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ABSTRACT

Interactive data exploration and manipulation are often hindered by
dataset sizes. For 3D data, this is aggravated by occlusion, important
adjacencies, and entangled patterns. Such challenges make visual inter-
action via common filtering techniques hard. We describe a set of real-
time multi-dimensional data deformation techniques that aim to help
users to easily select, analyze, and eliminate spatial-and-data patterns.
Our techniques allow animation between view configurations, seman-
tic filtering and view deformation. Any data subset can be selected at
any step along the animation. Data can be filtered and deformed to re-
duce occlusion and ease complex data selections. Our techniques are
simple to learn and implement, flexible, and real-time interactive with
datasets of tens of millions of data points. We demonstrate our tech-
niques on three domain areas: 2D image segmentation and manipula-
tion, 3D medical volume exploration, and astrophysical exploration.

Index Terms: I.3.6 [Methodology and Techniques]: Interaction
techniques—

1 INTRODUCTION

Volumetric datasets are found in many fields of science, such as engi-
neering, material sciences, medical imaging, and astrophysics. One of
the most used visualization methods for such datasets is direct volume
rendering (DVR), which can show all values in the dataset. In contrast,
techniques such as isosurfaces or slicing focus on data subsets, which
requires users to select a priori the structures of interest.

Although DVR does not require an a priori selection step, it also
comes with one major challenge: occlusion. On two-dimensional dis-
play devices, one cannot see more than a single data value per pixel.
Yet, there are typically tens, or even hundreds, of such data values along
each view ray centered at such a pixel. Hence, discovering patterns of
interest hidden inside the data volume can be challenging.

Apart from a priori selection of structures of interest, several tech-
niques have been proposed for exploring 3D data volumes. Transfer
functions map values along a view ray to RGBA components which
are next combined to convey an aggregated insight at each screen pixel.
However, to make deep-hidden patterns visible in the final 2D image,
transfer functions require careful, and often non-trivial settings. Inter-
active focus-plus-context (F+C) techniques offer an alternative by al-
lowing users to locally manipulate the geometry and/or appearance of
the data volume in order to ‘peek’ inside it, while keeping the overall
spatial context of the entire volume.

In this paper, we extend F+C interactive exploration of 2D and 3D
datasets in several directions. We propose a set of linked views that dis-
play subsets of data attributes. Example views are 3D DVR plots, 2D
scatterplots, and 2D and 3D histograms. Views are linked by brushing
and free-form selection. Using the optimal view(s), one can find struc-
tures of interest, e.g. spatially compact zones in DVR renderings or
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peaks in histograms, and highlight or erase such structures in all views
at once. We enhance classical histogram views with shading, sorting,
and depth, to allow spotting complex patterns with greater ease. We
propose a smooth animation between multiple views, to locate (and se-
lect) data patterns which are hard to isolate in static plots. We integrate
a F+C deformation that adds the ability to uncover locally occluded
spatial patterns in our views. We present a GPU implementation of our
techniques, which we call color tunneling, that creates real-time inter-
active, animated, explorations of datasets of tens of millions of points
on a modern PC. We illustrate color tunneling with examples on 2D im-
age editing, 3D medical visualization, and astrophysics visualization.

This paper is structured as follows. Section 2 presents related work
in volume F+C exploration. Section 3 outlines our design. Section 4
details the proposed interactive exploration-and-selection techniques:
view linking, warp animation, lock, brush, and dig. Section 5 presents
three applications. Section 6 details the implementation. Section 7 dis-
cusses our F+C technique. Finally, Sec. 7.1 concludes the paper.

2 RELATED WORK

Occlusion is an inherent problem in 3D volume visualization. Several
types of techniques alleviate this problem and help users to locate
and/or select structures of interest from 3D data volumes, as follows.

Magic lenses: Magic Lenses locally modify a screen area by user-
selected operators to change the appearance of shapes [3]. The idea
was extended for complex effect compositing and interactive lens
parameter editing [2]. Tangible magic lenses extend the base concept
to slice through, or zoom in, layered 2D or 3D datasets by interactively
moving a 3D tracked physical planar object (the lens) which is either
rigid [32] or flexible [22]. Nonlinear projection deforms 3D scenes in
image space, as if seen through a cylindrical or spherical lens [40].

Semantic lenses, focus + context, and deformation: The ‘dust &
magnet’ tool declutters scatterplots by several data-attribute-driven
magnets in screen space [41]. Niels et al. visualize ship motions on a
map by blending trajectories into smoothly shaded shapes [36]. They
highlight specific trajectories by a semantic lens that works on the
shading values, but does no deformation, as positions are found too im-
portant to be altered. For large datasets, deformation techniques locally
change the spatial data layout to give more space to important data
elements. Many variations of the original fisheye view [14] exist, e.g.
Elastic Presentation [5], Sigma Lenses [26], and Jelly Lenses [27]. The
table lens locally distorts the Cartesian layout of cells in a data table to
give more space to specific table rows or columns [29]. For node-link
layouts, techniques include edge deformations, e.g. EdgeLens [39],
bring-neighbors lens [34], edge plucking [38, 37], and link sliding and
‘bring & go’ techniques [34, 15] and their generalizations [30]. The
MoleView technique deforms data based on both spatial position and
data values, allowing to ‘dig’ in hidden data layers [18]. Histomages
links two element-based plots (images and their histograms) to allow
an easier selection and editing of features in the 2D or color space [6].

Occlusion challenge: In volume datasets, occlusion is typically larger
than in the above examples. If position has specific semantics, it should
be carefully preserved. Several F+C techniques refine the above inter-
action principles for this context. A viewer-aligned radial warping of
elements close to the focus is used to push data points away in 2.5D [4].



BalloonProbe uses the same radial warp idea for elements close to a
focus in 3D synthetic scenes [12]. For 3D medical scans, complex
manipulations (cut, peel, ply, dilate, retract) are used to expose inner
structures [10], with optional animation [23]. Similar techniques are
provided by Gimlenses for segmented mesh datasets [28]. Illustrative
F+C techniques are further generalized in [11]. Multiple foci help to
selectively enhance specific structures [17]. A detailed taxonomy of
F+C techniques for volume data is given in [8].

Transfer functions: Identification and selection of features of interest
in volumetric data is also supported by transfer functions. Essentially,
these are mappings from subsets of the attribute domain to specific
color and transparency values. Kniss et al. extend classical 1D and
2D transfer functions to higher dimensions in order to easier find and
isolate structures of interest in volumetric data [20]. Conceptually,
transfer functions propose a different way for feature isolation than
F+C techniques: While the latter rely chiefly on brushing to select
such features, transfer functions require the (careful) design of a
data-to-appearance mapping for the same task. Although the design
of this mapping can be significantly assisted by automatic data analy-
sis [9, 31, 25], or direct WSYWIG interaction [16], their specification
still involves considerable user effort.

Overall, basic F+C deformation techniques are simple to use and
learn, but are hard to control in terms of what gets deformed and what
does not. More complex techniques achieve better control, but also
require more complex interaction tools. We next present a way to rec-
oncile the simplicity of the former techniques with the flexibility of the
latter, by combining linked views, interaction, and animation.

3 PRINCIPLE

Our principle, called color tunneling, is a set of interactive techniques
that expand the possibilities for selection and exploration of images and
volume datasets, while avoiding the use of complex menus and interface
components. We provide support for a rich spectrum of exploratory
activities via the integration of animation and brushing.

Our input data is a uniformly sampled multivariate field F : D →
V,D ⊂ R

n,V ⊂ R
m. For simplicity, our examples consider n = 2 (im-

ages) and n = 3 (volumes). As data attributes V we consider RGB color
(for images) and scalar data values, data gradients, and volumetric shad-
ing for volumes (i.e. the color of voxels as assigned by whichever DVR
method was chosen). We use next the term data points to refer to voxels
(n = 3) or pixels (n = 2). However, color tunneling works directly for
higher dimensions and/or more attributes.

Given such a field F , we consider two types of views to show all
data points in F : Scatterplot views map 2 or 3 dimensions or attributes
in D∪V to R

2 or R3 respectively, and additional attributes in V to color.
For instance, a DVR of F maps D to R

3, and scalars v ∈V to color. 2D
histograms map one attribute v ∈ V to the x axis and the number of
points in D having values v = x to the y axis. Fig. 1 shows such a DVR
and a density histogram view for a 3D CT scan. Key to exploring F
is the linking of such views by interaction and animation. A typical
scenario goes as follows: The user creates a view which shows three
dimensions of D, e.g. a DVR of F . Usually, such a view occludes
interesting structures found deep inside F . Next, the user creates one
or more scatterplot or histogram views by selecting combinations of
dimensions and attributes of interest. Finally, the user employs inter-
active techniques to explore the data and isolate structures of interest:
view linking, brush, warp, dig. These techniques are detailed next.

4 INTERACTION TECHNIQUES

Since we are exploring dense multivariate datasets which exhibit sig-
nificant overlap between groups of voxels or pixels, we need tools to
interactively unveil the occluded structures of interest. For this, we pro-
pose five interactive techniques as follows:

• View linking: Three configurable views (2 exploration views and
one lock view) for data exploration (Sec. 4.1),

• Warp: Animates a view between two configurations (Sec. 4.2),

• Lock: Locks items not to be affected by brush or dig (Sec. 4.3),

• Brush: With the lock view, brushing allows adding or removing
data in a view (Sec. 4.4),

• Dig: With the lock view, digging pushes data points away from
the lens center to unveil occluded structures (Sec. 4.5).
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Figure 1: Two exploration views to perform data exploration and a lock
view to configure the brushing and dig techniques.

4.1 View configuration and linking

We use two exploration views with possibly different configurations.
Both views offer standard pan, zoom, and camera rotation. Users can
interactively choose the mapping of the input data (D∪V ) to the view
axes (Fig. 1): Double-clicking with the left mouse button on a view
axis (x, y, or z) shows all data dimensions in D∪V . After we select
a dimension d ∈ D∪V , we start a smooth animation between the cur-
rent view configuration and the new one given by the menu choice.
The animation, detailed in Sec. 4.2, helps users to preserve the ‘mental
map’ [1] and, equally importantly, helps visually tracking patterns of
interest. Both views are linked by showing the same set of data points.
This enables complex data-selection operations by incremental selec-
tion or filtering, and also avoids multiple visual configuration changes.
This dual-view design, originally used for trajectory analysis [19], is
extended here for the more general case of DVR data exploration.

4.2 Animation between view configurations

Given any two views V1 and V2, we link the views by executing a linear
interpolation p(t) = (1− t)p1 + tp2, or warping, of each point p1 ∈ V1

to its corresponding point p2 ∈ V2. The shading s(p) of the points is
fixed: When examining a 2D image, s is the color of the image pixels;
for a 3D data volume, s is the color of the voxels given by DVR. Fixed
shading allows following trajectories of specific groups of data points
as they move from V1 to V2. The key value of animation is to create
a dense sequence of intermediate frames between V1 and V2, in which
data patterns of interest become more visible than in both V1 and V2.

While the left mouse button configures views, the right button con-
trols animation. Clicking this button starts the animation (from V1 to
V2). Dragging the mouse horizontally with the button pressed controls
the time t, i.e. the animation speed and direction (V1 to V2 or back).
Releasing the button stops the animation at any moment. Next, we can
use the brush tool to select patterns in the interpolated view V (t) or the
dig tool to reduce occlusion at desired points.

No constraints are put on the configurations V1 and V2 that we ani-
mate between. Both V1 and V2 can be 2D or 3D views, and they can map
different data attributes to axes differently. When animating towards a
2D view, e.g going from a DVR view (V1) towards its 2D histogram
(V2), we use V1’s z (depth) values to order pixels in the 2D view V2

(pixels with low z values get under pixels with high z values).
Cornerstone to this work, the warp animation has proven effective

in many use-cases (see also the associated video): Animating between
a DVR and a scatterplot unveils brain structures (Sec. 5.1). Animating
between a data cube and a 2D histogram is used to detect and select
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Figure 2: Brush, dig, and lock tools. Locked items are not affected by
brush and dig. We used transfer functions to make air voxels transparent
and standard gradient shading. We see that the head is surrounded by a
large amount of uninteresting noise (yellow).

outliers in astronomical data (Sec. 5.2). Animating between two scat-
terplots is used to eliminate complex regions in a 2D image (Sec. 5.3).

4.3 Lock

This view allows specifying data points not to be affected by the brush
or the dig tool. Lock can be done at the start or during an animation
(Sec. 4.2). We use a ‘lock brush’ (Fig. 1) with add and remove modes
to add, respectively remove, points in a given view from the locked
point-set. These modes are invoked by using the Shift, respectively
Control, keys with the left mouse button, as shown by the red, respec-
tively green brush circles in Fig 2. The lock-brush size is adjusted with
the mouse wheel. Locked data points are drawn (visible), while un-
locked ones are not drawn. Double-clicking in a view inverts the lock
set, i.e. makes all unlocked points locked and conversely (see Fig. 2
for different lock view instances). Finally, the lock view axis can be
configured as discussed in Sec. 4.1, and the user can perform the warp
animation to choose a suitable visual configuration (Sec. 4.2).

4.4 Filtering brush

Data points can be removed if they are uninteresting and/or to re-
duce clutter. For this, we use a filtering brush combined with locking
(Sec. 4.3). As for the lock tool, we can remove points in the filter-
ing brush (with the Ctrl key), add back points which fall in the brush
but were removed earlier (using the Shift key), and control the filtering
brush size by the mouse wheel. In remove mode, only locked points are
affected by the filtering brush. Fig. 2 shows this. Here, we first lock
all points having a high density value (removal of low density values in
the lock view). Using next the filtering brush in removal mode elim-
inates only low-density data points. This unveils the skull structure.
Conversely, using the filtering brush in add mode, adds only unlocked
data points. If we first lock both low and high-density values (using

the removal brush on the average-density values in the lock view), only
average-density brushed items are added. In our example, this restores
the skin (Fig. 2, brush add).

4.5 Dig

To further alleviate occlusion, we propose a dig tool. Digging smoothly
pushes data points from a focus point (mouse pointer) away in radial
direction. The dig radius is controlled by the mouse wheel.

Conceptually, our dig tool is a 3D version of the MoleView princi-
ple [18]: Given a focus point x∈R

2, and a radius r ∈R
+, when the user

presses the mouse button, we compute, for each point p whose screen
projection falls in the disk C of radius r centered at x, a displacement
pdisp = rv/‖v‖. Here, v = p− x− ((p− x) · n)n is the shortest vec-
tor from the view ray passing through x towards p, and n is the view
plane normal. While the mouse button stays pressed, we interpolate p
towards pdisp for all p ∈ C , i.e. compute p(t) = (1− t)p+ tpdisp for
t ∈ [0,1], using 50..100 time steps. Upon button release, we do the in-
verse interpolation from the displaced position p(t) towards the original
location p, i.e. let points snap back to their locations. Points close to
the focus x will quickly drift towards the focus boundary ∂C ; points
close to ∂C move slower towards it. This creates a clear gap around x
and a progressively weaker deformation towards C .

The dig tool helps exploring the dataset by unveiling structures hid-
den by the pushed items. Also, the dig tool can be used to forecast the
effect of further brushing actions: The pushed items are the unlocked
ones, and thus will be affected by subsequent brushing.

5 APPLICATIONS

Below we illustrate the application of color tunneling on several 2D and
3D datasets from various application domains.

5.1 Medical imaging

dig

unlock

a b

Figure 3: Opening a human head DVR to expose the skull structure.

Consider the 3D scans in Fig. 2 (128 × 128 × 112 voxels) and in
the video and Fig. 3 (128 × 256 × 256 voxels). We want to “peek”
inside the head to see the skull structure. For this, we first create a
tissue-density histogram view and color its points by the DVR values
given by gradient shading. The tall histogram peak indicates the largest
voxel count in the volume, which are soft-tissue voxels. To the left
of this peak, we see pink histogram points. These correspond to the
skin tissue, which has the same color in the DVR view. In the middle
of the peak, we see a thin dark vertical band. These are low-gradient
voxels, which matches the fact that there are no density interfaces in soft
tissue. In contrast, the pink histogram points are bright, which matches
the DVR highlights at the skin-air and skin-soft tissue interfaces. Now
that we understand the meaning of the histogram points, we select and
lock all histogram points, and next select and unlock all (pink) points
to the left of the peak. Finally, we apply the dig effect to the DVR view
(Fig. 2 dig). This pushes unlocked voxels away from the focus, and
reveals the hidden skull structure inside (gray).

Fig. 4 shows a second scenario. Here, we want to expose the top part
of the brain structure in our head scan. Simple filtering cannot easily
achieve this. The human head in this scan consists of a succession of
layers with non-monotonic density values (low for skin, high for bone,
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Figure 4: Exposing the top part of the brain structure in a 3D scan.

and low again for the deeply-nested brain structure). Simply filtering
out the bones will not help to display the brain since the skin will not
be filtered and will occlude it. Conversely, filtering on the skin density
will also remove the brain which has a similar density value.

To solve our task, we use color tunneling. First, we use a density
histogram view and erase the noise (low density) and bone (highest
density) values (Fig. 4 a). Next, we create a 2D scatterplot of the z
value of the density gradient vs the x gradient value, and use the warp
tool to animate between the 3D DVR and this scatterplot (Fig. 4 b).
Warping a few times back and forth, we see that the top-part of the
brain is warped to the top-half of the 2D scatterplot. This matches the
fact that, in this area, z density gradients are large. We now remove the
brain lower part by erasing the scatterplot’s lower half (Fig. 4 b, right
image). However, this also erases some skin parts. To get these back,
we use the density histogram view to unlock points in the skin density
range (Fig. 4 c, left). Finally, we use the add brush in the DVR view
to paint back the skin voxels in the damaged areas (Fig. 4 c, middle).
Since only soft-density voxels are unlocked for editing, and we brush
only over skin areas, only skin voxels get affected; bone or noise voxels
are not painted back. Fig. 4 c (right) shows the final result.

5.2 Astrophysical data

We next consider a 3D cube of astrophysical measurements of the large-
scale structure of hydrogen gas intensities in our Milky Way Galaxy
(1024× 1024× 160 16-bit integer voxels, 320 MB total) [33]. The x
and y axes map polar sky coordinates, and z maps radiation wavelength,
which translates to distance through the Galaxy along ray paths. Color
maps gas intensity. Fig. 5 a shows our data cube, rendered with DVR.

In this view, astrophysicists using our tool, and who provided the
feedback outlined in this section, could only see color layers that indi-
cate regions of denser hydrogen gas from the spiral arms of the Milky
Way, such as the prominent yellow slab spread over a large part of the xy
subspace. These are regions of the Galaxy where the cycles of star birth
and death play out. We now choose a scatterplot of intensity vs wave-
length (Fig. 5 d). This shows two interesting phenomena. First, we see
a thin compact horizontal black bar, not visible in the initial data cube.
This tells that the respective intensity is present in all wavelengths. Sec-
ondly, we notice a white gap in the intensity-wavelength space, above
the black bar at the distance of the bright spiral arm (Fig. 5 d, red
marker). This tells that, for the respective wavelengths, there exist only
high (purple..yelow) intensities, but no intermediate (blue..green) inten-
sities. This situation does not occur for any other wavelengths, as there
is a single such gap in the scatterplot. We now warp the scatterplot to-
wards the original data cube: The intermediate frames (Fig. 5 b,c) show
that the gap corresponds to the spatial region marked in red in Fig. 5 a,
right inside the yellow wavelength band. This lack of low intensities at
the location of the spiral arm shows an absence of low density hydrogen
in this region. Some phenomena may have swept up the gas into high
density structure, a step on the way to forming new stars.

Fig. 6 shows a second scenario. In the DVR image, we notice a few
constant-intensity lines parallel with the wavelength (z) axis (Fig. 6 a).
Such lines are created by radiation from objects in the far universe being
absorbed by gas in our Milky Way. The properties of these lines can be
used to measure the Galaxy temperature. We would like to select such
lines for closer analysis. Doing this via spatial or value-range filtering
is hard, since the lines are embedded in surrounding data, and also do
not have a perfectly constant intensity. Also, we would like to find if
similar lines exist deeper in the data cube.

We can select these lines as follows. First, we build a histogram of
the intensity gradients of our data points. Gradient is a good detector
for the boundaries of these lines, as intensity rapidly changes between
the relatively constant value inside lines and varying values outside. We
next sort histogram points vertically based on their intensity value, and
order them in depth with high-intensity voxels first. Fig. 6 e shows the
result. We see that relatively few voxels have high gradients, while the
vast majority of the data is represented by a well defined distribution
of gradients. Our lines of interest are located in the former voxels (his-
togram tail). Also, we see several color bands in the smooth part of the
histogram, with a thin purple (high-intensity value) band at the top, and
most points having low values (green). Such bands emerge because of
our y sorting on intensity. This distribution reveals the kinematics of the
Galaxy and the velocity structure of the gas, represented by gradients
in intensity with wavelength.

Over the high-gradient tail, we mainly see the same green shade as
on the lines in Fig. 6 a. This indicates that for these high gradients,
points do not have high intensity values (purple). Our lines of interest
thus occupy regions of low intensity values and high gradient.

To find our desired lines, we now warp between the histogram and
DVR views. In the intermediate frames (Figs. 6 b-d), we see several
horizontal lines appearing, which smoothly move from the histogram
tail towards their spatial locations in the DVR view. To select all such
lines, we thus simply select the histogram tail. For more control, we
can use the transition views to select any desired line located at specific
spatial positions. The animation unearths several additional such lines
inside the data cube, which the DVR view (Fig. 6 a) did not show.

5.3 Image segmentation and manipulation

We next illustrate color tunneling for three use-cases for 2D images,
presented in increasing order of complexity.

Dead pixel isolation: Consider a 2D color photograph, shown as
a Cartesian plot (Fig. 7 left). Photos often contain isolated pixel
groups whose color slightly differs from their surroundings, such
as ‘dead pixels’ due to imperfections of digital cameras. Isolating
such pixels (e.g. for retouching) is hard: They are visible neither in
Cartesian nor in hue-saturation plots (Fig. 7 right). However, if we
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warp between the two plots, such pixels clearly show up as outliers
(Fig. 7 middle frame). Why does our animation highlight such outliers?
The explanation is as follows. Similar-color compact spatial regions in
the Cartesian plot, e.g. the uniform image background or the orange
fish, move as compact blocks to their corresponding regions in the
hue-saturation plot. Outlier pixels in such regions have different hue
and/or saturation values, so are warped on different trajectories. In
our case, these are pixels on the dark image background, whose color
slightly differs from their uniform vicinity. We can stop the anima-
tion at any frame showing such pixels to select them for e.g. retouching.

Complex selections: Consider an input image (Fig. 8 a), where we
want to select and remove the indicated wavy colorband. Selecting this
area in image-space is hard, as both its shape and color distribution are
quite complex. We use instead a mix of erase and warp, as follows.
First, we use a hue-saturation scatterplot to select the band. Figs. 8 g-j
show the brushing of the desired pixels in the histogram view. A dotted
curve shows the brush trajectory. Directly erasing this selection also
eliminates several pixels outside the desired band (Figs. 8 b-e). To
correct this too large selection, we use the warp tool. Figs. 8 k-n show
several frames from warping the result of our previous erase (Figs. 8 e)
towards a hue-saturation plot. During the warp, our band is shifted
away from its spatial position. This provides precisely the extra empty
space around the undesired selections, which we can now cancel by di-
rect brushing in the warped frame (Fig. 8 m, mouse positions). Fig. 8 n
shows the warped frame after removal of the undesired selections.
Fig. 8 p shows the final image, with the initial colorband precisely
removed. The editing took around one minute. We also tried to isolate
this color band using classical fuzzy brushing in the Graphic Converter
editor [21]. To achieve the selection quality in Fig. 8 p, an expert user
of this tool needed several trial-and-error passes (6 minutes). Note also
that selecting these pixels using only brushing in the hue-saturation plot
is equally hard: Fig. 8 o shows this plot after the unwanted selection
correction was done using warping (Figs. 8 m,n). Comparing this

image with the hue-saturation plot before warp editing (Fig. 8 j), we
see no visible difference. Thus, the warp helped indeed to correct the
selection in a way that is not possible using only the hue-saturation plot.

Image segmentation: Fig. 9 (a) shows a skin scan of a naevus, or
mole, acquired with a Handyscope optical dermatoscope (2448×3264
pixels). Dermatology specialists need to segment such scans into nor-
mal skin, the mole, and the internal mole structure [7, 24], prior to
applying various metrics [13] to predict the potential malignity of the
mole, i.e., its chance to be(come) a melanoma. A manual segmentation
produced by a dermatologist, shown in image (a), takes a few minutes
to complete, depending on training level and image complexity. Pro-
cessing many such images, e.g. during routine clinical screening, is
time-consuming and tedious. Automatic segmentation yields in general
suboptimal results, given the high variability of tumor morphologies
and color ranges. Moreover, medical users typically desire to closely
control of the segmentation process. Color tunneling can help this pro-
cess. Image (b) shows a hue-saturation polar plot of our scan. Here,
a simple selection in the mid-saturation range captures well both the
inner-structure and mole-skin boundaries. Indeed, for mole images of
white-skin subjects, boundaries have a saturation located between the
pale (desaturated) skin and mole (saturated) colors. The brush thick-
ness controls the allowed boundary fuzziness – thicker brushes allow
selecting fuzzier boundaries. Warping this image towards a gradient
magnitude vs brightness plot shows how our selection splits into two
clusters (images (d-f)). To map these clusters to spatial locations, the
user next warps the gradient-brightness plot towards the initial Carte-
sian plot (images (g-i)). Playing this animation a few times, the user
sees that the upper and lower clusters encode the mole-skin boundary
and inner-structure boundaries respectively, which have (on average)
different brightnesses. This justifies the use of a brightness plot axis.
To separately select these two boundaries, the user erases the undesired
cluster from the gradient-brightness plot (images (j,k) and (l,m)). Addi-
tionally, for noisy images, the user can erase high-gradient points (the
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Figure 7: Dead pixel isolation. Warping between an image (left) and its hue-saturation plot (right) allows finding a few outlier pixels (marked red).
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Figure 9: Skin tumor segmentation scenario.

tops of the cluster bumps) to make the selection more robust. This jus-
tifies the use of a gradient plot axis. Finally, to select the entire inner
structure, the user animates a few times between the gradient-brightness
and Cartesian plots, and notices that the desired structure corresponds
to the ‘tail’ of the scatterplot in an intermediate frame (images (n,o)).
To select this structure, the user first erases a few outlier pixels (image
(n)), and then adds the tail shape to the selection (image (o)). Image

(p) shows the successful selection of the inner structure. Note, for both
the skin-mole and internal-structure boundaries, the similarity with the
manual segmentations.

The above scenario was executed by an experienced dermatologist
(11 years of clinical practice) after 15 minutes of pre-training using
our tool, and successfully tried out on several dermatoscopic images
of different types of naevi morphologies, with resolutions from 6002

to 2448× 3264 pixels. The user noted that, while color tunneling is
not significantly faster than manual segmentation for clearly delimited
naevi, it is faster and easier to use than manual segmentation on im-
ages exhibiting fuzzy complex boundaries or acquisition noise (around
2 minutes/image). In particular, the user found selecting entire regions
with just a few brush strokes and animation moves to be much easier
(and requiring less concentration) with color tunneling than using clas-
sical encircle-and-flood-fill operations. The user also commented that
adding new scatterplot types, e.g. image local smoothness/contrast vs
hue, could make color tunneling a valuable tool for selecting and ana-
lyzing specific diagnostic factors for skin tumors. Given this positive
feedback, we aim to explore this direction in future work.

6 IMPLEMENTATION

Interactivity is key to our proposal. For datasets of 100K elements,
brushing and warping can be implemented at interactive framerates in
the standard OpenGL pipeline [18, 6]. Our datasets are up to two orders
of magnitude larger, e.g. 3D volumetric scans of 5123 voxels.

Even if modern GPUs can render 10 Mpixels/second, interacting
with such data sizes is not trivial. We need to update in real time both
selection state (for brushing) and point positions (for digging). We next
detail how these operations can be efficiently done using pixel and ver-
tex shaders. In a vertex shader, we can change the position of the drawn
element, and thus achieve the digging effect. One challenging aspect
for warping is writing the updated element positions. Shaders were de-
signed to write to textures, not to arbitrary buffers. Render-to-texture is
accurate but requires a complex implementation and extra writing and
reading passes. Recently, OpenGL added transform feedback, a fea-
ture that allows vertex shaders to write to arbitrary buffers. We heavily
rely on this feature, using a two-step process: First, position data is
processed to account for both brushing (element selection) and warp-
ing (element displacement). Secondly, processed data is copied back
into the rendering pipeline for the next brushing or warp step. This is
more efficient than render-to-texture since it does not require texture
I/O. Also, all data stays on the GPU, which gives an additional speed
boost. Apart from the above, the implementation of color tunneling is
straightforward. Only point primitives are used for rendering. Shading
is freely specifiable on a per-point basis.

We implemented color tunneling using the transform feedback tech-
nique with OpenGL 4.1 and C#. For completeness, we also added clas-
sical range-based attribute selection by GUI sliders to our tool. The ob-
tained rendering performance is one to two orders of magnitude larger
than using render-to-texture [19] or direct mode rendering [18]. On a
Core-i7 3.4 GHz with a GeForce GTX 580, this allows us to manipulate
datasets of over 10M elements at 20 frames/second.
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Figure 8: Removing a complex area from a color image using a combination of brushing, animation, and linked scatterplots.

7 DISCUSSION

We next discuss several relevant aspects of color tunneling.

Data in focus: While we borrow the data-driven F+C deformation
idea from MoleView [18], a key difference exists. MoleView specifies
focus points as attribute value-ranges via a range slider. Instead,
we use the lock view to select our points of interest. This is more
flexible, as it allows fine-grained, discontinuous, selections. In contrast
to F+C deformation techniques which push away all points close to
focus [12, 17, 39, 37], we explicitly specify points of interest on a
fine-grained basis, using any of the lock views (Sec. 4.3). Also, in
contrast to MoleView, which works purely in 2D, and to other isotropic
3D F+C techniques [12], we move points in the brush radially away
from the view-ray. This creates an empty cylinder around the 2D focus
point (Fig. 3), and makes our dig tool work without having to specify a
focus point in 3D.

Selection space: Histomages [6] also allows selecting data in linked
views. However, only pairs of static views (2D Cartesian plot and
its histogram) are offered. We allow selection in an automatically
generated continuum of views, created by warping between pairs of
user-configured views. Animations can be stopped at any stage. Each
such stage is a static intermediate view where one can explore, brush,
and select data. Thus, our animation serves also the task of data
exploration and selection, besides the goal of mental map preservation
covered by earlier work. In contrast to ‘semantic layers’ [23], our data
selection is much simpler, but equally powerful, as we use only 2D
brushing instead of a complex family of 3D widgets and GUI sliders.

Scope: Several of the selection and exploration use-cases presented
here are also targeted by existing techniques such as F+C deformations,
range sliders, and transfer functions. However, we argue that color
tunneling makes these use-cases simpler to address. As such, we see
color tunneling as a complement, and not a replacement, of the rich set
of existing multivariate data exploration techniques.

Scalability: All our views are essentially point-based plots. Our plot
implementation using OpenGL’s transform feedback allows achieving
interactive frame rates for over 10M points. In contrast, earlier related
techniques [18, 6, 17, 11, 8] propose more complex deformation and
rendering implementations, which cannot achieve this scalability.

Extensions: Color tunneling can be extended in several directions.
For instance, fuzzy selections can be easily added, e.g. by rendering
points with an alpha value based on their distance to the 2D selection
brush center. This would expose the selection confidence in all views.
Additionally, multiple selections can be easily added.

Limitations: Point-based rendering creates sampling artifacts, see e.g.
the small-scale skin ripples in Fig. 4. Such artifacts are small, and exist
only for a few frames of the dig animation (see video). They can be
removed by computing a dense sampling of the space D by backtracing
the dig deformation field [17]. However, this is expensive (minutes or
more), and would decrease our frame rate prohibitively. Separately, we
note that better mechanisms to select the relevant exploration views are
needed, especially for high-dimensional datasets, apart from the trial-
and-error procedure described here. Finally, we note that formal broad
user studies are needed to confirm the early usability results of color
tunneling outlined by our studies presented in Secs. 5.2 and 5.3.

7.1 Conclusions

We have presented color tunneling, a set of interactive techniques for
exploration and selection of structures from multidimensional datasets.
Color tunneling combines simple operations: linked views, lock, dig,
brush, and warp animation. Together, these operations, which are in-
voked by simple mouse-based brushing and clicking, without using any
complex menus or other user-interface elements, support a rich spec-
trum of exploratory activities in volume datasets.

In contrast to previous animation techniques [18, 6], users can con-
trol and stop the animation at any stage. This yields an infinite set



of in-between views where one can brush, dig, select, and explore the
data. We thus use animation as an exploration tool rather than only for
preserving the mental-map between two views. We illustrate this by an-
imations of 3D cube to scatterplot (Sec. 5.1), scatterplot to scatterplot
(Sec. 5.3), 3D cube to histogram (Secs. 5.1), 5.2) and 3D cube to 3D
cube (Sec. 5.2). We also present a new interaction tool: the lock view.
Locked items are not affected by our dig, warp and brush tools. Locking
leverages brushing by allowing complex selections of brushable items,
in contrast to brushing compact ranges [19, 35]. Concluding, our con-
tributions are as follows:

• using animation as a controlled data exploration-and-selection
technique,

• improved brushing with a flexible selection of brushable items,

• improved dig tool (lens deformation) with a flexible selection of
pushable items,

• a simple implementation able to handle over 10M displayed data
points at a frame rate of 20 images per second on a modern GPU.

Many applications and extensions of color tunneling are possible.
Color tunneling is directly applicable to other high-variate datasets, e.g.
CFD and geophysical data. The technique can be valuable for explor-
ing dense scatterplots created by multidimensional scaling (MDS), in
particular for explaining the meaning of point clusters in such projec-
tions. Finally, computing interpolation paths between arbitrary pairs of
element-based plots so that structures and patterns are optimally high-
lighted is a promising future work direction.
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