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ALGORITHMS

David Gianazza and Jean-Marc Alliot, C.E.N.A., Toulouse, France

Abstract

Optimization of Air Traffic Control sector
configurations using tree search methods and
genetic algorithms.
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Introduction

The first step of the Air Traffic Flow
Management process is to define the predicted
schedule for each Air Traffic Control Center one or
two days ahead. This is done by forecasting the
traffic and by comparing this estimation to the
available resources, in order to determine what
sector configuration would be the most adapted to
the predicted traffic and if some overloads can be
foreseen.

In Europe, the ACC schedule is elaborated by
the Flow Management Position (FMP) of each ATC
Center. Some automated tools are available to help
the operators to perform this task. For example the
French FMP operator can choose a sector
configuration among a set of pre-defined
configurations, and match it with the traffic demand
so that traffic overloads appear immediately. But
apart from his own experience, he has no way of
knowing if the chosen configuration is the most
adequate, or if another one could better balance the
traffic between the manned control positions. An
additional drawback of the current method is that it
is limited to a set of statically defined
configurations, which is a fairly small subset of all
the possible ways to combine sectors, as we will see
later.

The present paper describes two classical tree
search algorithms and a genetic algorithm that take
as input the traffic flows and build optimal sector
configurations considering the airspace capacity
constraints and also the maximum number of
control positions that can be manned at each time of
the day. This optimization is made in a realistic
context, using the airspace description data, the
traffic data, the number of available control
positions, and the sector capacities of the French
ATC centers.

In order to estimate what profit may be
expected from optimization, two strategies are then
compared in terms of delays and resources, for a
peak day of 1999. The first strategy is a slot
allocation with the raw traffic demand as input and
with constraints issued from the deposited ACC
schedules of all French ATCCs. The second
consists in smoothing the traffic with all elementary
sectors armed, and then find an optimal ACC
schedule by combining these elementary sectors.

Related work

The problem of  optimizing  sector
configurations has already been addressed in [2],
although with a less realistic model, and also in [1].
In [2], genetic algorithms were used in a toy ATC
network to balance workloads by combining
sectors, with a chosen number of control positions.
Only convex sectors were considered.

In [1], integer programming techniques were
used in a realistic context to minimize the sum of
traffic overloads (called deficits of capacity) by
selecting patterns among a reduced set of statically
defined configurations. A pattern is a configuration
associated to a time period. The number of control
positions is an input parameter, as in [2]. An
attempt is made to consider the traffic throughput as
a variable, by allowing some macroscopic shifting



of traffic loads along the time axis or from a sector
to another. The convergence of the iterative
algorithm which is used in that case seems not sure.
However, the results show significant
improvements when compared to the current
manual methods.

The optimization problem addressed in the
present paper is different : the optimum we are
trying to reach is the sector configuration for which
the traffic load is as close as possible to the capacity
of each sector or group of sectors of the
configuration, so traffic overloads as well as traffic
under-loads are considered. The search of an
optimal configuration is not restricted to a subset of
manually entered configurations, but explores the
whole set of possible configurations which can be
obtained by combining operational ATC sectors.
The number of control positions is a variable of the
cost function we are trying to minimize, constrained
by an upper limit as there may not always be
enough ATC controllers to man all the positions
that would be needed.

Model

A "good" configuration is a configuration for
which there are no traffic overloads (or the smallest
possible ones), and for which the traffic load is
balanced as well as possible between the manned
control positions, while arming the minimum
number of positions. Let us formulate this as a
minimization problem.

Let wus define the function A by
A(x,H)=workload(x,t)-capacity(x,t) where x is a
sector or group of sectors, ¢ is the time, workload is
the traffic load (for example N aircraft flying
through sector x between ¢ and t+w, where w is a
chosen time window), and capacity is the threshold
value for the workload. The capacity of each sector
or group of sectors may also depend on specific
criteria (like military activity...).

The operator may allow some tolerances
around the value of the capacity. These lower and
upper tolerances / and u are taken into account in
the evaluation of a configuration. For this, we will
need to define the overloads and underloads as
follows :

Ax,t) if 0<A(x,t

A ey [AD i 08D
0 otherwise

Alx,t) if A(x,t)>

NP G GO
0 otherwise

A, D) if [ <Axt

NP L T YD
0 otherwise

A (xh)= A0 i Alxt) <
0 otherwise

Let us then define the following functions:
N,5(t) the number of control positions in the

configuration

Ci)= YA, (x1)
xeconfig

C++(t) = Z(A++ (x’ t))z

xeconfig
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xeconfig
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xeconfig

The problem will then consist in minimizing
the following cost function :

COSteonig= A.C1y + D.Npoy + c.C.+d.(C. +C) (1)

while respecting the following constraint :
Nyos(t) < M,,oi(t) where a, b, c, and d are chosen
factors of decreasing value and M,, is the
maximum number of control positions available at
each time of the day.

Instead of minimizing cost,,,,, and in order to
take better account of the relative weights of the
different costs, we will in fact maximize eval.,g,
such that the k; most significant digits of
eval.,e(x,t) refer to the cost Cy, the next k, digits
refer to N, and so on:

XXXXX XX  XXXXX XXX
— = Y =
ky ky ks ky



wonfly = 109" N(k,,C..)
+10% x N(k,, N,,)

+10" x N(k,,C_)
+N(k,,C, +C.)

eval
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where N is a function such that
| N(k;, C) = max(0,(104- 1) C)J and k;, ko, ks, and k,
are chosen such that (10°-1) is an upper bound of
the corresponding cost, if possible.

Problem complexity

The difficulty of the problem is mostly due to
the high number of possible configurations which
can be built from a set of sectors. A configuration is
the mapping of n sectors onto k control positions.

Let us first try to find how many ways there
are to part a set of n elements into k subsets. If
P(n,k) is this number, it verifies the following
equations:

o VnxI
e P(n,1)=1 (one group of n elements)
e P(n,n)=1 (one partition of n groups of
one element)
e P(nk)=0if k>n (we cannot make more
than n groups)

o  P(nk)=k*P(n-1,k) + P(n-1,k-1) if 1<k<n

The number of all possible partitions will then

be P(n) :ZP(n,k). For 17 sectors (Brest
k=1

ATCC), this would give around 83 billion
possibilities. However, this value is not realistic:
many of the partitions could not be used in an
operational context. For example, a partition
containing a group in which one sector is a neighbor
of no other sector in the group is not a valid
configuration. The set of all possible partitions (that
we have counted above) could theoretically be
obtained by exploring the tree of all possibilities as
shown in figure 1 with an example of 5 sectors,
although this would become quickly impractical
when the number of sector increases.

/\m
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Figure 1: Partitions of a set of 5 elements

In order to estimate the difficulty of the real
problem, let us consider only the operational sectors
and groups of sectors defined in each ACC
database. In figure 1, a tree node was a list of
groups under construction. In the case of
operational configurations, a node is a list of
couples (g,G) (cf figure 2 illustrating the
Branch&Bound), where g is a group under
construction and G is the set of valid groups
compatible with g in the context of the
configuration under construction. An element / of
G is “compatible" with g if it contains all the
sectors of g, but no sector of the other groups in the
configuration (the other "g"'s of the node). If one of
the G sets is empty, then there is no need to
continue the search from the considered node: it
will lead to no valid configuration.

Number of sectors Number of | Number of
partitions operational
elementary | operational configurations
sectors groups
Aix 24 42 4.4610" | 123965
Bordeaux |22 65 4.4510" |551032
Brest 17 52 8.2810" | 14832
Paris(west) | 11 17 678570 (192
Paris(east) | 12 22 4213597 1399
Reims 12 17 4213597 249

Table 1: Number of possible sector
configurations for the French ATCCs

The methods presented above allow us to
count the number of configurations and estimate the
difficulty of the problem. The results for the French




ATC centers are shown in table 1, which highlights
the combinatorial relation between the number of
partitions and the number of sectors.

The number of operational configurations that
we can build with the sectors or groups of sectors
described in the ATCCs airspace data goes from a
few hundreds to a half million. So, we can expect
that the use of exhaustive tree search techniques
will lead to optimal configurations within a
reasonable computation time, at least for relatively
small ATC centers and with sector combinations
restricted to the groups described in the ATCCs
airspace data. However, as the sector configuration
optimization problem may be extended to larger
ATCCs, and as we may wish to use a wider range
of sector combinations, genetic algorithms were
also experimented with to solve the problem.

Description of the algorithms
A basic algorithm:

In the previous section, we have presented an
algorithm which builds all the possible operational
configurations. A basic optimization method
consists in evaluating the cost (cf definition 1) of
each configuration in order to find the best one. The
basic algorithm explores all the configurations. It is
memory and time consuming, but complete: we can
be sure that it returns the optimum of the evaluation
function. So it will be used as a reference for the
other algorithms presented hereafter.

1
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Best val=Eval conf(d}aki4h)

Figure 2: Branch & bound search for an optimal
sector configuration

A Branch & bound algorithm:

The idea of the branch & bound algorithm
illustrated in figure 2 is to avoid exploring every
branch of the tree. To do so, it needs to evaluate the

nodes in order to decide, by comparison with the
best configuration found so far, whether to continue
or not the search along a given branch. The cost
(resp. evaluation) of a node must be a lower bound
(resp. an upper bound) of all the costs (resp.
evaluations) of configurations which can be reached
from that node. A node of our tree search algorithm
is a configuration under construction (see figure 2),
i.e. a list of couples (g,G), where g is a group under
construction and G is the set of valid groups
compatible with g in the context of the
configuration under construction.

For a better understanding of this notion of
compatibility, let us consider node 6 of the example
shown in figure 2. This node is represented by~:
({1},{s,d}) ; ({2},{s,a}). The wvalid groups
compatible with the group under construction {1}
are the singleton s, which is {1}, and the group
d={1,5}. These groups are the only ones which
contain {1} but not {2}.

The cost function for a node is similar to the
cost of a configuration. Let us define a function best
such that best(G) returns the element /4 (a sector or
group of sectors) of G, for which the difference
workload(h,t)-capacity(h,t) is the smallest possible
underload, or the smallest possible overload if all
groups of G are overloaded. We will then define the
cost (resp. evaluation) of a node as in definition 1
(resp. 2), except that N,, will be the number of
couples (g, G) in the node, and that only A, and A,
will be considered, taking best(G) as input instead
of an operational sector x of a configuration.

An algorithm inspired from A*:

Like the Branch & bound, the A* is a tree
search algorithm. However, instead of simply
storing the best leaf found so far, all the explored
nodes are stored and sorted by valuation.

In order to do so, the A* as described in [4]
needs a cost function defining the cost of each state
transition, and a function (called heuristic)
underestimating the cost of the remaining
transitions between the current node and the end of
the search.

For our sector configuration problem, we will
try to minimize the cost.s, function described in
definition 1, by searching a path in the tree



illustrated in figure 2. But instead of comparing the
node evaluation with the evaluation of the best
configuration found so far like in figure 2, the nodes
already explored are stored into a priority queue
sorted according to the node evaluation. The A*
will then iteratively consider the node with lowest
cost, evaluate its children nodes and insert them in
the priority queue, until a leaf of the tree is reached.
This leaf is then the optimal sector configuration.
The evaluation of a configuration and a node is the
same as in 1 and the Branch & bound algorithm
respectively.

A genetic algorithm:

A genetic algorithm has also been tested to
solve the sector configuration problem. The genetic
algorithm considers a population of chromosomes,
which evolves by crossover, mutation, and selection
of the fittest individuals, as described in [3] and [6].

A chromosome will be a sector configuration.
Each chromosome is composed of several genes. A
gene is either an elementary sector or a group of
sectors. A fitness value is assigned to each
chromosome. The raw fitness f of a configuration
will be given by eval.,,z, (see definition 2).

The crossover operator splits the two parent
configurations and completes each  half
configuration with the other parent's genes. The
resulting incomplete chromosome is then completed
with valid groups or sectors. The mutation operator
first randomly chooses one gene of the
chromosome. Another gene is randomly chosen
among a list comprising the first chosen gene and
its neighbors (sectors or groups of sectors of the
configuration which have a common border with
the first chosen sector or group of sector). The
sectors of the chosen genes are then recombined
into one or several new genes (up to three).

Results

A graphical interface has been developed to
display the results of the optimizations. The
languages Ocaml and OcamlTk were used to code
respectively the algorithms and the interface. The
program runs on a PC Pentium IV (1.8 GHz), with
Linux as operating system.
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Figure 3: Optimal sector configurations with
(down) or without (up) constraints on the
number of available positions (example of

Bordeaux ACC)

The input parameters are the date, the selected
ATCC, the type of traffic (raw demand, final
demand...), the capacity tolerances, the maximum
number of available control positions, the chosen
time step and time horizon (for the computation of
traffic flows). The program displays an optimal
sector configuration for each time subdivision of the
day. The color code is: Green (grey) when the
traffic load is under the capacity minus the lower
tolerance for the capacity; Yellow (white) when the
traffic load is between the margins of tolerance;
Red (dark grey) when the traffic load is over the
capacity plus the upper tolerance.

The upper part of figure 3 shows the result of
the optimization for Bordeaux ATCC, with the raw



traffic demand and with no constraint on the
available number of control positions. In this case,
the remaining overloaded sectors are necessarily
elementary sectors, or operational groups which
cannot be split (some elementary sectors are defined
and used only to improve flexibility by choosing
different ways to combine two of them into an
operational group).

The lower part of figure 3 shows the same
optimization but with constraints on the available
number of positions. These constraints are taken
into account in the evaluation functions, by dividing
by two the evaluation when the number of control
positions in the configuration is greater than the
available maximum, thus penalizing these
configurations. The constraints used in the lower
part of figure 3 are directly issued from the ACC
schedule that was sent to the CFMU by Bordeaux
FMP for that day. These constraints induce
additional overloads (like between 4 and 5 o'clock
in the example) on combined sectors which the
algorithms are unable to split because there are not
enough available control positions.

By comparing the two schedules we see that a
few more controllers on the spot could be useful in
the early morning. However, this straight-forward
analysis is valid only if hourly capacities and traffic
flows are significant indicators, which is subject to
discussion.

Comparison of the algorithms

The tree search algorithms as well as the
genetic  algorithm  provide optimal sector
configurations for each ATCC, verified with the
basic algorithm when possible (for Brest, Paris and
Reims ATCCs).

The table 2 shows the computation times for
the deterministic algorithms, with the raw traffic
demand and no constraint on the number of
maximum positions. The fastest is the branch &
bound. The A* is slower because the chosen
heuristic is not a very good estimate of what it
really costs to reach the best configuration
achievable from a given node, thus inducing high
backtracking.

For the genetic algorithm, ten different values
of the random generator were tested for Bordeaux
ATCC, with a crossover probability of 0.6 and a
mutation probability of 0.2.

Table 3 shows for each time step of the day
and for several sets of population parameters the
number of configurations which where different
from the optimum. The lines labelled (+1) show the
number of occurrences when there was exactly one
more control position in the configuration found by
the GA than in the optimal configuration. The lines
labelled (> +1) show the number of occurrences
when the difference was greater than one control
position.

When they were not optimal, the solutions
found were qualitatively close to the optimum.

Step |7 |89 |10 11|12 13 | 14| 15| 16| 17| 18| 19| 20| 21|22
220 [fails [0 [2(0 (1 (S (2]0(1(3/0|1]/0]0|1]0]0O
gen.

o |7 [oofofo 2 o ot [olo]t|o[0][1]0 0
- =0 o0(oo]ololo]o]ololo]o]oo 0
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gen.

o T Jofo[ofo [T [ofo[2]0ofo[ofo[o]1[0]o0
(o (o0(o (1 ]0ololo]o]lolol0]0]00]0
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& = 0000 0 0ololo]o]lololo]o]oo 0

Basic method | branch&bound | A*
Aix Unfinished 34.06 134.88
Bordeaux Unfinished 6.06 10.12
Brest 14.44 1.45 10.05
Paris(east) 0.06 0.08 0.08
Paris(west) 0.03 0.07 0.04
Reims 0.02 0.04 0.02

Table 2: Computation times (in seconds) for the
deterministic algorithms

Table 3: GA results for Bordeaux ATCC

The genetic algorithm is slower than the tree
search methods, but provides several optimal or
near-optimal solutions. It is not very significant to
compare the overall computation times of the
genetic algorithm and the tree search algorithm
when the minimization problem is easily solved. In




such cases (at night for example), the genetic
algorithm will run the same number of generations
whatever the difficulty of the problem, whereas the
B&B will find an optimal solution among the first
branches it explores. Table 4 compares for
Bordeaux ATCC the computation times of each
time step between 11 am and 5 p.m., for 220
generations and a population size of 120
configurations:

the chosen day. Furthermore, in the deposited ACC
schedule, the operator chose among several capacity
values which depend on the context of the day
(military activity,...). However, this does not change
the nature and the validity of the results.

DEP OPTO0.0 | Profit

Step 11 12 13 14 15 16 17

Delay Total 211335 | 65505 69

minutes
Max 460 225

B&B [0.38 0.54 0.21 0.66 [0.59 ]0.58 0.35

GA |1575 |l6.42 15.62 (17.41 |16.85 [15.65 14.98

Table 4: GA and B&B detailed computation
times for Bordeaux ATCC

Comparison of optimal and filed ACC
schedules

We have seen in figure 3 that, with no
constraint on the number of positions, there may
remain some overloaded elementary sectors when
optimizing the ACC schedule with the raw traffic
demand as input. This can be avoided by smoothing
the raw traffic demand first, considering that all
elementary sectors are armed. Let us compare the
following strategies in terms of produced delays and
used resources, for a peak day of 1999 (May 21st) :

DEP : delay allocation considering the raw
traffic demand and the deposited schedules of the
French ATCCs, modified according to the
capacities stored in the ACC databases, when these
were found different from the declared capacities.

OPT.0.0 : it consists of two steps. The first
step is to run a delay allocation with all elementary
sectors armed and with zero tolerance on the
capacity values. The second step is to find an
optimal ACC schedule(s) taking as input the
resulting smoothed traffic.

One must be cautious in analyzing the results :
capacity values may be slightly different in the filed
opening scheme than what was found in the ACC
databases. This is due to several factors : in 1999
the capacity databases were not stored on a regular
basis and the dataset we used may not correspond to

Aix 19230 18240 |5.1

Bordeaux | 14610 11400 19.5

Brest 14700 8520 42

Paris(east) | 9600 7020 26.9

Paris(west) | 9150 7620 16.7

Reims 10500 9120 13.1

Cumulated time of activity, in
minutes, for all control positions

AlLATCC 77340 61920 19.9

Table S: Compared slot allocation strategies

We used the basic "SHAMAN" slot allocation
method described [5] which aims at minimizing the
maximum delay. The slot allocations as well as the
ACC schedules optimizations are run with a time
step of 60 mn and a time window for the flow
computation of 60 mn. The delays generated by
each method are shown in the upper part of table 5,
and the resources used in each case are detailed for
each ATC center in the lower part of the same table.
Figure 4 shows the result of the OPT.0.0 strategy
for Bordeaux ATCC: on the upper schedule we see
that there is no remaining traffic overloads, and on
the lower part of the figure we can compare the
optimized ACC schedule with the filed one.

Conclusion

The tree search algorithms as well as the
genetic  algorithm  provide optimal sector
configurations, using the same parameters and
constraints as in the current FMP/CFMU process.
The results are computed in a time short enough for
an operational use. The tree search algorithms are




faster than the genetic algorithm when applied to
the French ATC centers and while restricting the
ways to group sectors to a set of operational groups
(issued from each ATCC airspace description
database).
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Figure 4:Optimal sector configurations with
prior slot allocation (OPT.0.0) for Bordeaux
ATCC. Comparison with DEP

However, the combinatorial relation that we
have shown between the number of sectors and the
number of partitions and configurations is such that
the tree search algorithms may prove impractical in
the context of larger ATC Centers or if a wider set
of operational groups is used. In such a context, the
genetic algorithm is a good alternative. It provides
several optimal or near-optimal configurations in a
chosen computation time.

The results concerning the slot allocation
strategies are pretty good : about 70 percent less

delays while using about 20 percent less resources.
However, they do not take into account the
uncertainties on the traffic forecast. Furthermore,
the traffic flows and hourly capacities are fairly bad
indicators of the controller workload and capacity.
Consequently, it is not sure that a slot allocation
strategy optimized on the basis of such indicators
can lead to a real smoothing of the controller
workload. Let us note that these remarks also apply
to the current method, although this one has at least
the advantage to be validated by an operational
feedback.

So far, we have considered the sector
configuration optimization only in the context of the
pre-tactical ACC schedule estimation, based on the
traffic flows and the capacity constraints. The
proposed algorithms could as well be envisioned,
with adapted workload and constraints definitions,
to tactically propose sector configurations to control
room managers.
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