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This paper introduces several algorithms which build optimal configurations of Air Traffic Control sectors, taking into account traffic prediction, sector capacities and the number of available control positions.

Introduction

The first step of the Air Traffic Flow Management (ATFM) process is to define the predicted schedule for each Air Traffic Control Center one or two days ahead. This is done by forecasting the traffic and by comparing this estimation to the available resources, in order to determine what sector configuration would be the most adapted to the predicted traffic and if some overloads can be foreseen.

In Europe, the ACC schedule is elaborated by the Flow Management Position (FMP) of each ATC Center. Some automated tools are available to help the operators to perform this task. For example the French FMP operator can choose a sector configuration among a set of pre-defined configurations, and match it with the traffic demand so that traffic overloads appear immediately. But apart from his own experience, he has no way of knowing if the chosen configuration is the most adequate, or if another one could better balance the traffic between the manned control positions. An additional drawback of the current method is that it is limited to a set of statically defined configurations, which is a fairly small subset of all the possible ways to combine sectors, as we will see later.

The present paper describes two classical tree search algorithms and a genetic algorithm that take as input the traffic flows and build optimal sector configurations considering the airspace capacity constraints and also the maximum number of con-trol positions that can be manned at each time of the day. This optimization is made in a realistic context, using the airspace description data, the traffic data, the number of available control positions, and the sector capacities of the French ATC centers.

Related work

The problem of optimizing sector configurations has already been addressed in [START_REF] Delahaye | Genetic algorithms for automatic regroupement of air traffic control sectors[END_REF], although with a less realistic model, and also in [START_REF] Verlhac | Optimization of opening schemes[END_REF]. In [START_REF] Delahaye | Genetic algorithms for automatic regroupement of air traffic control sectors[END_REF], genetic algorithms were used in a toy ATC network to balance workloads by combining sectors, with a chosen number of control positions. Only convex sectors were considered.

In [START_REF] Verlhac | Optimization of opening schemes[END_REF], integer programming techniques were used in a realistic context to minimize the sum of traffic overloads (called deficits of capacity) by selecting patterns among a reduced set of statically defined configurations. A pattern is a configuration associated to a time period. The number of control positions is an input parameter, as in [START_REF] Delahaye | Genetic algorithms for automatic regroupement of air traffic control sectors[END_REF]. An attempt is made to consider the traffic throughput as a variable, by allowing some macroscopic shifting of traffic loads along the time axis or from a sector to another. The convergence of the iterative algorithm which is used in that case seems not sure. However, the results show significant improvements when compared to the current manual methods.

The optimization problem addressed in the present paper is different : the optimum we are trying to reach is the sector configuration for which the traffic load is as close as possible to the capacity of each sector or group of sectors of the configuration, so traffic overloads as well as traffic under-loads are considered. The search of an optimal configuration is not restricted to a subset of manually entered configurations, but explores the whole set of possible configurations which can be obtained by combining operational ATC sectors. The number of control positions is a variable of the cost function we are trying to minimize, constrained by an upper limit as there may not always be enough ATC controllers to man all the positions that would be needed.

Model

A "good" configuration is a configuration for which there are no traffic overloads (or the smallest possible ones), and for which the traffic load is balanced as well as possible between the manned control positions, while arming the minimum number of positions. Let us formulate this as a minimization problem.

Let us define the function ∆ by

∆(x, t) = workload(x, t) -capacity(x, t)
where x is a sector or group of sectors, t is the time, workload is the traffic load (for example N aircraft entering sector x between t and t + w, where w is a chosen time window), and capacity is the threshold value for the workload. The capacity of each sector or group of sectors may also depend on specific criterions (like military activity...). The operator may allow some tolerances around the value of the capacity. These lower and upper tolerances l and u are taken into account in the evaluation of a configuration. For this, we will need to define the overloads and underloads as follows :

∆ ++ (x, t) = ∆(x, t) if ∆(x, t) > u 0 otherwise ∆ + (x, t) = ∆(x, t) if 0 ≤ ∆(x, t) ≤ u 0 otherwise ∆ -(x, t) = |∆(x, t)| if l ≤ ∆(x, t) ≤ 0 0 otherwise ∆ --(x, t) = |∆(x, t)| if ∆(x, t) < l 0 otherwise
Let us then define the following functions :

N pos (t) the number of control positions in the configuration

C ++ (t) = x∈conf ig (∆ ++ (x, t)) 2 C + (t) = x∈conf ig ∆ + (x, t) C -(t) = x∈conf ig ∆ -(x, t) C --(t) = x∈conf ig (∆ --(x, t)) 2
The problem will then consist in minimizing the following cost function :

cost conf ig = a.C ++ +b.N pos +c.C --+d.(C + +C -)
(1) while respecting the constraint : N pos (t) ≤ M pos (t) where a, b, c, and d chosen factors of decreasing value and M pos is the maximum number of control positions available at each time of the day.

Instead of minimizing cost conf ig , and in order to take better account of the relative weights of the different costs, we will in fact maximize eval conf ig , such that the k 1 most significant digits of eval conf ig (x, t) refer to the cost C ++ , the next k 2 digits refer to N pos , and so on:

xxxxx k 1 xx k 2 xxxxx k 3 xxx k 4 eval conf ig = 10 k 2 +k 3 +k 4 × N (k 1 , C ++ ) +10 k 3 +k 4 × N (k 2 , N pos ) +10 k 4 × N (k 3 , C --) +N (k 4 , C + + C -) (2 
) where N is a function such that

N (k i , C) = max(0, (10 k i -1) -C)
and k 1 , k 2 , k 3 , and k 4 are chosen such that (10 k i -1) is an upper bound of the corresponding cost, if possible.

Problem complexity

The difficulty of the problem is mostly due to the high number of possible configurations which can be built from a set of sectors. A configuration is the mapping of n sectors onto k control positions.

Let us first try to find how many ways there are to part a set of n elements into k subsets. If P (n, k) is this number, it verifies the following equations :

∀n ≥ 1 P (n, 1) = 1 (one group of n elements) P (n, n) = 1
(one partition of n groups of one element)

P (n, k) = 0 if k > n (we cannot make more than n groups) P (n, k) = k * P (n -1, k) + P (n -1, k -1) if 1 < k < n
The number of all possible partitions will then be P (n) = n k=1 P (n, k). For 17 sectors (Brest ATCC), this would give around 83 billion possibilities. However, this value is not realistic : many of the partitions could not be used in an operational context. For example, a partition containing a group in which one sector is a neighbor of no other sector in the group is not a valid configuration. The set of all possible partitions (that we have counted above) could theoretically be obtained by exploring the tree of all possibilities , although this would become quickly impractical when the number of sector increases.

In order to estimate the difficulty of the real problem, let us consider only the operational sectors and groups of sectors defined in each ACC database. We will obtain all operational configurations by exploring a tree which nodes are lists of couples (g, G) (cf figure 1 illustrating the Branch&Bound), where g is a group under construction and G is the set of valid groups compatible with g in the context of the configuration under construction. An element h of G is "compatible" with g if it contains all the sectors of g, but no sector of the other groups in the configuration (the other "g"'s of the node). If one of the G sets is empty, then there is no need to continue the search from the considered node : it will lead to no valid configuration. The methods presented above allow us to count the number of configurations and estimate the difficulty of the problem. The results for the French ATC centers are shown in table 1, which highlights the combinatorial relation between the number of partitions and the number of sectors.

The number of operational configurations which we can build with the sectors or groups of sectors described in the ATCCs airspace data goes from a few hundreds to a half million. So, we can expect that the use of exhaustive tree search techniques will lead to optimal configurations within a reasonable computation time, at least for relatively small ATC centers and with sector combinations restricted to the groups described in the ATCCs airspace data. However, as the sector configuration optimization problem may be extended to larger ATCCs, and as we may wish to use a wider range of sector combinations, genetic algorithms were also experimented to solve the problem.

Classical algorithms

A basic algorithm: In the previous section, we have mentioned an algorithm which builds all the possible operational configurations.

A basic optimization method consists in evaluating the cost (cf definition 1) of each configuration in order to find the best one. The basic algorithm explores all the configurations. It is memory and time consuming, but complete : we can be sure that it returns the optimum of the evaluation function. So it will be used as a reference for the other algorithms presented hereafter. & bound algorithm illustrated in figure 1 is to avoid exploring every branch of the tree. To do so, it needs to evaluate the nodes in order to decide, by comparison with the best configuration found so far, whether to continue or not the search along a given branch. The cost (resp. evaluation) of a node must be a lower bound (resp. an upper bound) of all the costs (resp. evaluations) of configurations which can be reached from that node. A node of our tree search algorithm is a configuration under construction (see figure 1), i.e. a list of couples (g, G), where g is a group under construction and G is the set of valid groups compatible with g in the context of the configuration under construction.

For a better understanding of this notion of compatibility, let us consider node 6 of the example shown in figure 1. This node is represented by : ({1}, {s, d}) ({2}, {s, a}).

The valid groups compatibles with the group under construction {1} are the singleton s, which is {1}, and the group d = {1, 5}. These groups are the only ones which contain {1} but not {2}.

The cost function for a node is similar to the cost of a configuration. Let us define a function best such that best(G) returns the element h (a sector or group of sectors) of G, for which the difference workload(h, t)capacity(h, t) is the smallest possible underload, or the smallest possible overload if all groups of G are overloaded. We will then define the cost (resp. evaluation) of a node as in definition 1 (resp. 2), except that N pos will be the number of couples (g, G) in the node, and that only ∆ ++ and ∆ + will be considered, taking best(G) as input instead of an operational sector x of a configuration.

An algorithm inspired from A * : Like the Branch & bound, the A * is a tree search algorithm. However, instead of simply storing the best leaf found so far, all the explored nodes are stored and sorted by valuation.

In order to do so, the A * as described in [START_REF] Pearl | Heuristics[END_REF] needs a cost function defining the cost of each state transition, and a function (called heuristic) underestimating the cost of the remaining transitions between the current node and the end of the search.

For our sector configuration problem, we will try to minimize the cost conf ig function described in definition 1, by searching a path in the tree illustrated in figure 1. But instead of comparing the node evaluation with the evaluation of the best configuration found so far like in figure 1, the nodes already explored are stored into a priority queue sorted according to the node eval-uation. The A * will then iteratively consider the node with lowest cost, evaluate its children nodes and insert them in the priority queue, until a leaf of the tree is reached. This leaf is then the optimal sector configuration. The evaluation of a configuration and a node is the same as in 1 and the Branch & bound algorithm respectively.

Genetic algorithm

A genetic algorithm has also been tested to solve the sector configuration problem. The genetic algorithm considers a population of chromosomes, which evolves by crossover, mutation, and selection of the fittest individuals, as described in [START_REF] Goldberg | Genetic Algorithms[END_REF] and [START_REF] Michalewicz | Genetic algo-rithms+data structures=evolution programs[END_REF].

A chromosome will be a sector configuration. Each chromosome is composed of several genes. A gene is either an elementary sector or a group of sectors. A fitness value is assigned to each chromosome. The raw fitness f of a configuration will be given by eval conf ig (see definition 2).

A clusterized sharing operator is applied to the raw fitnesses. The aim of sharing is to avoid that a chromosome with a good fitness reproduces itself to the detriment of the other chromosomes, thus narrowing the search to a single optimal or suboptimal mode. The chromosomes clustering of this sharing operator is based on distance criteria. For our problem, the difficulty to implement sharing lies in the definition of a "distance" between sector configurations. Like the distance of Hamming which uses the number of genes that differ between two chromosomes, the pseudo-distance that was chosen for our problem is based on a gene comparison, except that the two chromosomes may not have the same number of genes. Let n i (respectively n j ) be the number of genes of the chromosome i (respectively j). The chosen pseudo-distance is defined by d(i, j) = min(n i , n j )n where n is the number of identical genes between the two chromosomes. In addition to the sharing operator, a scaling operator (sigma truncation) is applied, in order to smooth the differences between fitnesses of good chromosomes and bad ones. This way, the selection will let a better chance to bad chromosomes to reproduce themselves, and the domain will be more widely explored.

The crossover operator splits the two parent configurations and completes each half configuration with the other parent's genes. The resulting incomplete chromosome is then completed with valid groups or sectors. A local fitness is associated to each gene in order to select the parents genes in decreasing order of local fitness. It was shown in [START_REF] Durand | Genetic crossover operator for partially separable functions[END_REF] that an adapted crossover operator using local fitnesses increases the convergence rate for the optimization of partially separable functions. In our problem, the local fitness is similar to the raw fitness of the chromosome, although it takes account of the overloads and underloads of a single gene. The mutation operator first randomly chooses one gene of the chromosome. Another gene is randomly chosen among a list comprising the first chosen gene and its neighbors (sectors or groups of sectors of the configuration which have a common border with the first chosen sector or group of sector). The sectors of the chosen genes are then recombined into one or several new genes (up to three). The splitting of a single group would allow only mutations towards less loaded configurations with an increasing number of control positions, whereas the recombination of two neighbors may lead to configurations with less items, which may be interesting when the traffic is low.

Results

A graphical interface has been developed to display the results of the optimizations. The languages Ocaml and OcamlTk were used to code respectively the algorithms and the interface. The program runs on a PC Pentium IV (1.8 GHz), with Linux as operating system.

The input parameters are the date, the selected ATCC, the type of traffic (raw demand, final demand...), the capacity tolerances, the maximum number of available control positions, the chosen time step and time horizon (for the computation of traffic flows). The program displays an optimized sector configuration for each time subdivision of the day. The color code is : Green (grey) when the traffic load is under the capacity minus the lower tolerance for the capacity ; Yellow (white) when the traffic load is between the margins of tolerance ; Red (dark grey) when the traffic load is over the capacity plus the upper tolerance.

The upper part of figure 2 shows the result of the optimization for Bordeaux ATCC, with the raw traffic demand and with no constraint on the available number of control positions. In this case, the remaining overloaded sectors are necessarily elementary sectors, or operational groups which cannot be split (some elementary sectors are defined and used only to improve flexibility by choosing different ways to combine two of them into an operational group).

The lower part of figure 2 shows the same optimization but with constraints on the available number of positions. These constraints are taken into account in the evaluation functions by dividing by two the evaluation when the number of control positions in the configuration is greater than the available maximum, thus penalizing these configurations. The constraints used in the right part of figure 2 are directly issued from the ACC schedule that was sent to the CFMU by Bordeaux FMP for that day. These constraints induce additional overloads (like between 4 and 5 o'clock in the example) on combined sectors which the al-gorithms are unable to split because there are not enough available control positions.

By comparing the two schedules we see that Bordeaux ATCC was under-capacitive in the early morning, and over-capacitive at other times of the day.

The tree search algorithms provide optimal sector configurations for each ATCCs, verified with the basic algorithm when possible (for Brest, Paris and Reims ATCCs). The table 2 shows the computation times for these algorithms, with the raw traffic demand and no constraint on the number of maximum positions. Although there are more possible configurations for Bordeaux ATCC than for Aix ATCC (see table 1 about the problem complexity), the computation time for Aix ATCC is higher than for Bordeaux as there are more sectors in Aix than in Bordeaux. The tree of all possible configurations is searched "depth first", and the depth depends on the number of sectors.

For the genetic algorithm, 10 different values of the random seed were tested for Bordeaux ATCC, with a crossover probability of 0.6 and a mutation probability of 0.2. Table 3 shows for each time step of the day the number of configurations which where different from the optimum. The lines labelled (+1) show the number of occurrences when there was exactly one more control position in the configuration found by the GA than in the optimal configuration. The lines labelled (> +1) show the number of occurrences when the difference was greater than one control position.

When they were not optimal, the solutions found were qualitatively close to the optimum.

The genetic algorithm is slower than the tree search methods, but provides several optimal or near-optimal solutions. It is not very significant

Step 0 1 2 3 4 5 6 7 8 9 10 11 220 gen. fails 0 0 0 0 0 0 0 0 2 0 1 5 120 elem. +1 0 0 0 0 0 0 0 0 0 0 0 2 > +1 0 0 0 0 0 0 0 0 0 0 0 0 220 gen. fails 0 0 0 0 0 0 0 0 3 0 0 3 130 elem. +1 0 0 0 0 0 0 0 0 0 0 0 1 > +1 0 0 0 0 0 0 0 0 0 0 0 1 300 gen. fails 0 0 0 0 0 0 0 0 0 0 0 0 220 elem. +1 0 0 0 0 0 0 0 0 0 0 0 0 > +1 0 0 0 0 0 0 0 0 0 0 0 0 Step 12 13 14 15 16 17 18 19 20 21 22 23 220 gen. fails 2 0 1 3 0 1 0 0 1 0 0 0 120 elem. +1 0 0 1 0 0 1 0 0 1 0 0 0 > +1 0 0 0 0 0 0 0 0 0 0 0 0 220 gen. fails 3 0 2 2 0 0 0 0 1 0 0 0 130 elem. +1 0 0 2 0 0 0 0 0 1 0 0 0 > +1 0 0 0 0 0 0 0 0 0 0 0 0 300 gen. fails 0 0 1 0 0 0 0 0 0 0 0 0 220 elem. +1 0 0 0 0 0 0 0 0 0 0 0 0 > +1 0 0 0 0 0 0 0 0 0 0 0 0 Table 3: GA results for Bordeaux ATCC to compare the overall computation times of the genetic algorithm and the tree search algorithm when the minimization problem is easily solved. In such cases (at night for example), the genetic algorithm will run the same number of generations whatever the difficulty of the problem, whereas the B&B will find an optimal solution among the first branches it explores. Table 4 compares for Bordeaux ATCC the computation times of each time step between 5 a.m and 7 p.m., for 220 generations and a population size of 120 configurations:
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Conclusion

The tree search algorithms as well as the genetic algorithm provide optimal sector configurations, using the same parameters and constraints than in the current FMP/CFMU process. The results are computed in a time short enough for an operational use. The tree search algorithms are faster than the genetic algorithm when applied to the French ATC centers and while restricting the ways to group sectors to a set of operational groups (issued from each ATCC airspace description database).

However, the combinatorial relation that we have shown between the number of sectors and the number of partitions and configurations is such that the tree search algorithms may prove impractical in the context of larger ATC Centers or if a wider set of operational groups is used. In such a context, the genetic algorithm is a good alternative. It provides several optimal or near-optimal configurations in a chosen computation time.

So far, we have considered the sector configuration optimization only in the context of the pre-tactical ACC schedule estimation, based on the traffic flows and the capacity constraints. The proposed algorithms could as well be envisioned, with adapted workload and constraints definitions, to tactically propose sector configurations to control room managers.
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 1 Figure 1: Branch & bound search for an optimal sector configuration
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 2 Figure 2: Optimal sector configurations with (up) or without (down) constraints on the number of available positions (example of Bordeaux ACC)

Table 1 :

 1 Number of possible sector configurations for the French ATCCs (in 1999)

		Number of sectors Number of Number of
		elem.	groups	partitions	configs
	Aix	24	42	4.4610 17	123,965
	Bordeaux	22	65	4.4510 15	551,032
	Brest	17	52	8.2810 10	14,832
	Paris (West) 11	17	678,570	192
	Paris (East)	12	22	4,213,597	399
	Reims	12	17	4,213,597	249

Table 2 :

 2 The fastest is the branch & bound. The A * is slower because the chosen heuristic is not a very good estimate of what it really costs to reach the best configuration achievable from a given node, thus inducing high backtracking. Computation times (in seconds) for the deterministic algorithms

		Aix	Bord.	Brest	Paris(E) Paris(W)	Reims
	Basique	n.t.	n.t.	14.44	0.06	0.03	0.02
	B&B	34.06	6.06	1.45	0.08	0.07	0.04
	A *	134.88	10.12	10.05	0.08	0.04	0.02

Table 4 :

 4 .21 0.66 0.59 0.58 0.35 0.56 GA 16.42 15.62 17.41 16.85 15.65 14.98 13.70 GA and B&B detailed computation times for Bordeaux ATCC

	5	6	7	8	9	10	11
	B&B 0.23 0.05 0.17 0.55 0.95 0.21 0.38
	GA 15.69 14.88 17.19 16.08 15.37 15.80 15.75
	Step 12	13	14	15	16	17	18
	B&B 0.54 0