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ABSTRACT

This paper presents a review of the state of the art and a novel classificatiarrentt wision-based localization
techniques in unknown environments. Indeed, due to preggressle in computer vision, it is now possible to consider
vision-based systems as promising navigation means that can comptesdérdnal navigation sensors like Global
Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS)Hi%] paper aims to review techniques
employing a camera as a localization sensor, provide a classification of tectariquatroduce schemes that exploit the
use of video information within a multi-sensor system. In fact, &rgémodelis needed to better compare existing
techniques in order to decide which approach is appropriate and whkidheamnovation axes. In addition, existing
classifications only consider techniques based on vision as a standalone tomlnabdahsider video as a sensor among
others. The focuss addressed to scenarios where no a priori knowledge of the enviroisnmovided. In fact, these
scenarios are the most challenging since the system has to cope with abjiney appear in the scene without any prior

information about their expected position.

1 Introduction

Localization can be defined as the process of estimating an object ps#@iipand attitude) relative to a reference
frame, based on sensor inputde localization system performance is evaluated based on its accuracy dsfitied
degree of conformance of an estimated or measured informationiaratigne to a defined reference value which is

ideally the true value [2].

Common localization architectures usually rely on GNSS whose accuracywsebetl and3 metres in optimal
conditions. Centimetre-level positioning accuracy could be reached GMBS-RTK (Real time Kinematic) by

processing GNSS carrier-phase measurementi{BjethelessGNSS localization may be inaccurate or not feasible
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some conditions such as in urban canyons or indoor environmentban canyons, the presence of buildings hindering
the reception of GNSS signals could degrade dramatically the performaeceesb of poor constellation geometry

presence of multipath and fading [4]. Furthermore, localization ifeastble when less than four satellites are available

The integration of GNSS with inertial sensors has been the principal solutionptove localization in difficult
environments, as the use of inertial sensor measurements allows g&\8#) outagesHowever, in fusing inertial
measurements, the accuracy degradation in time due to INS drifts leaadodunted for. These drifts depend on the INS
quality. The choice of INS is basen the trade-off between performance and cost (drifts of less tamlin a day, or
equivalently less than 1.25 metres in one minute, costs around 1 millios Bl whereas low-cost MEMS (Micro-

Electro-Mechanical System) INS could drift several hundred metres in one f@pute

Therefore, other sensors have been considered to find a complmehissen accuracy and cost, even in challenging
environments [Z]Recently, it has been proven that vision could be a promisingaten sensor that provides accurate
localization [8]. Indeed, cameras have the advantage of providiegtansive amount of information while having low
weight, limited power consumption, small size and reasonable cost [8], the assessment of a stereo pair of cameras
performance in realistic ground-vehicle scenarios over a few hundredsnshows few metres accuracy in positioning
and sub-degree accuracy in heading angle recolrgergoing studies are investigating ways video could be used in

localization and its contribution in positioning accuracy improvement.

This paper aims to review and classify recent contributions to thenisised localization field, focusing on both indoor
and outdoor unknown environments (no a priori information igeal) since it represents the most challenging use-case
in which vision techniques are used. A comparison of vision-based techniguerms of inputs, outputs and
performance is addressed in order to help deciding, given a specifiatipp, the most appropriate approach as well as

ways to innovate.

Section 2 introduces fundamentals of vision-based localization. Section 3 desotiktesy classification criteria of
vision-based localization techniques and proposes a new classification. Theegrofaasification is based on whether
vision is used as a standalone sensor or as an element of an integratee, $ctorder to highlight the advantages and
drawbacks of each solution. The standalone vision-based localization texhice described in SectionSection 5

describes existing ways of fusing vision with other sensorshenohain fusion results.

2 Fundamentals of Vision-based Localization

Before describing the localization process, it is essential to introduce the priefgahce frames.



2.1 Frames definition

Tablel summarizes the different frames characteristics.

Frame

Origin

Axes

X-axis

Y-axis

Z-axis

ECEF

Earth’s centre of

X points to the
intersection between

Y completes right-
handed coordinate

Z ¢ extends through
Earth’sspin axis and

(Earth-centred-Earth- Mass (0) prime meridian and ; points to geodetic
Fixed) equator system north
World
A local point X,y points to Y,, points to ti w S'Xt e‘ﬂlcs a‘;hroug};l
(Local Tangent arbitrarily fixed (Pp) Geodetic East Geodetic North ¢ eliipsoldainorin

in upward direction

(co)

plane right direction

direction

Plane)
Vehicle centre of X points to forward Y completes Tlght' .
Body . , \ handed coordinate Zp points upwards
gravity (G) direction
system
, , Z - extends through
Camera . . Y . points to image . ,
Camera centre (C) X points to image lane d 4 the principal axis
. plane right direction P anel vam“ ar perpendicularly to the
(Pinhole Model) direction )
image plane
v points to image
Image plane centre u points to image P =
Image plane downward N/A

Table 1 : Frames definition

The different frames are illustrated in Figure 1.
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Figure 1 : Frames definition




2.2 Pinhole Camera Model

To estimate the 3D camera motion from 2D images, vision techniques ally hasad on the Pinhole Camera Model

described in Figure &.

The relationship between the coordinates of a physical 3D BoinfX,Y,Z]” expressed in the world frame and its

projection in the image plane= [u, v]" is given by:

sp=CP @
Wheres is a scale factorp = [u,v,1]7 andP = [X,Y,Z,1]7 are the homogeneous coordinatep @ndP, andC is a
(3x4) projection matrix defined up to a scale factor. The homogeneousiratesi are used in order to express the
projection as a linear transformatioithe projection matrix depends both on camera intrinsic and extgasieneters.
Intrinsic parameters do not depend on the camera location but rather ioternal camera parameters such as the focal
lengthf, the number of pixels per distance unitirandv directionsk,, andk,, the skew factow which equals zero if
and only if the u and v directions are perfectly orthogonal, aniéhthge frame coordinates of the intersection between
the optical axis and the image plane called the principal pgiat(u,, vy). These parameters define the Calibration
Matrix K of the camera expressing the transformation between the camera fdithe anage framegiven by:

kuf v w

K=< 0 kyf V0> 2
0 0 1

The camera calibration process is based on the estimaiti§n and is generally performed offline. Conversely, the
camera extrinsic parameters depend on the camera location in the wortd drelmcorrespond to the Euclidean
relationship between this frame and the camera frame. This relationstgfinied by a3x3) rotation matrixR and a
(3x1) translation vectoT expressed in the world frame. This means that given the coordhaaes P,, of a 3D point

P in the camera and world coordinates frames respectively, then:

P,=RP.+T ©)

SinceR™! = R”, then:
P.=R"(P,—T) 4)
Therefore, the projection matrix of a world point in the image planéndy:

C=K-(R"|-R'T) (5

where(. | .) is the matrix concatenation operator



3 Existing and new classifications of vision-based localization techniques

Progresss made in vision-based localization for mobile robots up to 2008 wilelywsurveyed by [10] and [11]. In
[10], an analysis of primary vision-based localization techniques foilenmbots upo the late 1990°s is proposed, and
vision-based techniques are classified into two main categories: Indoalizadion and Outdoor Localization. Indoor
Localization is in turn subdivided into Map-based Localization and Maplesdizatg@an. Map-based Localization
consists in providing the device with a sequence of landmarks (also feataces or interest points) forming a map and
expected to be found during localization. This process is performguliirsteps: acquiring camera images, detecting
landmarks in current images, matching observed landmarks with toosained in the database according to some
specific measurement criteria and finally calculating the pose as a functioa olfserved landmarks and their location
in the database. On the other hand, Mapless Localization includes all systems ibhaghaictation is achieved without
any prior description of the environment. The localization process isrpexfl based on elements observed in the
environment and does not require the creation of a map. Since IndotesMldgpcalization and Outdoor localization
techniques were not mature enough in the late 1990’s, these techniques were further detailed in [11] where a different
classification is proposed. Instead of grouping localization strategies intorladd Outdoor categories, this survey
discriminates between Map-based and Mapless techniques, since some localiZatigonesccould be adapted in both
Indoor and Outdoor environments. Map-based Localization techniquesitaizided into Metric Map-using, Map-

building, and Topological Map-based Localization Systems.

Metric Map-using Localization Systems are unable to map the environméntegd to be equipped with it before
navigation startsMap-building localization systems explore the environment and automatically igildap either
offline before navigation starts or in real tinféhe latter Mapbuilding systems are based on the revolutionary technique
that builds a map while localizing the device in an unknown environment vehgalled Simultaneous Localization and

Mapping (SLAM) [12] [13] [14] [15] [16] [17]

TopologicalMap-based Localization Systems [18][19] [20] represent the environmertigadp. A topological graph
consists of Nodes and Links. Figure 2 presents an example of a topolegieseantation of an environment described in

[19].



Office Lab Bedroom

Living Room Hallway Kitchen

Bathroom

Figure 2 : Apartment environment graph [19]

In [18], an omnidirectional camera is used to create a topologicabfrtap environment during a training phase. Nodes
are images of characteristic places and links are sequences of variousittomse@ges between two nodes. During

navigation, the position is determined by matching the online imagepvattiously recorded images.

Mapless Localization is also subdivided into two sub-categories according]torHith are Optical Flow (OF) and

Feature Tracking (FT) techniques, described in Section 4.1.

A different vision-based localization techniques classification is proposed]iniflistinguishes between Global (also
called Absolute) localization and Local (also called Incremental or Relative) localization teshriy global techniques

a vehicle can be localized without any prior knowledge about its position. Gtayalalone vision-based localization
techniques can only be done if an image database is provided. The dedde ggiimated by comparing the current
image with a previously generated image database [21] [22]. Howevetpuwalitechniques it is assumed that the initial
device location is approximately known. The current location is calculatezshientally based on the motion estimation

deduced from comparing the current image to prelyocesptured images.

Vision-based techniques are also classified in [23] according to the vigi@r sonfiguration. Most systems are based
on a single (monocular) camera [12] [16] [17] [24] [25]][26 two cameras. In this case, the cameras are generally
mounted so that their fields of view overlap and form a stereo or binaauteara [15] [27] [28] [29]With a monocular
camera, motion parameters are provided up to a scale factor. The scaleisfati® result of the camera 3D-2D
transformation. Indeed, a 2D point in the image plane is the prajeatian infinite number of 3D world points, as
illustrated in Figure 3.a. Consequently, given a 2D image point, it is netbfso identify the corresponding world
point using a single camera. To overcome the scale factor problem, binceuaras are used. This allows finding the
3D coordinates of the world point using the triangulation technique illustratedureFRap, based on the knowledge of
the baseline between the two cameras. However, the disadvantage of steres cameared to monocular cameisas
mainly due to the additional software and hardware cost. In additiongerdaale environments, the images captured by

the camera might contain objects placed too far. Processing these imagestdaksny recovering the depth values



unless the stereo camera baseline is of fewa80]. This is generally not feasible in the case of small platforrol s

as mini Unmanned Aerial Vehicles.

(a): Single camera (b): Stereo camera

Figure 3 : single and stereo camera 3D - 2D transformation

Trinocular (three cameras) configurations also exist but are mainly ms@derwater vehicle localization given the
difficulties encountered in underwater environments .[BAgreover, omnidirectional cameras can be used to improve
localization performance [18] [24], since omnidirectional vision can ovezciie drawbacks o limited field of view

and the short-term feature tracking of traditional cameras by using ,lenisem's or combinations of cameras to view
large surrounding areas. Furthermore, these cameras improve local&atioacy by reducing the perceptual aliasing,
increasing robustness to occlusions and decreasing sensitivigist w.r.t. traditional cameras [32]. Optical scanning
systems using optical laser measurements are also used in localization as det&B8d Tihdse systems have the

advantage of operating in poor illumination.

Localization techniques depend also on the type of vehicle to localize. Indeedtiagtiam Aerial Vehicle pose [34]
which usually has a six Degrees of Freedom (DoF) motion (three for rotattthree for translation), is quite different
from localizing a Ground Vehicle for which assumptions can be made to réduoember of DoF, hence simplifying
the localization process and increasing the accuracy. For example] ithg2Ackermann Steering principle describes

ground vehicle motion by two DoF, namely the rotation angle and thesrafiaurvature instead of six.

Vision-based localization techniques depend also on the way the camera is moutitedvehicle to localize. For
ground vehicles, there are four possible installations: a forward-lockimgra [25], a downward-facing camera [26]
down-tilted camera [35] [30] and an upward-looking camera. Theafadl-looking camera provas a high number of
landmarks thus allowing good motion estimation accuracy, if lardiraae close to the camera. However, in large-scale
environments, the depth information is badly recovepettlitionally, in poor illumination, this method is not feasible.
These problems are overcome using a downward facing camera lookireggabund texture and a light source next to
the camera. However, downward-facing camera performance is degradiggh illynamics and may not provide a

sufficient number of landmarks. The tilted camera provides a larger fisligwfthan the downward-facing camera and
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captures the ground texture, but capithe vehicle shadow which looks stationary and presetroneous information
about the vehicle motion. Upward-looking cameras are mainly used iroringilavironments and exploit the

characteristics of this environment such as corners, lamps and dinoegda localize the robot as explained in [17].

All previous classifications deal with vision as a standalone localization tool. lowgnevious classifications did not
address an important category of localization techniques using visuahatfon. Indeed, the use of visual information
within a multi-sensor system is increasingly studied. Thisosentegration benefits from the advantages of the different
sensors used in the integration scheme and compsitisair weakness as described in [36] [37] [38] [39] [4Ujis is
why, in this paper, our classification is based on the use of then\gsiasor as the only localization sensor or as an
element of a multi-sensor system as explained in Figure 4. Thidficktish aims to understand the principle of vision-
based localization, by comparing the techniques in terms of inputs, oyeritsmance, limitations of using only vision

for localization and the possible solutions found in the literature to overtmese limitations, namely sensor fusion.

Vision-based localization

in unknown environments

Vision as a standalone Vision within a multi-
localization means sensor architecture
1 |
1 1 1 1
Visual Odometry SLAM Loosely coupled fusion Tightly coupled fusion

Using the poses

N Pl In a Bundle
= Optical Flow == Filtering-based SLAM | i LT - adjustment
QOdometry and other

framework
Sensors
Using the poses Using the estimated
== Feature Tracking b Keyframe-based SLAM = putputted by SLAM == 3D position of
and other sensors detected features

Using raw visual

= measurements (e.g.
angles)

Figure 4 : Proposed classification of vision-based localization techniques

4 Vision as a standalone localization tool in unknown environments

As described above in [11], the main techniques used to localize a devidenowin environments are techniques with
no prior information about the environments. This is why, pasigistimation in such environments using only a camera
are based on the Dead-Reckoning principle. The dead-reckoning posititonsis defined in [5] as the sum of a series

of relative position measurements between consecutive images. Dead-rgckeasures the pose change by comparing



two successive images taken from two different places as theedaeves, and adds this change to the previous pose t
obtain the current pose. This principle is call&tsual Odometry’ (VO) in the computer vision community and is
defined as the process of incrementally estimating a device poseatnnig the changes that motion induces on
images taken by itsn-board camera$ose estimation is performed w.r.t. the world frame and requiresitirdddge of

the initial pose. We deduce, given this principle and the previous classificatieriacrthat vision-only position
estimation is a local localization technique according to [21]. It is based on eithéfl &okniques, which aim to
estimate the camera pose jointly with reconstructing the 3D scendirgtésy the location of the observed featus
Mapless techniques, which only estimate incrementally the cameranawsely OF and FT techniques, according to

[11].

However, although OF and FT techniques aim to estimate the change in poditiattitade between images, they can
also include a reconstruction of the 3D scene. Therefore, these techniques reay bs part of the SLAM process and
cannot always be considered Mapless techniques. Consequently, ratheisthmyuishing Map-based and Mapless
Techniques, our classification distinguishes betwéénthat aims to estimate only the camera pose according to the
displacement measured from a sequence of camera images withoutruetioigsthe 3D scene, and SLAM that accounts
for the correlations existing between camera pose and 3D points obbgriled camera and estimates a map of the

environment jointly with the camera pose inside this map.

To process/O or Visual SLAM, some assumptions have to be méist of all, the environment must be sufficiently
illuminated. Thenit is important to have static objects dominant over moving objetteiimage sequengkeecause the
pose estimation is based on the changes occurring in the imageshehdgvice movesvhich are computed starting
from the recognized static objects. Finally, the overlap between consecativesfmust be sufficient to gather enough

information about the displacement.

4.1 Visual Odometry

VO generally relies on 3 main steps: establishing matches betweeinatwes, removing outliers and estimating the

motion between the two frames.

- Establishing matches

Matching two frames may be performed either by OF or byMTis considered by [41] as a spa®E where the
considered pixels are selected wisely. According to, [BT]is preferable to OF since the pixel selection provides more

robustness against noise.



Optical Flow

OF is the apparent motion of features in a sequence of images. When the rdevas static features appear to be
moving with respect to the device. Td¥- between two consecutive frames is represented by a set of vectiferon
each pixel, where their norm depends on the motion speed and their divremmesent the movement of the
corresponding pixel in consecutive images. In the monocular case, rineohthese vectors is estimated up to a scale
factor.To estimate OF at all pixels, the ‘Intensity Constancy’ assumption, which states that the intensity of a small image

region remains constant with time, is used. This assumptiommsifated by:

I(u,v,t) =1(u+ Su,v+6v,t+ 1) (6)
wherel (u, v, t) is the(u, v) point intensity at time epoahand(du, §v) is the displacement in the image plane of this
point betweert and(t + 1). Many approaches have been proposed in the literature to solve the requatifind the
displacemenfsu, Sv) [42]. This vector is then converted from the image plane to the camera frame and afteovwheds
world frame. One method to derive odometry usiitgwas presented in [35]. This method uses a single camera mounted
on top of a robot and tilted downwards to film the ground. ifeges taken by this camera are sub-divided into three
regions: ground, horizon, and sky. TB€ vectors calculated from the ground regeadimate robot translational motion,

those calculated from the sky region estimate the rotation and thoseenbarilon are discarded.

Feature Tracking

The first step in FT is to detect salient zones (corners, edges, etc.) in theicweigentalled Features. Feature detectors
must be sufficiently robust to a perspective change following themamotion, in order to detect the same points in all
images. The most widely used detectors are the Harris corner detectiothiaidd3] and the Shi and Thomasi corner

detection algorithm [44]

Once detected, these features have to be characterized in a unique way. Thistegcaor@T is performed through
feature description. A feature descriptor includes all feature characteristicsy Aakge number of feature descriptors
have been developed. The most widely used algorithms are Scale Invarian¢é Feahsform (SIF)I[45] and Speeded

Up Robust Feature (SURF6]. An evaluation of feature detectors and descriptors is performed in [47]

Besides corner points, lines are also used as features especially in énd@onments where geometrical structures
having parallel or perpendicular edges like walls, doors and windowsidety fiound. Line detection can be performed
using different techniques such as Hough transform, lteratively-Rbigdigeast Squares-based line detection, Edge

Linking Method or Line Fitting Using Connected Components descrinedcompared in [48]. A method of attitude
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estimation is described in [48], where the attitude is deduced from thgechmthe configuration of projected lines in

the camera image when the camera moves.

The final step ofT is Feature Matching which can be performed in two ways: dithextracting features from both
previous and current images independently, then performing matohibyg,extracting features from the previous image,
predicting the regions where the features could be found in thentimage and then performing matchige former
approach is more suitable for large-scale environments while the latter dppsogenerally used in small-scale
environments. The goal of this step is to match the features that codespthe same physical feature existing in the
camera field of view in both previous and current image. This phas&sto of computing a matching score that
indicates the likelihood that two features correspond to the same physicaé féEhe features that have the highest
scores are matched. The matching process can also be performed cgngidezomputation of the distance between the

descriptors of the features. In this case, the features having thessmizli@nces are matched.
- Outlier Removal

The second step &fO is a process applied to exclude wrong matches usually called outliers. Tlegematches can
cause significant error in estimating camera motion and removing theeceéssary to obtain accurate motion estimation.
To exclude wrong matches, the algorithm usually used is RANdomp®&AGonsensus (RANSAJ49], based on the
epipolar geometry constraint described in Figure 5. Epipolar geometry disingeometrical constraints between two
different views of the same 3D point. Denotimgnd p’ the image points corresponding to the same 3D @oinewed
from different locations, thep, p’ , P and camera centres lie all in the same plane. [Ba8$ed on this principle, all

corresponding image points satisfy the coplanarity equation:

p’TFp =0 (7)
WhereF is called the Fundamental Matrik. expresses the camera motion fréhto €' and the internal camera
calibration. Each pair of pointp andp’ adds a constraint on the fundamental matrix estimation. The normalpzsdt8-
algorithm described in [50] is used to estimBtesing RANSAC algorithm for robustness against outliers. This snean
that to estimat&, at least 8 pairs of points must be correctly matched. If the camera istealjbre. the calibration

matrix K is known, then the coplanarity equation is given by:

1T

P Ep=0 ®
Wherep’' = p’(K™)™!, p = K 'p andE is called the Essential Matrix. E is the specialization of the fundamental matrix
to the case of known calibration parameters. At least 5 pairs of poistdmeorrectly matched to estimate E, using the

5-point algorithm addressed in [51].
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Epipolar plane

Figure 5 : Epipolar constraints [50]

- Motion estimation

The camera motion between the current image and the previous imatmaezssbased on the matches established in
the previous steps. The trajectory of the camera is recovered by caticateof all these single movements. In the case
of unknown intrinsic parameters, only the fundamental matrix is estimelbedcamera displacement is recovered up to a
projective transformation, and it is not possible to recover the distance aatidche anglesThat is why, in most o¥O
applications, the camera is assumed to be calibrated, i.e. the calibration matrixdWis. kn this case, the essential
matrix is computed using equation I8 has been shown in [50] that the essential matrix can be decompdtsea in

rotation and a translation vector such as:

E=[T]«-R 9

Where[T], is the skew-symmetric matrix @fandT is the translation vector up to a scale factor [37].

A complete explanation of VO is detailed in [52] and [53].

4.2 Simultaneous Localization And Mapping (SLAM)

The Simultaneous Localization And Mapping (SLAM) is a process by whicloldlendevice builds the map of an
environment and uses this map at the same time to deduce its locatidn BLAM, both the device trajectory and the
location of all landmarks are estimated online without requiring any ai poication knowledge. The first SLAM
approaches used different sensors such as Laser Scanner [54], Rad&or{aB[55], odometric data provided by Wheel
Speed Sensors, or multi-sensor data fusion [36]. With the recent piewlts in vision-based techniques, cameras have
been used as sensors making vision-based SLAM more and more attractieeriRgpwork on real-time visual SLAM
has been carried out first by [12Contrary to VO which aims to estimate only the camera pose based on the

displacement measured between two successive frames, vision-hasedaScounts for the correlations that exist
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between the camera pose and the 3D position of the observed featdristherefore more accurate the® but
requires a higher copotational complexity. Visual SLAM uses the same technique¥@sbut differs in its aim to
localize and build a map (determine the 3D feature positions) simultanemsstad of only localizing. This improves
dramatically the pose estimation accuracy since it takes into account the corteddtvern the observed features and
the camera pose, but at the cost of an additional computational burden. Woriyedhe choice between visual SLAM

andVO depends on the trade-off between accuracy and simplicity in imptatioa.

In [14], vision-based SLAM techniques are classified into two categories:emwt@on approach, in which 3D point
positions are fully observed from a single position, and a bearnilygapproach that exploits monocular sequences.

Visual SLAM techniques are also subdivided according toifi6]keyframe-based SLAM and filtering-based SLAM.

- Keyframe-based visual SLAM

If no a priori knowledge of the scene is provided, estimationeottmera pose is completely correlated with estimating
the 3D locations of the observed feature known as 3D scene rectnstriihis is referred to as the Structure From
Motion (SFM) problem. The principle of Keyframe-based SLAM is to comp@tedmera pose given the position of the
already reconstructed 3D map points, to reconstruct new 3D pongsdaésary and to refine jointly the 3D reconstructed
points and the camera pose for some selected keyframes from thecseqUkis approach is based on Bundle
Adjustment (BA) [57] which is a nonlinear least squares refinetheitaims to minimize the reprojection error defined
as the sum of squared residuals between the points detected in the images rpifofections obtained from the

calculated model, thus improving the positioning accuracy. For a stitte aift ofBA algorithms please refer to [58].

In this case, instead of establishing matches between features detected irsivaicteages called (2D/2D
correspondence), visual SLAM establishes matches between detected featunescurrént image and already
reconstructed features. This process described inig52jlled ‘3D/2D correspondence’. The motion estimation is not
deduced from the decomposition of the essential matrix such\&9,imut rather from solving the Perspective-Three-

Point Problem. The definition and the solutions of this problemetegled in [59].

- Filtering-based visual SLAM

This approach is based on the construction of a probabilistic 3D featyredescribing the current pose estimation of
the camera and the reconstructed 3D features that define the map, inlthamae. In addition, this approach provides
the estimate uncertainties. The map is initialized in the beginning of the pawss updated, as the device moves, by
Bayesian Filters such as Kalman Filter (KF), Extended Kalman Filter (EKF) or P&itiele(PF). The probabilistic map

is mathematically described through a state vector and a covariance matritat€heector comprises the concatenation

13



of the estimations of the camera pose and the 3D features. The prplddrlity function of the map parameters is

usually approximated by a multiple variable Gaussian distribution.

- Optimal approach for Visual SLAM

li is difficult to compare the keyframe-based SLAM and the filteringdal SLAM and to conclude which approach is
better. In fact, each approach has its advantages and drawbacks,mgpenihe intended application. Filtering-based
visual SLAM has the advantage of handling easily measurement covariances|ess accurate than keyframe SLAM
in large-scale environments [603n analysis of the performance of keyframe-based and filterasgd approaches is
performed in [56]. It revealed that the keyframe-based appra@thBA is more efficient than the filtering-based

approach in terms of accuracy and computational cost.

4.3 Limits of standalone visual localization techniques

It should be noted that vision-based localisation techniques suffertfi@ccumulated error resulting from the use of
the dead-reckoning principle. Compared to SLAKQ suffers froma higher drift rate becauséO techniques are based
only on the dead-reckoning principle, whereas SLAM techniques combeavkréckoning anB8A which improves the

accuracy of the localization process, but at the cost of an increased compuhatiden for the optimization process.

In addition, it is important to point out that the knowledge of the geo-refedgposition of the camera is impossible if its
initial position and attitude are not known in a global frame suchea&@EF frame. Therefore, the use of a global

means such as GNSS becomes necessary in this case.

Finally, when choosing a camera configuration, it should also be taken tuanadhat the use of a single camera
induces a scale drift within time. Indeed, it is difficult to propagate ¢hke gactor throughout the process, since with a
single camera, this scale is not observable during the localization prGoesequently, the scale factor is directly the
subject of the accumulated errors and drifts within time, especiayhwnany features disappear abruptly between two
successivémages (e.g. in sharp turns). For these reasons, the integrati@iooflvased systems with other sensors is

necessary to improve the localization performances.

5 Multi sensor localization

The objective of sensor fusion is to improve the performance obthainedch sensor taken individually by combining
their information. We generally consider three different ways to condgingor measurements to estimate the navigation
solution, which vary depending on the information exchanged by tiserseand the integration engine: loose-coupling
tight-coupling, deep-couplingVith loose-couplingeach sensor provides a positioning solution. The hybridized solution
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is the combination of different solutions provided by each sensoridodily. With tight and deep coupling, fusion of
sensor information takes place before positioning solution estimalimht architectures combine the sensors
information to provide a unique solution, while in deep architecturesetisois work as a unique system and fusion is
performed inside one of the sensors proegsbo our knowledge, deep-coupling with vision aid has nothbgastn

addressed.

The most widely used filter for sensor fusion is the EKF. PF is alsotadede visual information with other sensors.
Visual SLAM fusion with inertial measurements using the PF has beeesadd in [61] [62] [63]. In [63], a comparison
between the EKF and the PF shows that EKF provides a higher preciseofusidn of visual information with other

sensors could also be done within a BA framework. The follow&agions detail examples of visual information fusion

with other sensor@~ocus ison EKF and BA framework fusion).

5.1 INS and Camera Fusion

The fusion of INS and visual information, alsalled ‘Vision-aided InertiaNavigation” aims to combine INS and vision
advantages, while balancing the system drawbacks. Inertial senseralhege measurement uncertainty when in slow
motion and lower relative uncertainty at high velocities, while cameras can tracke$eagry accurately at low
velocities and less accurately with increasing velocity. Furthermore, in the al#fe@éSS information, the INS

solution drifts over time that may be reduced by the vision s¢88pr

Starting with early work such as [64], there is now growing interefiising inertial and visual sensor. As explained in
Section 4 INS/camera fusion may follow either the SLAM principle (estimation of the cuwamera position and
attitude, and the 3D position of the observed landmarks jointly) oW@eprinciple (estimation of only the camera

position and attitude).

In [65] and [66] a monocular SLAM is used and a loosely-coupled approach that fuses inedtisisaal data is
implemented The SLAM algorithm is based on a keyframe appraastiescribed in [67]It outputs camera poses and
3D position of the observed landmarks up to a scale factor. These dmzratimate the scale factor by fusing the

visual and inertial measurements through an EKF by putting the scal@dditiwnal variable in the state vector.

In [40], a tightly-coupled INS/binocular camera fusion is used foraftrposition, velocity and attitude estimation. This
approach is based on the use of measurements obtained by the knovwkbeg@bposition of tracked features. In fact,
once features are identified in the current image, the system predictstheszrdeatures should appear in the next image

based on the inertial measurements, to constrain the search space witlgrt ineage during the matching process, as

15



described in Figure.6he state vector is given by the INS and consists of the device ppsiiogity and orientation

w.r.t. the world frame.
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Figure 6: Feature projection [40]

Once feature matches are determined, the errors between the predicteddeation and the actual feature location are
used to correct errors in the state vecldvis is achieved in [40] using arkKE described in Figure 7. In this filter, the
locations of stationary objects are tracked and used to estimate and updaterthenéhe inertial navigation system.

The inertial navigation system is, in turn, used to support the FT loop.
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Figure 7 : Image-aided inertial navigation filter block diagram [40]

The comparison between the vision-aided INS and the standalone INS perfantanded out in [40], shows that over

10 minutes, the use of vision measurements improves the byrarany orders of magnitude.

A different tightly-coupled approach for vision-aided inertial navigationrig@sed in [68] To estimate the position,

velocity and attitude of a ground vehicle, an error state EKF-based estimatiagthaldor real-time navigation is used.
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The filter state vector describes the evolving Inertial Measurement Unit (IMU) stateeatggl with the current estimate
of the camera pose when an image is taken, based on the IMU pesme@iburement model expresses the geometric
constraints that arise when a static feature is observed from multiple careesa Pbe observed features are tracked
between previous camera poses, and used to update the vehicle state. Thenmeeasnodel does not require including
3D feature positions in the state vector of the EKF thus reducing theutatiopal complexity for real-time applicatio

Experimental results show a good performance of the systemtia error is of 0.31% of the travelled distance.

In [69], a photogrammetric approach is addressed for land vehicle posetiestiniNS/stereo vision fusion is only used
during GPS outages to reduce INS drifts. When GPS signals are available, postoastimzerformed through the
classical GPS/INS integration and stereo vision is only used to determine 3D locdtitesfeatures in the image
sequence exploiting the vehicle pose obtained by the GPS/INS systemtMWH8RS is no longer available, the pose
parameters are computed using INS and extracted featuredrotitys case, 3D coordinates of the feature points are
calculated for the last stereo frame captured before GPS outage. Upon timagexacquisition, features corresponding
to previously triangulated features are identified and the vehicle location is updatgadh& position and the inverse
3D coordinate computation. This procedure is repeated until the GPS signalelmailable again. Simulations carried
out show that in one minute GPS outage, errors from pure INS solgtaw up to 70 meters, while errors after

integrating INS data and image information are below 1.9 meters.

5.2 GNSS and Camera Fusion

As for any GPS/INS fusion scheme, the goal of integrating GPS and wdaahation is to compensate for their
limitations and to benefit from tirecomplementarities. In fact, a standalone GNSS navigation solution is gematally
feasible in challenging environments such as urban canyons, whemthedéess a set of one or two GNSS signals may
be still available, whereas visual information can work efficiently @s¢henvironments if a lighting source is available.
On the other hand, visual information suffers from the drift dubdalead-reckoning principle, as well as a scale factor

in the monocular case, while GNSS systems have in turn boundesl error

In [39], a loosely-coupled GP®D integration scheme is presented following the classic loosely GPS/INS integration as
described in Figure 8. It assumes that if a monocular camera is usethdahsrale factor can be recovered. Hie
estimates the errors of the navigation solution provided by the camimg,tiis difference between GPS and camera

solutions as the measurement tokke The errors estimated by tké& are used to correct the camera solution.
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The tightly-coupled approach is addressed by [70] to estim#&@eDoF pose in environments where a GNSS-only
solution is not feasible. A method for combining limited GPS capierse measurements with features extracted from
images of a monocular video camera is proposed. The GPS carrier pdremeements are used to overcome the scale
factor problem due to the use of a monocular camera. The estimation peoaidsito compute the device pose changes
between two images,nd ranges to the observed features. The fusion is performaédanequations defining the
relationship between the device range to features and its pose change aglatien expressing the relationship
between the carrier phase and position chanigefr0], these equations are resolved using the Least Mean Square
Estimate. The experimental results carried out in [70] show that the @ft#p change estimation from carrier phase
measurements, if at least 4 satellites are available and under openhadgurate at a millimetre level, whereas when 3
GPS carrier phase measurements are available, the GPS-video integration achistiesiagaccuracy of a centimetre

to sub-decimetre level and provides a heading accuracy in a range ®fdkgrees.

The fusion of GNSS and monocular SLAM within a BA framework is esklrd in [71], through a BA with inequality
constraint (IBA). The reprojection error is computed based on bottathera and GPS poses. The fusion is performed
only if it does not degrade too much the reprojection error, ileeiflegradation of the reprojection error does not exceed
a threshold slightly greater than the minimum reprojection error. [lBeshow that IBA is robust for in-plane
localization. Its performance is similar to that of the GPS. However @tiappropriate for a 6 DoF localization, since it

may increase drifts on thievice’s altitude and orientation.

5.3 GNSS, Camera and INS Fusion

The GNSS, camera and INS fusion is widely used in environments where SEg\fas are not always available, such as

urban canyons.

In [37], the integration of a Strapdown IM@, GNSS and a camera is performed in order to estimate the position,

velocity and attitude of a ground vehicle. The vision system basadmmocular camera estimates the vehicle rotation
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and translation up to a scale factor, usit techniques. This scale factor is resolved using the GNSS data. At least, two
satellites in view are required. Between camera/GNSS data update, the vehicle megtomated by strapdown IMU
mechanization. Once new camera/GNSS measurement data arrive, all derivatiaraui§pormation is transformed in
order to enable the EKF engine for accurate navigation solution and ékdiscalibration. The system is described in
Figure 9. The simulations carried out show thatghbsitioning accuracy using this system is significantly improved in

GPS outages.

IMU measurements error

Specific force | INS Strapdown [Pos, Vel, Att] | [Pos, Vel, Att]
IMU . EKF
Angularrate | Mechanization

Camera-based orientation and positiorn

A priori
information | Translation | Pseudorange |Pseudoranges

magnitude |  differential GNSS

Rotation
Translation (up to scale)

Image Visual
sequences | Odometry

Camera

Figure 9: The EKF-based architecture [37]

In [34], a tightly-coupled and feed-forward EKF is proposed to estithatposition, velocity and attitude of an aircraft.
The filter combines inertial, visual and GPS measurements if GPS is available rabthes inertial and visual
measurements during GPS outages. The EKF estimates the ertbesriavigation state produced by the INS using
visual and GPS measurements. Unlike classical approaches where vision provialdlesvarf interest (position,
attitude, etc.), this approach uses vision as an aiding source providitata from the images as measurements to the
navigation algorithm. The visual raw measurements describe the pointiiog frem the aircraft to a target of unknown
location. The errors estimated by the EKF are removed from the INS statevide the final estimated position,

velocity and attitude. The integration architecture is described in Fl§ure

19



AV ] INS Position, Estimated Position,
INS Mech- | Velocity,and  —~ Velocity, and

anization Attitude Attitude
A —
Estimates of
("}’“e" used) Error in INS
Pasition, Velocity,
GPS Pseudoranges — Kalman and Attitude
Optical (Angular) Filter
Measurements

Figure 10 : Overall Integration Architecture [34]

It is shown in [34] that using this configuration, the navigaponition error is improved by 70% over the free inertial

solution for a 400 second GPS outage.

A different solution to integrate video, INS and GPS is proposed in.[TBg INS and video are tightly-coupled. The
filter state vector describes the evolving IMU state and the measurement model isrb#sedeprojection error of the
observed features on the camera’s image plane. Since the vision-aided inertial navigation algorithm performs only dead
reckoning, a global positios calculated by a GPS.. The experimental results show that the localization noear tve

system computed over 10 minutes does not exceed 1meter, outperfornstapttedone GPS performance.

5.4 Odometer and Camera Fusion

In [73], anodometer aids the monocular visual SLAM within a BA framework. idiba is to change BA by substituting
the estimated 3D camera positign(the orientation is kept unchanged) by a correcteccbneach time a new keyframe
is acquired. The correction provided by equation 10 is performeuebydometer which estimates the scale factor.

ct—ct1t (10)

at t—1 t-1
cC=cC +d —
llct =i,

where||. ||, is the Euclidean norm, anti~! is the distance travelled betweg@n- 1) andt, estimated by the odometer.

Simulations carried out in [73] show that this system provides aroirament of about 10 orders of magnitude in the

positioning accuracy, and a significant improvement in the attitude accuracy

In [60], a multi-sensor architecture within a BA framework is penfd. Here, a second sensor modifies the monocular
SLAM algorithm in order to reduce the drift of the system. It predicts thteisypose, and this prediction is used to

make a constraint on the system displacement, improving the BA refimgrrocess by minimizing a weighted sum of
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the two sensors terms instead of only minimizing the camera tdims.proposition is validated with two types of
sensors, an odometer embedded in a vehicle and a gyroscope integeatdh and carried by a pedestrian. Results
show an improvement, for both sensors, of the localizatiomracgwsing the multi-sensor architecture, compared to the

classical BA based only on visual information

5.5 INS, Odometer and Camera Fusion

In the case of ground vehicles, the use of odometer data has beefiediastione of the most attractive sensors. An
INS/odometer/omnidirectional camera integration scheme is proposed in fidprdposed visual system extracts and
tracks Vanishing Points (Vanishing Points refer to the intersectioregirtsjection of world parallel lines in the image)

in omnidirectional images to estimate the vehicle rotation and thus improvesribemance of INS/odometer system, in
the case of GPS outages, by limiting its drift. The integration is perfobyean error-based KF. The state vector
comprises the position, velocity and attitude errors, the gyro driftgcttelerometer biases and the camera errors. The
KF compares the INS output with data acquired from camera and odometarfolddwo types of measurements are
utilized for the measurement update of Kfe during GPS outages: the attitude derived from the camera and the speed
derived from the odometer. A comparison between the INS/odometer andoftesgd vision-aided INS/odometer
systems is carried out in [74] during 100s GPS outage, showatghé vision-aided system provides about 30.7%
(1.63m to 1.13m), 31.6% (0.99m to 0.67m) and 30.2% (B8.1® 2.23m) improvement in the average, deviation and

maximum of the horizontal position error, respectively.

5.6 Summary of Performance Comparison

Table 2 summarizes the performance of the different fusion architectureee@miques surveyed in the previous
sections. Since the experimental conditions and the metrics evaluating plesgataarchitectures are different in each

reference, Table 2 describes, for each technique, the experimental conditionscamceponding metrics.

. Standard Other metrics
Technique Environment e bias(m) | deviation Ref.
assumptions
(m) metric Value
DG-16 RTK-
GPS - Real data CEP50 0.4m | [75]
GPS 2.68 1.38
Monocular |- Land Vehicle (50 km/h)
constrained BA| 3 km trajectory in urban 12.82 8.828 [76]
SLAM A
environment [77]
GPS +
monocular B | R€a data 2.44 2.02
SLAM
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- Land Vehicle
i Delta -
GPS carrier i millimetre
- Open sky position
phase error -level
- Real data
- Land Vehicle (3.6 km/h) E| 1.55cm| [70]
GPS carrier  Use of only 3 satellites Delta 'N15.81 cm
hase + video position
p - Open sky error
U| 7.87 cm
- Real data
GPS + « Dead .
Reckoning »; [ Land Vehicle 20.71
EKF - Simulated data [78]
GPS + « Dead
Reckoning » : Pi 3.56
. ... |KF better
GPS+INS |- Simulated data Qualitative than PF [79]
- Land vehicle E| -5.30 50.22
GPS + INS . _
MEMS EKE | 50mn trajectory in dense |N| 1.20 19.93
(loose) urban, semi urban, dense tr
and clear sky environment |[YU| 2.47 | -22.82 0]
GPS+INS | Less than 4 satellites E| -0.02 1.75
+ available during 43% of the
MEMS EKF  [ors 9 N| 024 | 1.85
igh
(tlg t) - Real data U 2.03 -13.92
INS+ visual ... |KF better
SLAM - Real data Qualitative than PE [63]
.  Aircraft (180 km/h Horizontal
tactical-grade roundspeed) root-sum- |, «
INS d P squared
- 1200 s trajectory error (40]
tactical-grade |- Terrain model uncertainty o Horizontal
INS + video |5 metres root-sum-
<100
measurements | . squared
. - Simulated data
terrain model error
Monocular BA || Land vehicle (50km/h) 248,89 27129
SLAM - Urban environment ' '
A 4km sequence in urban [73]
Odometer + ;
monocular BA [FVironment 33.69 | 23.14
SLAM - Real data
Medium-grade h
INS + odometer 0 1.63 0.99
- Land vehicle r
i
Medium-grade |- 100 s trajectory 7
INS + odometer| Non-holonomic constraints | © [74]
omnidirectional |- Real data t
vision a
I

"CEPS50: Circular ErroProbable with a probability of 0.5

Table 2 : Performance comparison
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6 CONCLUSION

Visual navigation has become one of the most promising navigaté&ams given its capability of providing extensive
usable information to improve the accuracy of the navigation solitiomknown environments. The objective of this
studyis to describe and compare recent vision techniques for localization and proiddéngs for the integration of
visual information with other navigation measurements such as GNIBS 0By integrating all sensor information, it is
in fact possible to exploit all available information and overcome eadvsdlifficulties such as signal propagation
errors and outages for GNSS, drifts and expensive cost for INS, andaidftscale factor for monocular visioks
evidenced, all the studies carried on sensor integration show that isithl ¥information, localization accuracy is
improved. In the future, activities should focus on improviegssr fusion architectures to get higher localization

performance and reduce the computational burden for real-time localization
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