | 709.26 | 0.693959 3.40%

Table 2: Comparison of results obtained with TDA and DE on different number of turbines (time is for 30

runs as in [9]).




best and mean results obtained with our pattern with the
Genetic Algorithm for 100 runs. Column 7 gives the stan-
dard deviation of the results. Column 8 gives the mean time
necessary for 30 runs, in order to compare the order of mag-
nitudes with Wagner’s results. The time comparison itself is
not very relevant, because the machines used are probably
different, but the difference in magnitude (from 75 hours
for n = 1000 with Wagner’s method to less than 3 hours
with the GA approach) shows the impact of dealing with
very few variables. Comparing the number of evaluations is
much more relevant. In his paper Wagner, uses 200 000 eval-
uations whereas the GA we implemented required only 4000
evaluations. The last column gives the gain(+) or loss(-)
obtained on the mean value found with the GA compared
to Wagner’s results.

Results show that for big farms (> 200 turbines) using a
local search algorithm is less effective than optimizing the
farm pattern. Surprisingly, this is also true for small farms
(< 50 turbines). For mid-size farms the local search algo-
rithm presented by [9] gives better results. This is consis-
tent with results presented by Neubert [6]: for a 100 turbine
farm, they obtained a 3% loss by using a regular pattern to
optimize turbine positions.

Table 2 gives the same results for the DE approach and the
conclusions are similar. This tends to show that the solution
found is robust to the choice of the metaheuristic used. In
bold we give the best results found for the two approaches.

5. CONCLUSION

Optimizing wind farm configuration is a challenging issue
for which problem modeling is critical. In this paper, we
have shown that optimizing a simple pattern outperforms
existing results on configurations involving a large number
of turbines. The gain obtained for farms of 400 and more
turbines exceeds 3%, while reducing computation time by
an order of magnitude.

The modeling is deliberately simple, as this paper’s goal was
to reduce as much as possible the number of variables of the
general model while keeping excellent results: by reducing
the size of the problem, we can focus on optimizing efficiently
a small number of variables, and the loss due to the lack
of generality of the model is more than compensated by a
“better” optimization of the remaining variables.

There are now many directions for further research. On
the one hand, this model can be complexified in order to
create more elaborated shapes and to increase the variety
of the solutions found. For example, we can imagine adding
a number of homothetic deformations in the modeling. On
the other hand these results can be used as a starting point
for a single point optimization algorithm (such as simulated
annealing or steepest descent) or to build a population of
starting points for population based metaheuristics.
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