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Abstract: The analysis of networks and in particular the identification of communities, or clusters, is a
topic of active research with application arising in many domains. Several models were proposed for its
solution. In [Cafieri et al., Phys. Rev. E 81(2):026105, 2010], a criterion is proposed for a graph bipartition
to be optimal: one seeks to maximize the minimum for both classes of the bipartition of the ratio of inner
edges to cut edges (edge ratio), and it is used in a hierarchical divisive algorithm for community identification
in networks. In this paper, we develop a VNS-based heuristic for hierarchical divisive edge ratio network
clustering. A k-neighborhood is defined as move of k entities, i.e., k entities change their membership from
one to another cluster. A local search is based on 1-changes and k-changes are used for shaking the incumbent
solution. Computational results on datasets from the literature validate the proposed approach.

Résumé : L’analyse de réseaux et en particulier l’identification de communautés, ou classes, est un sujet
de recherche très actif dont les applications sont nombreuses dans de multiples domaines. Plusieurs modèles
ont été proposés pour sa résolution. Dans [Cafieri et al., Phys. Rev. E 81(2):026105, 2010], on propose un
critère pour que la bipartition d’un graphe soit optimale : on cherche à maximiser le minimum pour les
deux classes de la bipartition du rapport du nombre d’arêtes internes au nombre d’arêtes coupées (edge-
ratio). Ce critère est utilisé dans un algorithme hiérarchique divisif pour l’identification de communautés
dans les réseaux. Dans le présent article, nous développons une heuristique pour la classification hiérarchique
descendante basée sur la métaheuristique de recherche à voisinage variable. Un k-voisinage est défini comme
le mouvement de k entités, c’est-à-dire que k entités changent leur appartenance d’une classe à l’autre. Une
recherche locale est basée sur les 1-échanges et les k-échanges sont utilisés pour perturber la meilleure solution
connue. Les résultats de calcul sur des données de la littérature valident l’approche proposée.
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1 Introduction

Complex systems in a variety of domains are represented by networks. The most prominent examples include

social networks, describing individuals and their interactions and relationships, telecommunication networks,
transportation networks, biological networks, and many more. A modular structure characterizes many

complex systems, which contain subgroups of entities sharing some common properties. A topic of particular

interest in the study of complex networks is therefore the identification of modules, also called clusters or

communities. This is very useful to identify some properties of the system described by the studied network

starting from its structural features. The reader is referred to Newman [1] for an introduction to networks

and to Fortunato [2] for a recent and deep survey of network clustering.

Let us consider a graph G = (V,E), with V the set of vertices and E the set of edges, used to represent

a network. Several models and clustering criteria have been proposed. One often maximizes or minimizes a
criterion function. The most used is modularity [3], based on the idea of comparing the fraction of edges falling

within communities to the expected fraction of such edges. An alternative approach to the maximization

of a criterion function is based on the satisfaction of a priori conditions to have a community. Radicchi et

al. [4] proposed two such conditions defining communities in a strong and a weak sense, respectively. Recall

that the degree ki of a vertex i belonging to V is the number of its neighbors (or adjacent vertices). Let
S ⊆ V be a subset of vertices. Then the degree ki can be separated into two components kini (S) and kouti (S),

i.e., the number of neighbors of i inside S and the number of neighbors of i outside S. A set of vertices S

forms a community in the strong sense if and only if every one of its vertices has more neighbors within the
community than outside:

kini (S) > kouti (S), ∀i ∈ S.

A set of vertices S forms a community in the weak sense if and only if the sum of all degrees within S is
larger than the sum of all degrees joining S to the rest of the network:

∑

i∈S

kini (S) >
∑

i∈S

kouti (S).

This is equivalent to the condition that the number of edges within S is at least half the number of edges in

the cut of S.

The weak condition was used [4] as a local stopping criterion in hierarchical clustering; also, it led Wang

et al. [5] to define a community S indivisible if there is no bipartition, (S1, S2) of S, such that both S1 and

S2 satisfy the weak condition.

These concepts inspired the definition of the edge-ratio criterion in [6]. More precisely, in [6] the definition

of community in the weak sense is extended into a criterion for a bipartition to be optimal: one seeks to

maximize the minimum for both classes of the bipartition of the ratio of inner edges to cut edges. Specifically,
the ratio of the number of edges within a community to the number of cut edges which have one end point

only within that community is considered:

r(S) =
∑

i∈S

kini (S)/
∑

i∈S

kouti (S).

When dividing S in S1 and S2, this ratio for both communities S1 and S2 is considered and the smallest
value is maximized:

f(S1, S2) = max
S1,S2⊂V

min (r(S1), r(S2)) . (1)

Solving sequentially this problem yields a hierarchical divisive clustering algorithm, with a well defined crite-
rion for bipartitioning. To build the divisive algorithm, the weak definition is first strengthen by quantifying

how much the number of inner edges is larger than the number of cut edges. This is done by introducing a
parameter α in the weak condition:

∑

i∈S

kini (S) ≥ α
∑

i∈S

kouti (S). (2)
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The coefficient α, equal to the ratio of twice the number of edges within the community S divided by the
number of edges within the cut of that community ((2) in case of equality), is called the edge ratio [6].

So, a divisive algorithm can be built performing each bipartition in such a way to seek the maximum

value of α for which the current sub-network S is divisible (i.e., twice the ratio of the number of edges within

S divided by the number of edges within the cut of S). Bipartitioning is the crucial point in a hierarchical

divisive algorithm and usually gives rise to the most computationally demanding steps of the algorithm. The

problem of maximizing the edge-ratio for bipartitioning is NP-hard [7]. This motivates studying heuristic

methods as an alternative to exact methods, which combine computational efficiency with the ability to

provide good quality results.

In this paper we propose an efficient Variable Neighborhood Search based heuristic for divisive hierar-
chical clustering with edge-ratio criterion. The paper is organized as follows. In Section 2 we present the

Variable Neighborhood Search heuristic for the considered optimization problem. In Section 3 we validate our
approach on a set of datasets from the literature and compare the obtained results with an exact algorithm

for bipartition previously proposed. Section 4 concludes the paper.

2 Variable Neighbourhood Search for hierarchical divisive edge-ratio

clustering

2.1 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a metaheuristic (i.e., a framework for building heuristics), aimed at

solving combinatorial and global optimization problems. It relies on iteratively exploring neighbourhoods of

the current (local) optimum to identify better local optima, the main idea consisting in a systematic change

of neighbourhood combined with a local search [8, 9, 10, 11, 12]. More precisely, VNS iteratively (until a

given termination condition is satisfied) escapes from the current local optimum x∗ by initiating other local
searches from starting points sampled from a neighbourhood of x∗ which increases its size iteratively until a

local minimum better than the current one is found.

Thus, the main ingredients of the VNS metaheuristic are:

– Definition of a neighbourhood of the current solution;

– Neighbourhood changes;

– Local search;

– Shaking, i.e., a procedure to perturb the current solution;

– Update of the current solution.

2.2 Divisive hierarchical clustering

Hierarchical divisive heuristics (see, e.g. [13]) proceed from an initial partition containing all the n vertices

of the graph and iteratively divide a community S into two (bipartitioning step) in such a way to improve as

much as possible the objective function value. Bipartitions are iterated until a partition into n communities

having each a single entity is obtained; in practice, bipartitions can be ended once they do not improve the

objective function value anymore. Let ℓ be in {1, . . . , n} and Sℓ the community selected for bipartition at each
iteration of the algorithm (at the first iteration, Sℓ = V ). The bipartition of Sℓ gives two new communities,

S1 and S2. We let Sℓ = S1 and Sℓ+1 = S2, then ℓ is increased by one and all process repeated. In the present
study, the objective function is based on the edge-ratio criterion (1) and bipartitioning is done by Variable

Neighbourhood Search. A sketch of the divisive algorithm is given in Algorithm 1, where threshold is used

to decide if the two subgraphs obtained by a bipartition have to be kept (i.e., the current community to be

bipartitioned is divisible).

In the remainder of this section, we focus on the step 4 of Algorithm 1 and we present a VNS algorithm

to perform community splitting.
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Algorithm 1: Hierarchical divisive algorithm
Input: graph G = (V,E), where |V | = n and |E| = m
Output: a partition P of V

1 ℓ = 1, Sℓ = {v1, . . . , vn}, P = Sℓ

2 while ℓ ≤ |P | and ∃Sℓ ∈ P not visited do

3 select Sℓ ∈ P (not visited)
4 find a bipartition of Sℓ into S1 and S2 according to the edge-ratio criterion
5 if f ≥ threshold
6 then

7 P ← (P ∪ {S1} ∪ {S2}) \{Sℓ}
8 Sℓ ← S1; Sℓ+1 ← S2

9 end if

10 ℓ← ℓ+ 1
11 end while

2.3 VNS for edge-ratio

Let us introduce binary variables x (a vector with components xi) to denote to which of the two sets, obtained

by the bipartition done at each hierarchy level, vertex vi belongs for all i. By convention, xi = 1 if vi belongs

to S1 and xi = 0 otherwise. To perform community splitting (step 4 of Algorithm 1), we solve an optimization

problem with decision variables x and objective function defined in (1).

Neighborhoods. To build a VNS heuristic for this optimization problem, we first have to define a neighbor-

hood N(x) of x. In discrete optimization problems with binary variables, neighborhoods of x are obtained

from x by some simple modification, for instance complementing one of its components xi, or complementing

two complementary components (i.e., setting one component from 1 to 0 and another from 0 to 1).

In a VNS framework, neighborhood changes typically correspond to various types of moves, or perturba-

tions, of the current solution.

Thus, in our VNS algorithm, starting from a random allocation of entities xi to the two sub-communities

of the current community S to be bipartitioned, we use a basic allocation move to change neighborhood of

x. Allocation move works by taking some entity vi from S = S1 ∪ S2 and changing its allocation: if vi ∈ S1

(i.e., xi = 1) then, after the allocation move, it will belong to S2 (i.e., xi = 0) and vice-versa.

When performing such a change (move), we need to check if it leads to some improvement of the objective

function value. Notice that, after the move, the new objective function to be maximized for bipartition is:

fnew = min

{

2mnew
1

cnew1

,
2mnew

2

cnew2

}

, (3)

wheremnew
1 andmnew

2 are the number of edges in the first and in the second subgraph obtained by bipartition,

and cnew1 and cnew2 are the number of cut edges with one end point in the first subgraph and the number of

cut edges with one end point in the second subgraph respectively. If v ∈ S1 changes its membership to S2,

then we have:

mnew
1 = m1 − kinv , mnew

2 = m2 + kcutv (4)

because the new number of inner edges m1 of S1 is reduced by kinv (the inner degree of v) and the number of
edges in S2 is augmented by the cut degree of v. The number of cut edges c1 and c2 are updated as follows:

cnew1 = c1 + kinv − kcutv − krestv (5)

cnew2 = c2 + kinv − kcutv + krestv (6)

where krestv = kv − kv(S) (computed for each vertex at each hierarchy level). Indeed, since v moves to S2,

the number of cut edges cnew1 of S1 is increased by its inner degree in S1 (+kinv ); also, it is reduced by kcutv ,
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since its cut degree contributes to inner degree of S2; finally, all vertices from S \ (S1 ∪ S2) connected with v
after the move to S2 do not produce cut edges of S1 anymore (−krestv ). So, the new objective function value

is

fnew = min

{

2 · (m1 − kinv )

c1 + kinv − kcutv − krestv

,
2 · (m2 + kcutv )

c2 + kinv − kcutv + krestv

}

(7)

and similarly for the opposite case of v moving from S2 to S1.

Local search. A local search procedure is used in the VNS to improve the objective function value. It
consists of starting from an initial solution vector x and iteratively moving to the best neighbor x̄ ∈ N(x)

such that the value of the objective function f is improved (f(x̄ > f(x) in the case of maximization). The
heuristic stops when no such neighbor exists anymore. In our VNS setting, a move is done changing vertex

memberships. Thus, the local search is an iterative application of the above allocation move, which is repeated

until there is no vertex whose membership change will give partition with larger value of f(S1, S2). In that

case, a local maximum has been found.

The following proposition holds.

Proposition 1 If a bipartition (S1, S2) of a set S = V \ (S1 ∪ S2) is locally optimal with respect to allocation

neighborhood structure then the following holds:

[(∀v ∈ S1)(f
new
1 < f1 ∨ fnew

1 < f2)] ∧ [(∀v ∈ S2)(f
new
2 < f1 ∨ fnew

2 < f2)]

Proof. The fact that there is a move of an entity v from S1 to S2, or from S2 to S1 such that fnew is larger

than both f1 and f2, may be expressed in the following way:

[(∃v ∈ S1)(f
new
1 > f1 ∧ fnew

1 > f2)] ∨ [(∃v ∈ S2)(f
new
2 > f1 ∧ fnew

2 > f2)].

If there is no such improvement move, it can formally be presented as negation of the previous expression.

Then the statement of the proposition follows from De Morgan’s laws.

Proposition 2 The time complexity of one iteration of the local search algorithm is O(n).

Proof. The proposed local search is based on the move procedure, which is repeated n times. The results

follows from the observation that the procedure move is O(1).

Shaking. Shaking is a procedure used to generate a point x′ at random from the k-th neighborhood N(x)

of the current solution x. A new local search will then started at x′.

The natural way to introduce a distance in the solution space of the considered problem is to use Hamming

distance. We say that two solutions x and y are at distance k if their Hamming distance is equal to k. As

solution vectors are binary vectors, the Hamming distance between x and y measures the minimum number
of changes of zeros to ones, or reciprocally, required to change x into y. We build the shaking procedure

on this concept, perturbing the current solution x to a new vector which has Hamming distance k from it.
Thus, k zeros or ones are switched to their opposite value, or, in other words, k entities change their original

cluster.

Update of the current solution. Update of the current solution vector leads to update a number of entities

appearing in the problem description. We need indeed to update the number of vertices of S1 and S2, their

number of inner edges and cut edges, and correspondingly the degree of vertices of the two subgraphs obtained
by bipartition.

The basic VNS algorithm for edge-ratio clustering bipartition can finally be summarized in Algorithm 2.
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Algorithm 2: Basic VNS for edge-ratio clustering bipartition
Input: graph GS = (S,ES)
Output: a bipartition of S

1 Initialization
2 while time ≤ tmax do

3 k ← 1
4 while k ≤ kmax do

5 apply Shaking
6 perform Local search
7 k ← k + 1 (next neighborhood)
8 if f improved
9 then

10 perform a move
11 end if

12 end while

13 end while

3 Computational results and analysis

In this section, we discuss the results obtained on 11 datasets from the literature, corresponding to various

real-world applications and often used to test algorithms and heuristics for community detection. In par-

ticular, we consider Zachary’s karate club dataset [14] describing friendship relationships in a karate club,

Lusseau’s dolphins dataset [15] describing communications between dolphins, Hugo’s Les Misérables dataset

describing characters in Victor Hugo’s masterpiece and their interactions [16], Krebs’ political books dataset

[17], a dataset representing the schedule of football games between American college teams [18], a network

dealing with connections between US airports [19], a dataset on a coauthorship network of scientists working
on network theory and experiment [20], a network describing electronic circuits [21], a network representing

e-mail interchanges between members of a university [22], a network giving the topology of the Western

States Power Grid of the United States [23] and a network of authors collaborations [19]. These datasets are

all undirected and unweighted networks without loops. They are listed Table 1 together with their number

of vertices n and number of edges m.

3.1 Comparison with modularity

In Table 1 we also report the number of communities M in partitions obtained by applying the proposed

divisive heuristic with the VNS algorithm for bipartitioning. We compare this number with the number of
communities obtained when the known criterion modularity [3] is used. An exact algorithm for modularity

maximization is used [24] for the first 8 datasets, and a heuristic [25] refined using the procedure in [26] is

used for the last three datasets, where an exact solution is not known. In the VNS, the value of parameter

kmax is set to min{50, n/2} in all test problems. We compare results obtained using two treshold values

for deciding about indivisibility of a community. The default value for this threshold is 1 and, specially for
small-scale networks, it allows us to obtain a number of communities that is very close to that obtained using

modularity. In other cases, a threshold equal to 1 leads to consider a high number of communities in the final
partition, often containing very small communities. In such cases, we experimentally find different values for

the threshold which give results very close to results obtained with the modularity criterion. Notice that the

impact of the threshold for indivisibility in edge-ratio clustering was not studied in previous work, as only

small-scale networks were previously analyzed.

3.2 Comparison with a locally optimal hierarchical divisive algorithm

In [6] a mathematical programming formulation for identification of optimal communities according to the

edge ratio criterion is proposed, which has a linear objective (i.e., maximization of α), but non linear and non
convex constraints (products between α and binary variables arise). However, if α is fixed, a linear program
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Table 1: Results obtained using VNS, on datasets from the literature

dataset n m M(threshold) M(threshold) Mmodularity

karate 34 78 4 (1) - - 4
dolphins 62 159 8 (1) 5 (1.5) 5
les miserables 77 254 9 (1) 7 (1.5) 6
political books 105 441 10 (1) 5 (2) 5
football 115 613 12 (1) 10 (1.5) 10
Usair97 332 2126 16 (1) 6 (2) 6
netscience main 379 914 69 (1) 18 (6.5) 19
s838 512 819 101 (1) 12 (5) 12
email 1133 5452 39 (1) 12 (1.5) 11
power 4941 6594 1322 (1) 48 (6) 46
erdos02 6927 11850 268 (1) 32 (1.8) 34

in 0-1 variables is obtained. This suggests to solve the optimal bipartition problem with a dichotomous search
on the values of α. An initial value α equal to 1 can first be chosen. If there is no feasible solution for that

value, the network is indivisible. Otherwise, the value of α may be doubled and feasibility checked until a
value is attained for which the weak condition cannot be satisfied. This gives an upper bound ᾱ and the

previous value of α gives a lower bound α. Then the dichotomous search proceeds by considering the mid

value of the interval [α, ᾱ]. The procedure stops when the length ᾱ − α of the current interval is smaller

than some given tolerance ǫ. This basic procedure can be accelerated in several ways, including using an

initial value of α corresponding to a solution obtained by some heuristic and removing symmetries by fixing

a variable. The algorithm is locally optimal in the sense that an exact method is used to solve the bipartition

problem. See [6] for more details.

In Table 2 we compare, in terms of execution time, the results obtained using VNS and the exact algorithm
for bipartition in the splitting step ot the hierarchical divisive algorithm. Threshold 1 is used. Tests were run

on AMD Opteron 2 GHz CPU, 128 GB RAM. We remark that VNS allows us to obtain results significantly
faster than exact bipartitioning.

The computational time is reduced up to 7 orders of magnitude. Thus, we are able to solve larger prob-

lems with respect to problems that we can solve using an exact method. Furthermore, using VNS does not

significantly affect the quality of the results. In the most of the cases, we obtain the same partition using

VNS and the exact bipartitioning method. Two examples of obtained partitions, and the corresponding den-

drogram illustrating the hierarchical divisive algorithm, are shown in Figures 1 and 2. These two partitions,

obtained using VNS, are the same obtained using exact bipartitioning.

Table 2: Comparison of results obtained using VNS and an exact algorithm for bipartition, on datasets from
the literature

dataset n m Time VNS (sec.) Time exact (sec.)

karate 34 78 0.0 62.10
dolphins 62 159 9.99e-3 172.2
les miserables 77 254 1.99e-2 283.49
political books 105 441 1.99e-2 716.45
football 115 613 3.99e-2 11780.79
Usair97 332 2126 0.62 3752906.94
netscience main 379 914 1.14 2347.24
s838 512 819 0.64 12612.53
email 1133 5452 6.84 –
power 4941 6594 29.80 –
erdos02 6927 11850 35.50 –
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Figure 1: (Color online) Partition and dendrogram obtained for dataset polbooks
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Figure 2: (Color online) Partition and dendrogram obtained for dataset football

4 Conclusions

In this paper we propose a heuristic based on (basic) Variable Neighborhood Search to perform the biparti-

tioning step in a hierarchical divisive algorithm based on the recent edge-ratio network clustering criterion,
which was shown to be an alternative approach to modularity criterion. Neighborhoods to be used in the VNS

are defined using the Hamming distance. Systematic perturbations of the current incumbent solution also
use the Hamming distance between any two solution. We develop a local search for the addressed problem

and evaluate its complexity.

Computational results show that VNS allows us to obtain good quality results significantly reducing the
computational time needed to perform bipartitioning steps.
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[9] P. Hansen and N. Mladenović, European Journal of Operations Research 130, 449 (2001)
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