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Abstract: Finding communities in complex networks is a topic of much current research and has applications
in many domains. On the one hand, criteria for doing so have been proposed, the most studied of which
is modularity. On the other hand, properties to be satisfied by each community of a partition have been
suggested. It has recently been observed that one of the best known such properties, i.e., Radicchi et al.’s weak
condition [F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Proc. Natl. Acad. Sci. USA, 101,
2658 (2004)] was not satisfied by one or more communities in a partition which maximizes (approximately)
some of the best known criteria. It was therefore proposed by Wang et al. [J-G. Wang, L. Wang, Y-Q. Qui,
Y. Wang, X-S. Zhang, Lect. Notes in Oper. Res., 11, 142 (2009)] to merge both approaches by maximizing
a criterion subject to the weak condition. We consider the effect of adding five cohesion conditions, one
at a time, to a modularity maximization problem. We solve the problems exactly. Strong, semi-strong,
and almost-strong cohesion conditions appear to be too restrictive and the extra-weak condition too lax.
The weak cohesion condition is verified by some but not all modularity maximizing partitions of real-world
problems considered. Imposition of this condition on those partitions for which some communities do not
verify it reduces modularity moderately but sometimes changes the optimal number of communities and their
composition.

Résumé : La détermination de communautés dans les réseaux complexes fait couramment l’objet de nom-
breuses recherches et a des applications dans de nombreux domaines. D’une part, des critères ont été
proposés; le plus étudié d’entre eux est la modularité. D’autre part, des propriétés qui doivent être satisfaites
par chacune des communautés d’une partition de l’ensemble des objets considérés ont été proposées. Il a été
récemment observé que l’une des plus connues de ces propriétés, c’est-à-dire la condition faible de Radicchi
et al. [F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Proc. Natl. Acad. Sci. USA, 101, 2658
(2004)] n’était pas satisfaite par une ou plusieurs communautés de la partition qui maximise (approxima-
tivement) certains des critères les plus connus. Il fut donc proposé par Wang et al. [J-G. Wang, L. Wang,
Y-Q. Qui, Y. Wang, X-S. Zhang, Lect. Notes in Oper. Res., 11, 142 (2009)] de fusionner les deux approches
en maximisant un critère sous la condition faible. Nous considérons l’effet de l’addition de cinq conditions
de cohésion, une à la fois, dans un problème de maximisation de la modularité. Nous résolvons ce problème
exactemment. Les conditions forte et semi-forte sont trop restrictives et la condition extra-faible trop peu.
La condition de cohésion faible est vérifiée par certains mais pas toutes les partitions d’une série de problèmes
de la littérature que nous considérons. L’imposition de ces conditions aux partitions pour lesquelles certaines
classes ne satisfont pas la condition de cohésion faible diminue faiblement la valeur de modularité mais peut
changer, parfois fortement, les conditions d’appartenance des entités aux classes.

Acknowledgments: S. Cafieri has been supported by the French National Research Agency (ANR) through
grant ANR 12-JS02-009-01 ATOMIC. A. Costa has been supported by IDC Grant IDG21300102.
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1 Introduction

Networks are often used for representation and study of complex systems with applications in many domains.

A network, or graph, G = (V,E) consists of a set of vertices V and a set of edges E. Vertices are represented

by points and associated with entities of the system under study. Edges are represented by lines joining pairs
of vertices and are associated with relations between the entities. The shape of these lines does not matter,

but only their presence or absence. Newman recently gave a detailed introduction to networks in [1].

In many complex systems there are sets of entities which share some common characteristics and/or are
likely to have some common function. Henceforth, they will be called communities or clusters or modules. In

the associated network, these communities correspond to sets of vertices for which the number of inner edges,

that is edges joining two vertices of the community, is larger than the (possibly weighted) number of outer

edges, that is the number of edges joining two vertices one of which belongs to the community and the other
not. Detection of communities is a currently central and much studied problem in the theory and application

of network science, with a vast literature, see [2] for an in-depth survey and references therein. Usually, one

seeks a partition of the given set of entities into disjoint communities, that is each entity must belong to

one and only one community. Sometimes this last condition is relaxed: the aim is to find a covering of the

set of entities, that is some entities may belong to several communities. We do not consider overlapping

communities in this paper. The quality of the partition obtained can be judged in several ways:

• Some heuristics do not involve a criterion to be optimized. An example is Girvan and Newman’s [3] edge

removal heuristic in which edges with maximum betweeness are iteratively removed, yielding partitions

into an increasing number of communities. Then the quality of the results obtained can only be judged

a posteriori, usually based upon some substantive information.

• A variety of criteria to be minimized or maximized have been suggested by several authors. The best

known of them is modularity, introduced by Girvan and Newman [3]. Modularity of a community is

defined as the difference between the number of inner edges and the expected number of edges in a

random configuration model which keeps the distribution of vertex degrees unchanged. A large number
of heuristics [4–13] provide in moderate computing time a near optimal solution, and a few exact

algorithms provide an optimal solution [14–16]. Strengths and weaknesses of modularity are discussed

in [2, 17–19]. Another, more recent, criterion is modularity density [20].

• Instead of considering an objective function, one may specify conditions to be satisfied by each commu-

nity of a partition. The first two such conditions, a strong and a weak one, were proposed by Radicchi
et al. in [21]. Two further conditions, a semi-strong and a extra-weak one, were suggested by Hu et al.,

in [22]. The almost-strong condition was introduced in [23]. Precise definitions and some properties of
these five conditions will be given in the next section. We call these five conditions cohesion conditions.

Several authors have checked if some of these conditions are violated by some community of an optimal

modularity maximizing partition [24, 25]. Moreover, in [26] it is proposed to add the weak constraint to

models for modularity maximization and for modularity density maximization.

The aims of the present paper are: (i) to study to what extent optimal partitions for modularity max-

imization of real world problems satisfy the five conditions mentioned above and (ii) to examine the effect

of imposing these constraints one at a time in modularity maximization models. These models are solved
exactly. Observe that using exact optimization methods does allow separation of the effect of imposing

a constraint from the possible error due to the use of a heuristic (other reasons which justify using exact

optimization together with heuristics for their mutual improvement are given in the introduction of [16]).

The paper is organized as follows. Definitions of five cohesion conditions are given in Sect. 2 and some
of their properties are discussed. It is then examined in Sect. 3 to what extent the optimal modularity

maximizing partitions of 11 real-world problems from the literature do satisfy these conditions. Modifications

to models for modularity maximization due to adding each of the five cohesion constraints are studied in

Sect. 4. Computational results are presented in Sect. 5 which also includes a detailed discussion of the effect

of imposing the weak condition on the optimal partitions of three well known problems. Conclusions are

drawn in Sect. 6.
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2 Cohesion Conditions

As mentioned above, an important approach to communities detection in network is based on the satisfaction

of reasonable a priori conditions to have a community. Radicchi et al. [21] proposed two such conditions

defining communities in a strong and a weak sense, respectively. Hu et al. [22] propose two further conditions
defining communities in (what we call) a semi-strong and in an extra-weak sense, respectively. A further

condition, definining communities in an almost-strong sense, was introduced in [23]. In this section, we

give mathematical definitions of these five conditions and discuss some of the properties of corresponding

communities.

Let G = (V,E) be a network with vertex set V and edge set E. Recall that the degree ki of a vertex vi
belonging to V is the number of its neighbors (or adjacent vertices). Let S ⊆ V be a subset of vertices. Then

the degree ki can be separated into two components kini (S) and kouti (S), that is the number of neighbors of

vi inside S and the number of neighbors of vi outside S. Let M be the number of communities of a partition

S1, S2, . . . , SM of V and let A = (Aij) be the adjacency matrix of G, where Aij = 1 if an edge joins vertices

vi and vj and Aij = 0 otherwise.

• Strong Cohesion Condition (SCC): [21]

A set of vertices S forms a community in the strong sense if and only if every one of its vertices has

more neighbors within the community than outside:

∀vi ∈ S kini (S) > kouti (S). (1)

• Almost-Strong Cohesion Condition (ASCC): [23]

A set of vertices S forms a community in the almost-strong sense if and only if every one of its vertices
with degree different from 2 has more neighbors within the community than outside, and every vertex

having degree 2 has at least one neighbor in the same community:

∀vi ∈ S | ki 6= 2 kini (S) > kouti (S) (2)

∀vi ∈ S | ki = 2 kini (S) > 0. (3)

• Semi-Strong Cohesion Condition (SSCC): [22]

A set of vertices S forms a community in the semi-strong sense if and only if every one of its vertices

has more neighbors within the community than the maximum number of neighbors within any other

community:

∀vi ∈ S kini (S) > max
t=1,2,...,M, S 6=St

∑

vj∈St

Aij . (4)

Note that we use a strict inequality in the last formula instead of a non-strict one, as proposed by Hu

et al. [22]. This is done for two reasons: first, to express all five conditions in an uniform way and,

second, because in this form the strong cohesion condition implies the semi-strong one. It is not the
case otherwise as shown on Fig. 1(a). Indeed, the partition into two communities C1 = {1, 2, 3} and

C2 = {4, 5, 6} satisfies the semi-strong condition with equality but not the strong condition.

• Weak Cohesion Condition (WCC): [21]

A set of vertices S forms a community in the weak sense if and only if the sum of internal degrees
within S is larger than the sum of external degrees, that is the number of edges joining S to the rest

of the network V \ S:

∑

vi∈S

kini (S) >
∑

vi∈S

kouti (S). (5)

This is equivalent to the condition that the number of edges within S is at least half the number of edges

in the cut of S. As already observed in [21] the strong cohesion condition implies the weak cohesion

condition, but the converse is not true.
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• Extra-Weak Cohesion Condition (EWCC): [22]

A set of vertices S forms a community in the extra-weak sense if and only if the sum of internal degrees

within S is larger than the maximum number of edges joining a vertex of S to a vertex in some other

community in the rest of the network:
∑

vi∈S

kini (S) > max
t=1,2,...,M, S 6=St

∑

vi∈S

∑

vj∈St

Aij . (6)

Again, we use a strict inequality in the last formula instead of a non-strict one as suggested in [22].

Let us now consider implications between cohesion conditions. Clearly, the strong cohesion condition
implies the weak cohesion condition as inequality (5) is equal to the sum of the inequalities (1) for all vertices

vi ∈ S. The strong cohesion condition implies the semi-strong cohesion condition as they have the same

left-hand side and maxt=1,2,...,M

∑

vj∈St
Aij ≤ kouti (S) ∀vi ∈ S. Note that both conditions are identical when

the number of communities M is equal to 2. Similarly, the weak cohesion condition does imply the extra-weak
condition as left-hand sides are the same and maxt=1,2,...,M, S 6=St

∑

vi∈S

∑

vj∈St
Aij ≤

∑

vi∈S kouti (S). Again,

the right-hand sides are equal when M = 2. The strong conditions imply the almost-strong as the latter is
equivalent to the former, except for vertices of degree 2 for which the almost-strong condition is simply a

weakened version of the strong (the strict inequality being replaced by a non-strict one). Finally, the semi-

strong cohesion condition implies the extra-weak cohesion condition as summing the left-hand side of (4) gives

the left-hand side of (6) and summing the right hand-side of (4) gives
∑

vi∈S maxt=1,2,...,M, S 6=St

∑

vj∈St
Aij =

maxt=1,2,...,M, S 6=St

∑

vi∈S

∑

vj∈St
Aij , that is the right hand side of (6). These implications are represented

as follows:
ASCC ⇐ SCC ⇒ SSCC

⇓ ⇓
WCC ⇒ EWCC

These implications are asymmetric, i.e., the reverse implication does not hold. Consider for example the graph

on Fig. 1(a). This graph with 6 vertices and 9 edges admits a partition into two communities C1 = {1, 2, 3} and
C2 = {4, 5, 6} satisfying the conditions WCC and EWCC, but not the conditions SCC and SSCC. Moreover,

no other partition in two communities satisfies one or the other of these conditions. So, the implications

SCC ⇒ WCC and SSCC ⇒ EWCC are asymmetric. Let us next consider the graph of Fig. 1(b). This

graph with 9 vertices and 14 edges admits a partition into three communities C1 = {1, 2}, C2 = {3, 4, 5} and

C3 = {6, 7, 8, 9} satisfying the condition EWCC, but not the condition WCC.

3 Cohesion Conditions in modularity maximization

We next check if the optimal solutions obtained by modularity maximization for a set of real-world problems

do satisfy or not, and to which degree, the five cohesion conditions described above. To that effect, we use

1

2

34

5

6

1

2

3

4567

8

9

Figure 1: (Color online) (a) Partition satisfying the conditions WCC and EWCC, but not the conditions SCC
and SSCC. (b) Partition satisfying the condition EWCC but not the condition WCC.
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the optimal solutions of 11 test problems whose maximum modularity partitions have been obtained exactly
using the methods presented in [14–16]. The five cohesion conditions have been coded and checked for each

cluster of each such partition. Results are summarized in Table 1, which shows that:

• The strong cohesion condition (SCC) appears to be difficult to satisfy: while it holds for at least one

of the communities of each optimal partition for all datasets but one, it is satisfied by all communities
of one partition only. On average, the strong condition holds for 37.93% of the communities taken

together.

• The almost-strong cohesion condition (ASCC) is also difficult to satisfy. It is satisfied by zero to
three more clusters than the strong condition. On average, this condition is satisfied by 53.45% of the

communities.

• The semi-strong cohesion condition (SSCC) again appears to be difficult to satisfy. Indeed, once more

for one only of the problems this condition holds for all communities in the optimal partition. The

average number of communities which satisfy the semi-strong condition is 51.72% of them.

• The weak cohesion condition (WCC) appears to be much easier to satisfy than the former three. Indeed,
it is satisfied by all communities of 8 out of 11 of the optimal partitions. When this is not the case,

that is for dolphins, p53 protein, and political books, only one community does not satisfy the
weak cohesion condition. The average number of communities which satisfy this condition is 94.83%

of them. The difference between the maximum modularity partitions obtained without and with the

weak cohesion condition will be further studied in Sect. 5.

• The extra-weak cohesion condition (EWCC) appears to be easy to satisfy. Indeed, it it verified by all

but one of the optimal partitions, that is by political books, and in that case it does not hold for

one community only. The average number of communities which satisfy the extra-weak condition is
98.28% of them.

In the next section we proceed to add the five types of cohesion constraints, one at a time, to existing

models for modularity maximization.

Table 1: Networks from real-world problems: network dimension (n = number of vertices, m = number of
edges), number of clusters (M) found by an exact algorithm for modularity maximization and number of
clusters verifying the strong condition (M strong), the almost-strong condition (M almost–strong), the semi-
strong condition (M semi–strong), the weak condition (M weak) and the extra-weak condition (M extra–
weak). Percentage of communities satisfying each of these conditions are given in the last line.

dataset n m M M strong M almost–strong M semi–strong M weak M extra–weak

strike [27] 24 38 4 2 3 2 4 4
karate [28] 34 78 4 1 2 2 4 4
Korea1 [29] 35 69 5 2 2 3 5 5
Korea2 [29] 35 84 5 3 4 3 5 5
sawmill [30] 36 62 4 4 4 4 4 4
dolphins small [31] 40 70 6 3 6 3 6 6
graph [32] 60 114 7 0 2 3 7 7
dolphins [31] 62 159 5 2 2 3 4 5
Les Misérables [33, 34] 77 254 6 2 2 3 6 6
p53 protein [35] 104 226 7 1 2 2 6 7
political books [36] 105 441 5 2 2 2 4 4

percentage of communities

satisfying the condition 37.93% 53.45% 51.72% 94.83% 98.28%

4 Adding cohesion constraints to modularity maximization models

Exact modularity maximization without further constraints has been studied in [14–16]. Exact methods

are applied using two different formulations. The first one is a reformulation of the problem as a clique

partitioning problem [37], the second one is a mixed-integer quadratic optimization problem [14, 16].
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Adding cohesion constraints is more or less difficult according to the approach selected. In clique parti-
tioning assignment of entities to communities is not explicitly considered: it only appears as a consequence

of the optimal solution, so adding cohesion constraints does not seem to be easy in that framework. Con-

trarywise, the quadratic mixed-integer formulation already uses variables to denote assignment of vertices or

of edges to communities. So, in that case cohesion constraints can be added easily.

We now describe these new constraints in more detail. Before that we recall the main elements in the

model for modularity maximization of [14]. The objective function is the modularity Q of the network under

study, that is the sum of modularities of its communities:

Q =

M
∑

s=1

[

ms

m
−

(

Ds

2m

)2
]

, (7)

where ms denotes the number of edges in community s, that is the subgraph induced by Ss, Ds denotes
the sum of degrees ki of the vertices of community s, and M is the number of communities which is not a

priori known. Binary variables are then used to identify the communities to which each vertex and each edge

belongs:

Xrs =

{

1 if edge r belongs to community s

0 otherwise

for r ∈ E and s = 1, 2, . . .M and

Yis =

{

1 if vertex vi belongs to community s

0 otherwise

for vi ∈ V .

Constraints involving X and Y variables express that an edge belongs to a community only if both its

end vertices belong to that community:

∀r = {vi, vj} ∈ E, ∀s ∈ {1, . . . ,M} Xrs ≤ Yis

∀r = {vi, vj} ∈ E, ∀s ∈ {1, . . . ,M} Xrs ≤ Yjs.

In fact, due to maximization, this edge will belong to this community if the two conditions given above
are satisfied (hence it is not necessary to add the constraint Xrs ≥ Yis + Yjs − 1 and Xrs ≥ 0). Further

constraints are presented in [14] and allow bounding the cardinality of each community from below or above,
using binary variables Fs such that Fs is equal to 1 if the community s is nonempty, 0 otherwise. Finally,

symmetry breaking constraints are used, as:
∑

vi∈V |i≤M, s=1,...,i

Yis = 1, (8)

and, following Plastria [38]:

∀s ∈ {3, . . . ,M − 1} ∀i ∈ {s, . . . , n}
∑

j=2,...,i−1

∑

ℓ∈{1,...,s−1}

Yjℓ −
∑

ℓ∈{1,...,s}

Yiℓ ≤ i− 3. (9)

The resulting model, derived from that presented in [14], is the following:

max

M
∑

s=1

[

ms

m
−

(

Ds

2m

)2
]

(10)

s.t. ∀r = {vi, vj} ∈ E, ∀s ∈ {1, . . . ,M} Xrs ≤ Yis (11)

∀r = {vi, vj} ∈ E, ∀s ∈ {1, . . . ,M} Xrs ≤ Yjs (12)

∀s ∈ {1, . . . ,M} ms =
∑

r∈E

Xrs (13)

∀vi ∈ V

M
∑

s=1

Yis = 1 (14)
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∀s ∈ {1, . . . ,M} Ds =
∑

vi∈V

kiYis (15)

∀s ∈ {2, . . . ,M} Fs ≤ Fs−1 (16)

∀s ∈ {1, . . . ,M}
∑

r∈E

Xrs ≥ Fs (17)

∀s ∈ {1, . . . ,M}
∑

r∈E

Xrs ≤ (m− 1)Fs (18)

∑

vi∈V |i≤M, s=1,...,i

Yis = 1 (19)

∀s ∈ {3, . . . ,M − 1} ∀i ∈ {s, . . . , n}
∑

j=2,...,i−1

∑

ℓ∈{1,...,s−1}

Yjℓ −
∑

ℓ∈{1,...,s}

Yiℓ ≤ i− 3 (20)

∀vi ∈ V, ∀s ∈ {1, . . . ,M} Yis ∈ {0, 1} (21)

∀s ∈ {1, . . . ,M} Fs ∈ {0, 1} (22)

∀r ∈ E, ∀s ∈ {1, . . . ,M} Xrs ∈ R. (23)

To this basic model we add cohesion constraints as follows. Notice that, for each cohesion condition, the
constant 1 in the right-hand side transforms the strict inequality into a non-strict one.

• SCC:

∀s ∈ {1, . . . ,M}, vi ∈ V
∑

vj∈V :j 6=i

AijYjs ≥ Yis

(

⌊
ki

2
⌋+ 1

)

. (24)

Indeed, it follows from the definition of SCC that:

∀s ∈ {1, . . . ,M}, vi ∈ V
∑

vj∈V :j 6=i

AijYjs ≥ ki −
∑

vj∈V :j 6=i

AijYjs + 1, (25)

which expresses the fact that the in-degree of vertex vi is strictly greater than the out-degree, i.e., than

the degree minus the in-degree. It is valid for unweighted graphs where all coefficients Aij are integer.

A few algebraic manipulations lead to:

∀s ∈ {1, . . . ,M}, vi ∈ V
∑

vj∈V :j 6=i

AijYjs ≥ ⌊
ki

2
⌋ − (1− Yis) ⌊

ki

2
⌋+ Yis, (26)

as it is easily checked for both cases Yis = 1 and Yis = 0. Formula (24) follows.

• ASCC:

The almost-strong cohesion condition can be expressed in terms of the variables Y as follows:

∀s ∈ {1, . . . ,M}, vi ∈ V | ki 6= 2
∑

vj∈V :j 6=i

AijYjs ≥ Yis

(

⌊
ki

2
⌋+ 1

)

(27)

∀s ∈ {1, . . . ,M}, vi ∈ V | ki = 2
∑

vj∈V :j 6=i

AijYjs ≥ Yis. (28)

• SSCC:

The semi-strong cohesion condition can be expressed in terms of the variables Y as follows:

∀s, t ∈ {1, . . . ,M} | s 6= t, vi ∈ V
∑

j∈V :j 6=i

AijYjs ≥
∑

vj∈V :j 6=i

AijYjt + 1− (1− Yis)(ki + 1). (29)

Indeed, consider the following two cases: (i) Yis = 1, that is vertex vi belongs to community s. Then

the left-hand side term of (29) is equal to the in-degree of vi, the first term of the right-hand side
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represents the part of the out-degree of vi corresponding to edges with extremities in community s and
t 6= s. As the last term disappears, the condition expresses that this partial out-degree must be strictly

smaller than the in-degree of vi. As similar conditions hold for all other communities, it is clear that

such a relation holds for the community for which the partial out-degree of vi is largest. (ii) Yis = 0.

Then the right-hand side of (29) is non-positive and the condition is verified.

• WCC:

The weak cohesion condition can be written as follows in terms of variables X and Y :

∀s ∈ {1, . . . ,M} 4
∑

r∈E

Xrs ≥
∑

vi∈V

kiYis + 1. (30)

Indeed, the sum of in-degrees for community s may be written as 2
∑

r∈E Xrs (where the factor 2 is

due to edges having both vertices in the community) and must be greater than the sum of out-degrees

of community s, that is the sum of all the degrees minus the sum of in-degrees for vertices of that
community:

∑

vi∈V kiYis − 2
∑

r∈E Xrs.

• EWCC:

The extra-weak cohesion condition was proposed in [22] without a mathematical expression. It can be

written as follows:

∀s, t ∈ {1, . . . ,M} | s 6= t, 2
∑

r∈E

Xrs ≥
∑

r={vi,vj}∈E

(YisYjt + YjsYit) + 1. (31)

The left-hand side of (31) is equal to twice the number of edges in community s. The right-hand side

is equal to the number of edges with an end vertex in s and the other in community t. This expression
can be linearized introducing ∀r = {vi, vj} ∈ E non-negative variables Zr = YisYjt and Z ′

r = YjsYit:

∀s, t ∈ {1, . . . ,M} | s 6= t, 2
∑

r∈E

Xrs ≥
∑

r∈E

(Zr + Z ′
r) + 1, (32)

and adding linearization constraints ∀s, t ∈ {1, . . . ,M} | s 6= t:

Zr ≤ Yis (33)

Zr ≤ Yjt (34)

Zr ≥ Yis + Yjt − 1 (35)

Z ′
r ≤ Yjs (36)

Z ′
r ≤ Yit (37)

Z ′
r ≥ Yjs + Yit − 1. (38)

5 Results

We first compare the results of the simulated annealing heuristic of Wang et al. [26] with those of our exact

algorithms [16]. Three problems are common to both lists of problems solved in [16] and [26]: karate,

dolphins, political books. In [26], results are presented for direct optimization and for considering the
weak cohesion condition through a constrained model. In both cases, the value of modularity Q is given

together with the number of communities of the optimal partition found and the number of such communities

which satisfy the weak cohesion condition. As simulated annealing is a probabilistic optimization heuristic,

results depend on the seed used in its random number generator. The Q values are given with limited

precision, i.e., only 2 significant digits. Comparing first the results of a direct optimization with the optimal

partitions found in [16], we observe that:

• the number of communities and the proposed solutions differ from the optimal ones in several cases:

dolphins (4 instead of 5), political books (4 instead of 5);

• the optimal solution is found for the smallest problem, that is karate.
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Turning now to optimization subject to weak cohesion constraints, again the same three problems are
common to the list of those solved by the algorithms of the present paper (see Table 2) and the constrained

optimization one of [26]. Results are as follows. For karate, the number of communities found in [26] is

optimal but the solution is not as its Q value is 0.40 and the optimal solution is 0.41979 with the weak

condition satisfied by all communities. For dolphins and political books, the number of communities

found is optimal, while the modularity value is 0.52 in [26] versus 0.526799 with the algorithm of the present
paper for dolphins, and 0.53 versus 0.526938 for political books (so, up to the precision of two digits,

the solution found in [26] is optimal).

Table 2: Modularity maximization with weak and extra-weak cohesion conditions. Network dimension (n =
number of vertices, m = number of edges), number of clusters found (M , Mw, Mew) and corresponding
modularity value (Q, Qw, Qew) for the standard modularity maximization problem and the modularity
maximization problem with weak and extra-weak constraints.

network modularity maximization weak extra-weak

dataset n m M Q Mw Qw Mew Qew

strike 24 38 4 0.561981 4 0.561981 4 0.561981
karate 34 78 4 0.41979 4 0.41979 4 0.41979
Korea1 35 69 5 0.477736 5 0.477736 5 0.477736
Korea2 35 84 5 0.450822 5 0.450822 5 0.450822
sawmill 36 62 4 0.550078 4 0.550078 4 0.550078
dolphins small 40 70 4 0.620714 4 0.620714 4 0.620714
graph 60 114 7 0.502655 7 0.502655 7 0.502655
dolphins 62 159 5 0.528519 4 0.526799 5 0.528519
Les Misérables 77 254 6 0.560008 6 0.560008 6 0.560008
p53 protein 104 226 7 0.535134 6 0.534488 7 0.535134
political books 105 441 5 0.527237 4 0.526938 4 0.526938

average 5.090909 0.521334 4.818182 0.521092 5 0.521307

In Table 2 we report the results obtained by unconstrained modularity maximization and modularity

maximization subject to the weak constraint and the extra-weak constraint respectively. It appears that the

only three cases in which results obtained with the weak constraints differ from the unconstrained case are

dolphins, p53 protein and political books (represented in bold in Table 2).

We now discuss these three cases in more detail.

• dolphins: there are 5 communities with a modularity of 0.528519 in the unconstrained solution while

there are 4 communities with a modularity of 0.526799 in the constrained solution. Detailed member-

ships of both solutions are given in Tables 3 and 4. It appears that the smallest community, that is

C3, is split among three of the four other communities: dolphin 40 goes to community Cw
2
, dolphins 4,

9, and 60 go to Cw
3
, and dolphin 37 to Cw

4
. However, these three assignments entail further changes:

dolphins 21 and 45 move from C1 to Cw
4

while dolphins 54 and 62 move from C5 to Cw
1
. Thus, nine

dolphins change community when the weak condition constraint is added.

• p53 protein: there are 7 communities with a modularity of 0.535134 in the unconstrained solution

while there are 6 communities with a modularity of 0.534488 in the constrained solution. Both partitions

are depicted in Fig. 3. It appears that a small cluster with five entities in blue in the center of the
figure does not satisfy the weak cohesion condition. This community is split, four entities going to the

cluster below it and one entity to the cluster above.

• political books: there are 5 communities with a modularity of 0.527237 in the unconstrained solution

while there are 4 communities with a modularity of 0.526938 in the constrained solution. Both partitions

are depicted in Fig. 4. It appears that the smallest community of the unconstrained solution, that is

the community containing books 49, 50, and 58 depicted in orange on the right side of the figure, does

not satisfy the weak cohesion condition. All of these three books move to the community above it.
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Table 3: Partition obtained with the standard modularity maximization model on dolphins dataset.

C1 C2 C3 C4 C5

1, 3, 11, 21
29, 31, 43, 45, 48

2, 6, 7, 8, 10
14, 18, 20, 23
26, 27, 28, 32
33, 42, 49, 55
57, 58, 61

4, 9, 37, 40
60

5, 12, 16, 19
22, 24, 25, 30
36, 46, 52, 56

13, 15, 17, 34
35, 38, 39, 41
44, 47, 50, 51
53, 54, 59, 62

Table 4: Partition obtained with the modularity maximization model and the weak cohesion constraint on
dolphins dataset.

Cw

1
Cw

2
Cw

3
Cw

4

1, 3, 11, 29
31, 43, 48, 54

62

2, 6, 7, 8, 10
14, 18, 20, 23
26, 27, 28, 32
33, 40, 42, 49
55, 57, 58, 61

4, 5, 9, 12, 16
19, 22, 24, 25
30, 36, 46, 52

56, 60

13, 15, 17, 21
34, 35, 37, 38
39, 41, 44, 45
47, 50, 51, 53

59

It appears from Table 2 that the only case in which the modularity maximization constrained with the

extra-weak constraint differs from the unconstrained solution is political books, for which the constrained
optimal partition contains 4 communities.

The average reduction in modularity when adding extra-weak constraints is of 0.000027, i.e., it is very

moderate. Reduction in modularity when imposing the weak condition is slightly larger, i.e., 0.000242.

The effect of imposing the other cohesion conditions is much larger, as shown in Table 5. For the

strong and semi-strong conditions, average modularity is reduced from 0.521334 to 0.354608; for the almost-

strong conditions from 0.521334 to 0.486862. We also observe drastic reductions in the average number of

communities, that is reduced from 5.090909 to 2.727273 for the strong and semi-strong conditions, from
5.090909 to 3.90909 for the almost-strong condition. The effect of imposing the strong and the semi-strong

conditions are the same for the considered datasets, for which the same optimal partitions are obtained.

The effect of introducing almost-strong constraints instead of strong ones is less drastic, as already observed

in [23].

Table 5: Modularity maximization with strong, almost-strong, and semi-strong condition. Network dimension
(n = number of vertices, m = number of edges), number of clusters found (Ms, Mas, Mss) and corresponding
modularity value (Qs, Qas, Qss) for the standard modularity maximization problem and the the modularity
maximization problem with strong, almost-strong and semi-strong constraints.

network modularity maximization strong almost–strong semi–strong

dataset n m M Q Ms Qs Mas Qas Mss Qss

strike 24 38 4 0.561981 2 0.257271 3 0.54813 2 0.257271
karate 34 78 4 0.41979 2 0.132807 4 0.402038 2 0.132807
Korea1 35 69 5 0.477736 4 0.383638 4 0.383638 4 0.383638
Korea2 35 84 5 0.450822 3 0.424036 4 0.432469 3 0.424036
sawmill 36 62 4 0.550078 4 0.550078 4 0.550078 4 0.550078
dolphins small 40 70 4 0.620714 3 0.573571 4 0.620714 3 0.573571
graph 60 114 7 0.502655 1 0 4 0.438135 1 0
dolphins 62 159 5 0.528519 2 0.359242 3 0.480598 2 0.359242
Les Misérables 77 254 6 0.560008 4 0.437868 6 0.52921 4 0.437868
p53 protein 104 226 7 0.535134 2 0.284204 4 0.472502 2 0.284204
political books 105 441 5 0.527237 3 0.497969 3 0.497969 3 0.497969

average 5.090909 0.521334 2.727273 0.354608 3.909091 0.486862 2.727273 0.354608
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Figure 2: (Color online) Partitions obtained on the dolphins network using the original modularity max-
imization model (left) and the modularity maximization model with the weak cohesion constraint (right).

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

4445

46

47

48

49

50

51

52 53

54 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
78

79

80

81

82

83

8485

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54 55
56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77 78

79
80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Figure 3: (Color online) Partitions obtained on the p53 network using the original modularity maximization
model (left) and the modularity maximization model with the weak cohesion constraint (right).
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Figure 4: (Color online) Partitions obtained on the political books network using the original modularity
maximization model (left) and the modularity maximization model with the weak cohesion constraint (right).
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6 Conclusions

The effect of adding five kinds of cohesion conditions to a modularity maximization problem has been studied.

After reviewing the strong, almost-strong, semi-strong, weak, and extra-weak cohesion conditions, we check

whether they were satisfied by all communities in maximum modularity partitions of some known real world

problems. It appears that the strong and semi-strong cohesion conditions are very strict. Indeed, all of the

communities of an optimal partition satisfy these conditions for one dataset only. The almost-strong cohesion

condition is slightly less strict, but still quite stringent. The weak cohesion condition is more intuitive and
satisfied by all communities of 8 out of the 11 optimal partitions. The extra-weak cohesion condition appears

to be very lax as there is only a single community of only one of the optimal unconstrained partitions which

does not satisfy it.

We then show how these five cohesion constraints can be added, one at a time, to a quadratic convex mixed-

integer optimization formulation proposed for modularity maximization. For three real world datasets, we

discuss in detail the modifications in the optimal solutions due to the imposition of weak cohesion constraints.

Adding cohesion constraints to a modularity maximization model appears to be feasible and in particular

for the weak condition yields intuitive and appealing results. While the present work is based on the model

of Xu et al. [14], we will try to explore the addition of cohesion constraints to other models for modularity

maximization.
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