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ABSTRACT

We provide the global optimization community with new
optimality proofs for 6 deceptive benchmark functions (5
bound-constrained functions and one nonlinearly constrained
problem). These highly multimodal nonlinear test problems
are among the most challenging benchmark functions for
global optimization solvers; some have not been solved even
with approximate methods.

The global optima that we report have been numerically
certified using Charibde (Vanaret et al., 2013), a hybrid
algorithm that combines an Evolutionary Algorithm and
interval-based methods. While metaheuristics generally solve
large problems and provide sufficiently good solutions with
limited computation capacity, exact methods are deemed
unsuitable for difficult multimodal optimization problems.
The achievement of new optimality results by Charibde demon-
strates that reconciling stochastic algorithms and numerical
analysis methods is a step forward into handling problems
that were up to now considered unsolvable.

We also provide a comparison with state-of-the-art solvers
based on mathematical programming methods and population-
based metaheuristics, and show that Charibde, in addition
to being reliable, is highly competitive with the best solvers
on the given test functions.

Categories and Subject Descriptors

G.4 [Mathematical Software]: Algorithm design and anal-
ysis; G.1.6 [Numerical Analysis]: Optimization—global
optimization, nonlinear programming

General Terms

Algorithms, Performance, Theory

Keywords

Nonlinear global optimization, numerical certification of op-
timality, evolutionary algorithms, interval methods

1. INTRODUCTION

Numerical solvers usually embed advanced methods to
tackle nonlinear optimization problems. Stochastic meth-
ods, in particular evolutionary algorithms, handle large prob-
lems and provide sufficiently good solutions with limited
computation capacity, but may easily get trapped in local
minima. On the other hand, local and global (exhaustive)
deterministic methods may guarantee local or global opti-
mality, but are often limited by the size or the nonlinearity
of the problems and may suffer from numerical approxima-
tions.

In [20], a new reliable hybrid solver named Charibde has
been introduced to reconcile stochastic methods and nu-
merical analysis methods. An evolutionary algorithm and
an interval-based algorithm are combined in a cooperative
framework: the two methods run in parallel and cooperate
by exchanging the best known upper bound of the global
minimum and the best current solution. The contribution
of this paper is the achievement of new certified optimality
results by Charibde for 6 highly multimodal nonlinear test
functions, for which no or few results were available. We
also compare Charibde with state-of-the art solvers includ-
ing mathematical programming methods, population-based
metaheuristics and spatial branch and bound. Charibde
proves to be highly competitive with the best solvers on
the given test functions, while being fully reliable.

Charibde is presented in section 2. It is evaluated on
a benchmark of difficult test functions given in section 3.
State-of-the-art solvers to which Charibde is compared are
described in section 4. Numerical results, including proofs
of optimality, values of global minima and corresponding
solutions, are provided and discussed in section 5.



2. CHARIBDE: A RIGOROUS SOLVER

The rigorous nonlinear solver Charibde was introduced by
Vanaret et al. [20], building on an original idea by Alliot et
al. [1]. Tt combines the efficiency of a Differential Evolution
algorithm and the reliability of interval computations to dis-
card more efficiently subspaces of the search-space that can-
not contain a global minimizer. We introduce interval com-
putations and interval-based methods in sections 2.1 and 2.2.
Details on the implementation of the Differential Evolution
algorithm are given in section 2.3. Finally, the cooperation
scheme of Charibde is explained in section 2.4.

2.1 Interval Analysis

Interval Analysis (IA) is a method of numerical anal-
ysis introduced by Moore [12] to bound rounding errors in
floating-point computations. Real numbers that are not rep-
resentable on a computer are enclosed within intervals with
floating-point bounds. Each numerical computation is safely
carried out by using outward rounding.

Definition 1. An interval X = [X,X] is the set {x €
R| X <z < X}. Wenote m(X) = (X + X) its midpoint.
IR denotes the set of intervals. A box X = (X1,...,X,) is
an interval vector. We note m(X) = (m(X1),...,m(Xn))
its midpoint. In the following, capital letters represent inter-
val quantities (interval X) and bold letters represent vectors
(box X, vector x).

Interval arithmetic defines the interval counterparts of
real-valued operators ({+,—, x,/}) and elementary func-
tions (exp, cos, ...). For example, [a,b] + [¢,d] = [a +,
¢,b+1 d] and exp([a, b]) = [exp (a), exp,4(b)], where -| (resp.
-+) denotes downward (resp. upward) rounding.

Definition 2. Let f : R® — R be a real-valued function.
F:TR"™ — IR is an interval extension of f if
vX e IR", f(X) ={f(x) | x € X} C F(X)
V(X,Y)eIR", X CY = F(X) C F(Y)

The natural interval extension Fn is obtained by replacing
elementary operations in f with their interval extensions.

Dependency is the main source of overestimation when
using interval computations: multiple occurrences of a same
variable are considered as different variables. For example,

the interval evaluation of f(z) = x? — 2z over the inter-
val [1,4] yields Fn([1,4]) = [-7,14], which crudely over-
estimates the exact range f([1,4]) = [—1,8]. However, an

appropriate rewriting of the syntactic expression of f may
reduce or overcome dependency: if f is continuous inside a
box, Fiv yields the optimal range when each variable occurs
only once in its expression. Completing the square in the
expression of f provides the optimal syntactic expression
9(x) = (x = 1)? — 1. Then G ([L,4]) = [—1,8] = £([L,4)).

2.2 Interval-based Techniques

2.2.1 Interval Branch and Bound Algorithms

Interval Branch and Bound algorithms (IB&B) exploit the
conservative properties of interval extensions to rigorously
bound global optima of numerical optimization problems
[6]. The method consists in splitting the initial search-space
into subspaces (branching) on which an interval extension

is evaluated (bounding). By keeping track of the best up-
per bound f of the global minimum f*, boxes that certainly
do not contain a global minimizer are discarded (example
1). Remaining boxes are stored to be processed at a later
stage until the desired precision ¢ is reached. The process is
repeated until all boxes have been processed. Convergence
certifies that f— f* < e, even in the presence of rounding er-
rors. However, the exponential complexity of IB&B hinders
the speed of convergence on large problems.

Ezample 1. Consider the problem Hél)r{l flz) = z* — 422

over X = [—1,4]. Then Fn([—1,4]) = [-64,256] D [—4,192]
= f([-1,4]). The floating-point evaluation f(1) = —3 pro-
vides an upper bound f of f*. Evaluating Fiy on the subin-
terval [3,4] reduces the overestimation induced by depen-
dency: Fn([3,4]) = [17,220] D [45,192] = f([3,4]). Because
Va € [3,4], f(x) > 17> f = —3 > f*, the interval [3,4] can-
not contain a global minimizer and can be safely discarded.

2.2.2 Interval Contraction

Propagating the (in)equality constraints of the problem,
as well as the constraints f < f and Vf = 0, may narrow
the domains of the variables or prove that a subdomain of
the search-space cannot contain a global minimizer.

Stemming from the IA and Interval Constraint Program-
ming communities, filtering/contraction algorithms [4] nar-
row the bounds of the variables without loss of solutions.
Standard contraction algorithms generally integrate a filter-
ing procedure into a fixed-point algorithm. HC4 [3] han-
dles one constraint after the other and performs the optimal
contraction w.r.t. to a constraint if variables occur only
once in its expression. Box [19] narrows one variable after
the other w.r.t. all constraints, using an interval version
of Newton’s method. Mohc [2] exploits the monotonicity of
the constraints to enhance contraction of HC4 and interval
Newton.

The interval-based algorithm embedded in Charibde fol-
lows an Interval Branch and Contract (IB&C) scheme (al-
gorithm 1) that interleaves steps of bisection and filtering.
We note £ the priority queue in which the remaining boxes
are stored, ¢ the desired precision and & the best known
solution, such that F(z) = f.

Algorithm 1 Interval Branch and Contract framework

f — +o0 > best found upper bound
L+ {Xo} > priority queue of boxes to process
repeat

Extract a box X from £ > selection rule
Compute F(X) > bounding rule
if X cannot be eliminated then > cut-off test

Contract(X, f) > filtering algorithms
Compute m(X) to update f > midpoint test
Bisect X into X1 and X» > branching rule
Store X; and Xs in £
end if
until £ = @
return (f, %)




2.3 Differential Evolution

Differential Evolution (DE) is an Evolutionary Algorithm
that combines the coordinates of existing individuals with
a particular probability to generate new potential solutions
[17]. It was embedded within Charibde for its ability to solve
extremely difficult optimization problems, while having few
control parameters.

We note NP the population size, W > 0 the weight-
ing factor and CR € [0,1] the crossover rate. For each
individual x of the population, three other individuals u,
v and w, all different and different from x, are randomly
picked in the population. The newly generated individual
vy =(Y1,---,Yj,---,yn) is computed as follows:

u; + W x (vj —w;) ifj=Rorr; <CR

Yy = { . (1)

T otherwise

where R is a random index in {1,...,n} ensuring that at

least one component of y differs from that of x, and r; is

a random number uniformly distributed in [0, 1], picked for

each component. y replaces x in the population if f(y) <
£(0).

The following advanced rules have been implemented in
Charibde:

Boundary constraints: When a component y; lies out-

side the bounds [X;, X;] of the search-space, the bounce-
back method [16] replaces y; with a component that lies
between u; (the j-th component of u) and the admis-

sible bound:

o {uj +rand(0,1)(X; —uj), ify; >X; @)
;=

uj + rand(0, 1)(& —uy), ify; < X

Evaluation: Given inequality constraints {g; | i = 1,...,m},
the evaluation of an individual x is computed as a
triplet (fx, mx, Sx), where fx is the objective value
of x, nx the number of violated constraints and sx =
>, max(gi(x),0). If at least one of the constraints
is violated, the objective value is not computed

Selection: Given the evaluation triplets (fx,nx,Sx) and
(fy,ny,sy) of two candidate solutions x and y, the
best individual to be kept for the next generation is
computed as follows:

e if ny < ny or (nx = ny > 0 and sx < sy) or
(nx =ny =0 and fx < fy) then x is kept

e otherwise, y replaces x

2.4 Charibde: a Cooperative Algorithm

Charibde combines a Branch and Contract algorithm and
a Differential Evolution algorithm in a cooperative way: nei-
ther of the algorithms is embedded within the other, but
they run in parallel and exchange bounds and solutions us-
ing an MPI implementation (figure 1).

Interval Branch
& Contract

Evolutionary
Algorithm

i~y

Figure 1: Basic scheme of cooperation

The cooperation scheme boils down to 3 main steps:

e Whenever the best known DE evaluation is improved,
the best individual x; is evaluated using IA. The upper
bound of the image F(zp) — an upper bound of the
global minimum — is sent to the IB&C thread

e In the IB&C algorithm, F'(zp) is compared to the cur-
rent best upper bound f. An improvement of the lat-
ter leads to a more efficiently pruning of the subspaces
that cannot contain a (feasible) global minimizer

e Whenever the evaluation of the center m(X) of a box
improves f, the individual (m(X), f) replaces the worst
individual of DE, thus preventing premature conver-
gence

3. BENCHMARK OF TEST FUNCTIONS

The highly multimodal nonlinear test functions consid-
ered in this study can be found in table 1. Contrary to
standard test functions which have a global minimum 0
at (0,...,0) (Griewank function) or have a global mini-
mizer with n identical components (Schwefel function), we
have selected 6 functions with nontrivial global minima:
Michalewicz function, Sine Envelope Sine Wave func-
tion (shortened to Sine Envelope), Shekel’s Foxholes func-
tion [16], Egg Holder function [21], Rana’s function [21]
and Keane’s function [8]. Except for the Michalewicz func-
tion, all are nonseparable. Their surfaces and contour lines
can be observed on figure 2 for n = 2. It illustrates the
numerous local minima and the ruggedness of the functions.

The first inequality constraint of Keane’s function de-
scribes a hyperbola in two dimensions and is active at the
global minimizer, which hinders the efficiency of solvers.
The second inequality constraint is linear and is not active
at the global minimizer. The Egg Holder (resp. Rana) func-
tion is strongly subject to dependency: x1 and x, occur 3
(resp. 5) times in its expression, and (z2,...,Zn—1) Occur
6 (resp. 10) times. Its natural interval extension therefore
produces a large overestimation of the actual range.

The last three functions (Egg Holder, Rana and Keane)
contain absolute values. |- | is differentiable everywhere ex-
cept for x = 0, however its subderivative — generalizing the
derivative to non-differentiable functions — at x = 0 can be
computed. Charibde handles an interval extension proposed
by Kearfott [9], based on the values of its subderivative:

—1,-1] X <0
|- 1'(X) = q [1,1] if X >0 (3)
[-1,1]  otherwise

This expression is used to compute an enclosure of the par-
tial derivatives of f through automatic differentiation.

4. STATE-OF-THE-ART SOLVERS

The certified global minima obtained by Charibde are
compared with state-of-the-art optimization softwares avail-
able on the NEOS (Network-Enabled Optimization System)
server!, a free web service for solving optimization problems
in AMPL/GAMS formats. These solvers include local meth-
ods, evolutionary algorithms and spatial branch and bound:
Ipopt implements a primal-dual interior point algorithm,
which uses a filter line search method. LOQO is based on

"ttp://www.neos-server.org/neos/



Table 1: Test functions

Function Expression Domain
—5 720
Michalewicz — Db 4 sinl(ag) sin(mTi) [0, 7)™
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Figure 2: Test functions (n = 2)

an infeasible primal-dual interior-point method. MINOS
employs a reduced-gradient method. PGAPack is a Paral-
lel Genetic Algorithm library. PSwarm combines pattern
search and particle swarm. Couenne uses a reformulation-
based branch-and-bound algorithm for a globally optimum
solution. It is a complete solver, i.e. it performs an exhaus-
tive exploration of the search-space.

Note: the solver BARON (Branch and Reduce Optimiza-
tion Navigator), combining constraint propagation, interval
analysis and duality, is known as one of the most efficient,
although unreliable (see section 5.3), solvers for solving non-
convex optimization problems to global optimality. How-
ever, it is not designed to handle trigonometric functions,
and therefore will not be considered in this paper.

S. NUMERICAL EXPERIMENTS
5.1 Global Minima Certified by Charibde

The global minima to the 6 test functions are given in
table 6. All solutions are given with a precision ¢ = 107¢.

Should the functions have several global minima, only one
is provided. A reference given next to a global minimum
indicates that a result is available in the literature.

Analyzing the results has brought out identities for finding
putative minima for 4 of the 6 test functions. They can be
found in table 2.

Table 2: Putative minima

Function Putative minimum R?
Michalewicz —0.99864n + 0.30271 0.9999981
Sine Envelope —1.49150n + 1.49150 1
Egg Holder —915.61991n + 862.10466  0.9999950
Rana’s —511.70430n + 511.68714 1

The global minima of the Michalewicz function for up to
75 variables can be found in table 3. For the sake of concise-
ness, the corresponding solutions for up to only 10 variables
are given in table 6.



Table 3: Certified global minima of Michalewicz function

n  Global minimum | n  Global minimum
10 -9.6601517 [11] 45  -44.6256251
15  -14.6464002 50 -49.6248323 [11]
20 -19.6370136 [11] 55 -54.6240533
25 -24.6331947 60 -59.6231462
30 -29.6308839 [11] | 65 -64.6226167
35 -34.6288550 70 -69.6222202
40 -39.6267489 75 -74.6218112

To illustrate the key role played by the syntactic expres-
sion of the function when computing with intervals, we have
tested two different — but equivalent — syntaxes of Rana’s
function in Charibde. The first syntax is given in table 1.
The second syntax is obtained using the trigonometric iden-
tity: coszsiny = 1(sin(z + y) — sin(z — y)). Their impact
on the sharpness of the inclusions, therefore on the conver-
gence, can be observed in table 4. The hyphen indicates a
computing time greater than one hour.

Table 4: Rana’s function: CPU times (s) of convergence
(NP =70, W =0.7, CR=0.5)

n CPU time (s)
First syntax Second syntax

2 0.25 0.009
3 6.5 0.12
4 254 1.45
5 - 18.5
6 - 244
7 - 3300

5.2 Comparison of Solvers

The comparison of the 7 solvers on a particular instance of
each test function can be found in table 5. When available,
the number of evaluations of the objective function is given
under the found minimum, otherwise we have mentioned
the computing time. The hyphens in the last column indi-
cate that PGAPack and PSwarm cannot handle inequality
constraints.

Local methods based on mathematical programming (Ipopt,
LOQO, MINOS) usually require few iterations to reach a
local minimum from a starting point. The quality of the
minimum generally depends on both the starting point and
the size of the basins of attraction of the function. These
solvers turn out to perform poorly on the considered multi-
modal problems.

Among the population-based metaheuristics, PGAPack
performs consistently better than PSwarm, yet at a higher
cost. We have kept the best result ouf of 5 runs, since it is
tedious to run an online solver several times. The default
NEOS control parameters have been used; both algorithms
would certainly perform better with suitable control param-
eters. The results of Couenne are discussed in section 5.3.

Charibde achieves convergence in finite time on the six
problems, with a numerical certification of optimality. It
benefits from the start of convergence of the DE algorithm
that computes a good initial value for f. This allows the
IB&C algorithm to prune more efficiently subspaces of the
search-space. The number of evaluations of the natural in-

terval extension F' has the form NEpg + NErpgc, where
NFEpg is the number of evaluations in the DE algorithm
(whenever the best known solution is improved) and N E1pg.c
is the number of evaluations in the IB&C algorithm. Note
that after converging toward the global minimizer, the DE
thread keeps running as long as the certification of optimal-
ity has not been obtained.

5.3 Reliability vs Efficiency

On figure 3, the evolution of the best known solution in
Charibde is compared with that of Couenne for a particu-
lar instance of each test function. Intermediate times for
other solvers were not available. Note that the scale on the
x axis is logarithmic. These diagrams show that Charibde
is highly competitive against Couenne: Charibde achieves
convergence faster than Couenne on Michalewicz (ratio 31),
Shekel (ratio 200), Egg Holder (ratio 25) and Rana’s func-
tion (ratio 1.1). Couenne is faster than Charibde on Sine
Envelope (ratio 547) and Keane’s function (ratio 7430).

Is is however crucial to note that Couenne, while being a
complete solver (the whole search-space is exhaustively pro-
cessed), is not reliable. This stems from the fact that the
under- and overestimators obtained by linearizing the func-
tion may suffer from numerical approximations. Contrary
to interval arithmetic that bounds rounding errors, mere
real-valued linearizations are not conservative and cannot
guarantee the correctness of the result. This problem can
easily be observed in table 5: the global minima obtained
by Couenne on Michalewicz, Sine Envelope, Egg Holder and
Keane’s function are not correct compared to the certified
minima provided by Charibde. The wrong decimal places
are underlined.

6. CONCLUSION

We provided a comparison between Charibde, a coopera-
tive solver that combines an EA and interval-based methods,
and state-of-the-art solvers (stemming from mathematical
programming and population-based metaheuristics). They
were evaluated on a benchmark of nonlinear multimodal op-
timization problems among the most challenging: Michalewicz,
Sine Envelope, Shekel’s Foxholes, Egg Holder, Rana and
Keane. Charibde proved to be highly competitive with the
best solvers, including Couenne, a complete but unreliable
solver based on spatial branch and bound and linearizations.
We also provided new certified global minima for the con-
sidered test functions, as well as the the corresponding solu-
tions. They may be used from now on as references to test
stochastic or deterministic optimization methods.
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Figure 3: Comparison of Couenne and Charibde (logarithmic x scale)
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