
HAL Id: hal-00979214
https://enac.hal.science/hal-00979214

Submitted on 23 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Reformulation-Optimization Software Engine
Leo Liberti, Sonia Cafieri, David Savourey

To cite this version:
Leo Liberti, Sonia Cafieri, David Savourey. The Reformulation-Optimization Software Engine. ICMS
2010, 3rd International Congress on Mathematical Software, Sep 2010, Kobe, Japan. pp 303-314,
�10.1007/978-3-642-15582-6_50�. �hal-00979214�

https://enac.hal.science/hal-00979214
https://hal.archives-ouvertes.fr

The Reformulation-Optimization Software

Engine⋆

Leo Liberti1⋆⋆, Sonia Cafieri2, and David Savourey1

1 LIX, École Polytechnique, Palaiseau, France,
{liberti,savourey}@lix.polytechnique.fr

2 Dept. Mathématiques et Informatique, ENAC, 7 av. E. Belin, 31055 Toulouse,
France, sonia.cafieri@enac.fr

Abstract. Most optimization software performs numerical computa-
tion, in the sense that the main interest is to find numerical values to
assign to the decision variables, e.g. a solution to an optimization prob-
lem. In mathematical programming, however, a considerable amount
of symbolic transformation is essential to solving difficult optimization
problems, e.g. relaxation or decomposition techniques. This step is usu-
ally carried out by hand, involves human ingenuity, and often consti-
tutes the “theoretical contribution” of some research papers. We describe
a Reformulation-Optimization Software Engine (ROSE) for performing
(automatic) symbolic computation on mathematical programming for-
mulations.
Keywords: reformulation, MINLP.

1 Introduction

The aim of this paper is to describe a new optimization software called Refor-
mulation-Optimization Software Engine (ROSE). Its main purpose is to allow the
symbolic analysis and reformulation of Mathematical Programs (MP), although
ROSE can also interface with numerical solvers. In practice, ROSE is used either
as a pre-processor or is called iteratively within numerical solvers; it can be
used either stand-alone or as an AMPL [1] solver. ROSE addresses MPs in the
following very general form:

min f(x)
gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU

∀i ∈ Z xi ∈ Z,















(1)

⋆ Supported by grants: ANR 07-JCJC-0151 “ARS”, Digiteo 2009-14D “RMNCCO”,
Digiteo 2009-55D “ARM”. We acknowledge the contributions of Dr. C. D’Ambrosio
(University of Bologna) and of Mr. P. Janes (Australian National University); to
appear in an LNCS volume containing the Proceedings of the International Congress
of Mathematical Software, 2010.

⋆⋆ Corresponding author.

2 Liberti, Cafieri, Savourey

where x is a vector of n decision variables, xL, xU ∈ R
n, Z ⊆ {1, . . . , n}, gL, gU ∈

R
m, f : R

n → R and g : R
n → R

m. MPs in the form (1) are known as Mixed-
Integer Nonlinear Programs (MINLP). The restriction on f, g is that they should
be representable as strings of a certain formal language (more details in Sect. 2
below).

Changing the formal description of optimization problems has an impact
on the applicability and efficiency of the corresponding solution methods. Dif-
ficult problems are routinely decomposed, relaxed or transformed into simpler
subproblems that we know how to solve efficiently, and which preserve some
of the interesting mathematical properties of the original problem. Such trans-
formations, called reformulations, almost always depend on the “mathematical
structure” of the problem. Considering MP as a formal language, each formula-
tion is a valid sentence in the language. A reformulation is a sequence of some
basic symbolic transformations (such as add, modify or delete a variable, an ob-
jective or a constraint). In order to be useful, a reformulation must preserve some
mathematical property: for example, all optima of the reformulation might be
required to be also optima of the original formulation. Since the basic “atomic”
reformulations (adding, modifying, deleting a formulation element) are in princi-
ple easy to conceive and implement, the absence of a generic software package for
carrying out automatic reformulations in MP might come as a surprise. ROSE
moves a few steps in this direction, providing a set of reformulators that can act
on MP formulations. The roadmap for ROSE is to facilitate the implementation
of a heuristically driven search for the best reformulation for a given solver.

ROSE consists of around 50Klines of GNU C++ code and is covered by
the Common Public License (CPL). We are currently preparing its distribution
through COIN-OR [2] and finalizing documentation and examples. At the mo-
ment the software can be obtained through http://www.lix.polytechnique.

fr/~liberti/rose.tar.gz. This paper announces the first public distribution
of ROSE, which provides symbolic (as opposed to numerical) methods for manip-
ulating MPs. Currently, ROSE can perform basic and complex symbolic analysis
and manipulation tasks on all formulation elements, including all expressions ap-
pearing in objective(s) and constraints in (1). These tasks have been put together
in higher-level reformulation solvers, e.g. writing a (linear) convex relaxation of a
MINLP automatically [3, 4]; writing a DAG representation of an AMPL-encoded
MINLP [5, 4]; writing a cdd [6] or Porta [7] representation of an AMPL-encoded
LP. A list of applications of ROSE is given in Sect. 5.

The rest of this paper is organized as follows. We review existing work in
Sect. 1.1, give two motivating examples in Sect. 1.2, survey the theory that
ROSE is built on in Sect. 2, explain ROSE’s architecture in Sect. 3, show how
ROSE helps solving the motivating examples in Sect. 4 and discuss ROSE’s main
applications in Sect. 5, which concludes the paper.

1.1 Existing work

Currently, optimization software focuses on solvers (implementations of solution
algorithms), each of which includes the necessary layers of reformulation capa-

The Reformulation-Optimization Software Engine 3

bilities. For example, all spatial Branch-and-Bound (sBB) MINLP solvers are
able to construct a convex relaxation automatically [8, 4].

Solvers typically require their input in a non-quantified format: complex
jagged arrays of variables and constraints must be transformed into flat lists
thereof. This creates the need for “translators” that automatically convert quan-
tified constraints to flat constraints. For example, ∀i ∈ {1, 2, 3}

∑

j 6=i xi = 1 is
converted to the flat form x1 +x2 = 1∧x1 +x3 = 1∧x2 +x3 = 1. Since different
solvers read the flat form input according to different encodings, translators also
include wrappers for most existing solvers, so that users can safely ignore the
technicalities of the calling procedure. The two best known MP translators are
AMPL and GAMS [9]: both optionally perform reformulations on the input MP
before “flattening” it and passing it to the solver.

In general, the reformulation layers of existing solvers and translators cannot
be accessed or modified by the user. Apart from ROSE we are aware of no
user-accessible software for carrying out MP reformulations with such generality.
Notwithstanding, at least two codes are available that perform symbolic analysis
and reformulation to a certain extent. Dr. AMPL [10] is an analysis tool for MP
formulations aimed to the automatic choice of an appropriate solver for the given
formulation. The software described in [11] enriches the AMPL language with
primitives for providing solvers with specific block-diagonal information about
the problem.

1.2 Motivating examples

The need for a generic reformulation software layer is given by the mounting
complexity of optimization software needed to solve ever more difficult prob-
lems.

Subproblems in sBB. In sBB, for example, a branching procedure constructs a
search tree, each node of which represents a pair of reformulations (Q, Q̄) of the
original problem P . The formulation Q is obtained from P by restricting the
variable bounds; Q̄ is a relaxation of Q where each nonlinear term is replaced
by linear lower and upper bounding functions. A possible sBB implementation
might wish to solve Q using a MINLP heuristic and Q̄ using a MILP solver. In
turn, the MINLP heuristic might alternate between solving a continuous Non-
linear Programming (NLP) reformulation and an auxiliary MILP reformulation
of Q, whereas the MILP solver is a standard BB algorithm which needs to call
MILP heuristics and a Linear Programming (LP) solver such as the simplex al-
gorithm. Testing new ideas in this complex calling chain often requires changing
the reformulation algorithms, which is impossible as long as these are hard-coded
into the solver.

The Kissing Number Problem. Given positive integers D, N̄ , the KNP [12] asks
for the maximum number (between 1 and N̄) of spheres of unit radius that can
be arranged in R

D around a unit sphere centered in the origin so that their

4 Liberti, Cafieri, Savourey

interiors are disjoint. The MP formulation [13] is:

max
P

i≤N̄

yi

∀i ≤ N̄ ‖xi‖
2 = 4yi

∀i < j ≤ N̄ ‖xi − xj‖
2 ≥ 4yiyj

∀i ≤ N̄ xi ∈ R
D, yi ∈ {0, 1}.

9

>

>

>

=

>

>

>

;

(2)

Attempting to solve (2) directly with a MINLP solver such as BARON [8] or
Couenne [4] results in the trivial solution with y = 0 standing for incumbent
(i.e. best optimum so far) for several days of computation as soon as D > 3
and N̄ > 13. We dispense with binary variables by transforming (2) into the
corresponding decision problem: can N ≤ N̄ spheres be arranged around the
central one? The MP formulation is:

∀i ≤ N ‖xi‖
2 = 4 ∧ ∀i < j ≤ N ‖xi − xj‖

2 ≥ 4. (3)

If (3) has a solution, then the instance (D,N) is a YES one. Since both BARON
and Couenne identify a feasible solution by calling a local NLP subsolver
(e.g. SNOPT [14]), both are only as reliable as the subsolver. Computational
experience shows that most local NLP solvers have difficulties in finding a lo-
cal optimum of a heavily nonlinear MP if no feasible starting point is supplied.
Again, days of computation will not yield any solution even for small instances.
Inserting a tolerance to feasibility improves this situation:

max
x,α∈[0,1]

α s.t. ∀i ≤ N ‖xi‖
2 = 4 ∧ ∀i < j ≤ N ‖xi − xj‖

2 ≥ 4α. (4)

As shown in [12], (4) is computationally amenable to local NLP solution within
a heuristic Global Optimization (GO) solver such as Variable Neighbourhood
Search (VNS). Because of the large number of symmetric optima, however, sBB
solvers are still far from finding any nontrivial solution. A study of the for-
mulation group of (4) suggests adjoining the symmetry breaking constraints
∀i ≤ N r {1} xi−1,1 ≤ xi1 to (4), yielding a reformulation for which sBB makes
considerably more progress [15]. Identifying this reformulation chain, which leads
to a more easily solvable MP, required considerable effort and resources. ROSE
alleviates the situation by providing a uniform C++ interface to several reformu-
lation needs. It is interesting to remark that other types of reformulations were
recently instrumental in solving some high dimensional KNP instances [16].

2 Reformulations: formal definitions

We define MPs as valid sentences of a certain formal language. Instead of giving
its syntax, i.e. the explicit grammar of this language (see the Appendix to [1]
for an example), we describe the image of its semantic function, i.e. the data
structure needed to encode a MP.

A parameter is a real number p (in its floating point computer representation).
A decision variable is a symbol xi indexed by some positive integer i. Consider
a finite set O of operators {⊕1,⊕2, . . .} of given arities. An expression is defined
recursively as follows:

The Reformulation-Optimization Software Engine 5

1. parameters are expressions;
2. decision variables are expressions;
3. if e1, . . . , ek are expressions and ⊕ ∈ O has arity k, then ⊕(e1, . . . , ek) is an

expression.

Let E be the set of all such expressions. We remark that each expression e(p, x) ∈
E involving parameters p = (p1, . . . , pt) and decision variables x = (x1, . . . , xn)
corresponds to a function fe(p, x), which associates to x the evaluation of e(p, ·)
at x. An objective function is a pair (d, e) ∈ {−1, 1} × E where d is the op-

timization direction: (−1, e(p, x)) corresponds to min fe(p, x) and (1, e(p, x)) to
max fe(p, x). A constraint is a triplet (gL, e, gU) ∈ R×E ×R encoding the dou-
ble inequality gL ≤ fe(p, x) ≤ gU . A range constraint is a triplet (xL

i , xi, x
U
i) ∈

R × E × R encoding the restriction xL
i ≤ xi ≤ xU

i . An integrality constraint is
a positive integer i which encodes the restriction xi ∈ Z. A mathematical pro-

gram is a 7-tuple (p, x,E,O, C,B, Z) such that for all e ∈ E, e depends on no
further parameters (resp. decision variables) than p (resp. x), O is a set of s
objective functions (d, e) with e ∈ E, C is a set of m constraints (gL, e, gU) with
e ∈ E, B is a set of n range constraints, and Z ⊆ {1, . . . , n} is a set of integrality
constraints. An element of any component set in the 7-tuple is also called an
entity of the MP. Semidefinite and multilevel programming can be dealt with by
letting constant and/or variables symbols range over sets of matrices or other
mathematical programs.

2.1 Flat and structured MPs

MPs can be given either in structured form (i.e. by using quantifiers over indices)
or flat form. Flat MPs are those corresponding to the definition of Sect. 2. We
now define structured MPs.

Given a sequence I = {Ii ⊆ N | i ≤ α} of finite subsets of integers and a
multi-index i = (i1, . . . , iα) where iβ ∈ Iβ for all β ≤ α, a structured parameter
p is a jagged array of (scalar) parameter symbols pi (with i ∈ I) with an as-
signed (scalar) value pi. A structured decision variable x is defined similarly for
scalar variable symbols xi. Structured expressions, resting on an operator set O′

enriched with the quantifier operators
∑

,
∏

, are defined recursively similarly to
flat expressions, but with parameters and variables replaced by their structured
versions. A structured constraint is a triplet (gL

ij , fe(pi, xj), g
U
ij) where all multi-

indices i, j are universally quantified over some subsets of I. Structured range
and integrality constraints are defined similarly. A MP defined over structured
entities is a structured MP. Given a structured MP P with multi-indices i1, . . . , iγ
ranging over set families I = {I1, . . . , Iγ}, and the jagged array of values p to
be assigned to all parameter symbols, a translator (such as AMPL or GAMS) is
able to write a flat MP P corresponding to the triplet (P, I,p). In general, an
operator ⊕ ∈ O′ acts on structured entities in a componentwise fashion. Differ-
ent operator semantics can be defined by simply adding new operators to O′.
In the terminology of complexity analysis, flat MPs correspond to instances and
structured MPs to problems defined as instance sets, each instance being given
by the pair (I,p).

6 Liberti, Cafieri, Savourey

2.2 Flat reformulations

Reformulations may occur either at the flat or structured level. Because of a
technical limitation of AMPL (i.e. the AMPL API only allows user access to the
flat, rather than structured, MP), ROSE only performs flat reformulations; we
therefore only define these. Structured reformulations would essentially require
hooking reformulation primitives at the AMPL grammar parsing level.

Let MPF be the class of all flat MPs; for P ∈ MPF we denote the feasible
region of P by F(P), the set of local optima of P by L(P) and the set of global
optima of P by G(P).

2.1 Definition
A flat reformulation is a relation →֒ on MPF such that there exists a formula ψ
with two free variables for which

∀P,Q ∈MPF (P →֒ Q ⇒ ψ(P,Q)). (5)

The invariance scope of →֒ is the class S(→֒) of all ψ for which (5) holds.

We distinguish three remarkable types of reformulations.

1. Exact reformulations, denoted by ≡: S(≡) contains the formula “there is a
function ϕ : F(Q)→ F(P) such that ϕ|L(Q) is onto L(P) and ϕ|G(Q) is onto
G(P)”;

2. Narrowings, denoted by ⊲: S(⊲) contains the formula “there is a function
ϕ : F(Q)→ F(P) such that ϕ(G(Q)) ⊆ G(P)”;

3. Relaxations, denoted by ≥: S(≥) contains the formula “F(Q) ⊇ F(P) and
O(Q) = {(−1, e′)} and O(P) = {(−1, e)} and, for all x ∈ F(P), fe′(p, x) ≤
fe(p, x)”.

2.2 Theorem ([17])
The relations ≡, ⊲,≥ are all transitive. Furthermore, ≡ ⊆ ⊲ and ≡ ⊆ ≥.

Thus, if P ≡ Q1 ⊲Q2 then P ⊲Q2; if P ≡ Q1 ≥ Q2 then P ≥ Q2. This allows the
construction of reformulation chains with invariant properties. We only consider
reformulations corresponding to computable relations. A taxonomy of useful flat
reformulations is given in [18].

2.3 Example
The ProdBinCont exact reformulation [18] replaces every product xy where

x ∈ {0, 1} and y ∈ [yL, yU] with an added variable w, which is constrained by
the natural extension of Fortet’s inequalities [19]: w ≤ yUx, w ≥ yLx, w ≤
y − (1− x)yL, w ≥ y − (1− x)yU .

3 ROSE architecture

ROSE consists of a simple modular architecture based on two main classes
(Problem and Solver) and a separate library (Ev3) for storing and manipulating
expressions in E. The overall architecture is depicted graphically in Fig. 1. More

The Reformulation-Optimization Software Engine 7

Fig. 1. ROSE architecture. Rectangles indicate classes (with dashed meaning virtual),
rounded boxes indicates structs, relation links conform to UML: void diamonds indi-
cate aggregation (to maintain a reference of), filled diamonds indicate composition (to
maintain a copy of), triangles indicate inheritance.

detailed information about ROSE’s and Ev3’s architecture, capabilities and Ap-
plication Programming Interface (API) can be found in [18], Sect. 5.2-5.3.

The Problem class contains lists of Variable, Objective and Constraint

structures. Structures of Variable type include information about decision vari-
ables such as index, current and optimal value, and range and integrality con-
straints; Objectives include information about objective functions such as in-
dex, current and optimal value, corresponding expression and optimization di-
rection; Constraints include information about constraints such as index, cur-
rent and optimal value, corresponding expression and bound restrictions. The
Problem class also stores information about problem cardinalities, feasibility of a
current solution with respect to the constraints, a reference to a previous Problem
object in a reformulation chain, and other useful information. It has methods
for accessing data, adding or deleting decision variables, objective functions and
constraints, evaluating expressions appearing in objectives or constraints, parse
a given input file (a description of an MP) into its data structures, and so on.

The Solver class is a virtual class whose implementations are either numer-
ical solvers or reformulators; the latter are recognizable because their names are
prefixed by R- (e.g. Rprodbincont). All Solver objects maintain: a pointer to the
Problem object being solved, numerical information about current and optimal
points, information about linear and nonlinear cuts and a few other items mainly
used by numerical solvers. Reformulators are allowed to change the Problem they
reference; problems can be duplicated before being changed by a reformulator
by using the special Rcopy reformulator. Basic reformulation steps for adding or
deleting problem entities are implemented in Problem; modification of expres-
sions occurs via interfacing with the Ev3 expression library (Sect. 3.3). Many

8 Liberti, Cafieri, Savourey

methods in Problems and Solvers can be configured by user-defined parame-
ters that passed to Problem and Solver objects via a unique object of the class
ParameterBlob.

3.1 MP input

ROSE can read an MP via either its own intuitive flat MP format (see [3] p. 238)
or via interfacing with the AMPL interpreter [1]. Each MP entity is assigned two
integer scalar indices: a unique entity ID (which is preserved across reformula-
tions) and a local index (which is an ordinal running from 1 to the number
of entities of a given type within a Problem object). Methods are provided for
switching from ID to local indices.

3.2 MP output

Since the AMPL API does not offer primitives for modifying the current MP, the
only possibility for ROSE is to output its reformulations to a flat MP written to
an AMPL formatted file. Users can then instruct AMPL to read this file. This
situation is far from optimal, as it requires hard disk access, but there is no way
around it — according to the AMPL authors, it is unlikely that AMPL will ever
have an API which is sufficiently flexible as to allow modification of the internal
data. Developers can also choose to have individual reformulators write their
output to whatever syntax they wish, bypassing the default output.

3.3 Expression tree library

Following the recursive definition of expressions given in Sect. 2, an expression
e ∈ E is encoded in a tree data structure Te = (Ve, Ae): leaf nodes of Ve are
labelled by parameters in p and by decision variables in x, and intermediate
nodes are labelled by operators in ⊕ ∈ O. A k-ary operator node has k subnodes
in its star. An arc (u, v) is in Ae if v is a subnode of u.

An Expression is synonym to a Pointer<BasicExpression> template class.
The Pointer<T> class is used to perform automatic memory management (i.e. au-
tomatic deallocation) from a node of type T. A BasicExpression inherits from
Operand and from Tree<BasicExpression>. The Operand class simply includes
information concerning a particular node (whether leaf or nonleaf, operator la-
bel, variable index, parameter value, and so on). The Tree<T> class includes a
list of nodes of type Pointer<T>, and is used to represent a list of subnodes of a
given node; it has methods for accessing and editing nodes. This complex archi-
tecture for expression trees makes it easy to edit, move or copy entire subtrees
recursively, but floating point evaluation of the expression is slow. To circum-
vent this problem, expressions are also encoded in much simpler C-style tree
structures (called FastEvalTrees) without any memory management in order
to speed up evaluation. Their activation and use is completely transparent to
the user.

The Reformulation-Optimization Software Engine 9

The Ev3 library capabilities include simplification of expressions, reduction
to (partial) normal form, identification of subexpressions of certain structures,
conditional editing of subexpressions, recognition and separation of linear and
nonlinear parts in a given expression, symbolic differentiation and many others.
Since they act on trees, most methods are recursive, and consist of two functions:
the “recursion start” and the “recursion step”. In the case of Example 2.3, the
ProdBinCont reformulator is implemented according to the pseudocode below.

ProdBinCont(Expression e) {
ProdBinContRecursive(e.root);

}
ProdBinContRecursive(Expression e) {

if (!e.leaf) {
for(v in e.subnodes) {

ProdBinContRecursive(v);
}

}
if (e.structure == x*y && x.binary && !y.binary) {

AddVariable(w);
ReplaceBy(e,w);
AdjoinConstraint(Fortet’s extension inequalities);

}
}

4 How ROSE helps solving the motivating examples

Subproblems in sBB. ROSE can construct a convex relaxation of (1) automati-
cally from its Smith reformulation [20], which isolates all the nonlinearities of the
problem in constraints with a simple structure; these are then replaced by ap-
propriate convex relaxations [3]. The ROSE Rsmith reformulator (tasked with
constructing the Smith reformulation) calls a recursive Ev3 procedure which
looks for subtrees of an Expression e having a certain “shape” in order to re-
place them with an added variable w; the constraint w = e is then added to
the formulation. The shape of an expression is defined as an expression schema,
i.e. an expression tree search pattern whose variable nodes are labelled by a
wildcard “?” with the meaning of “any variable”. Thus, for example, the tree
? ←×→? represents a generic product of two variables, and it matches every
tree xi ←×→ xj (for any i, j).

10 Liberti, Cafieri, Savourey

Rsmith(Problem p) {
for (f in {p.objective, p.constraints}) {

if (!f.linear) {
SmithStandardForm(f);

}
}

}

SmithStandardForm(Expression e, vector<Expression> schemata) {
if (!e.leaf) {

for (v in e.subnodes) {
SmithStandarForm(v);

}
}
for (s in schemata) {

if (e.MatchesSchema(s)) {
AddVariable(w);
ReplaceBy(e,w);
AdjoinConstraint(w = e);

}
}

}

The pseudocode above shows the essential functionality of the Rsmith reformu-
lator and the corresponding Ev3 recursive auxiliary function. ROSE has sev-
eral relaxation reformulators (e.g. Rconvexifier, RQuarticConvex) which are
chained to the Rsmith reformulator as per Thm. 2.2.

KNP. Solving the KNP formulation (2) requires several reformulations:

1. derive a restriction of (2) to certain neighbourhoods (in order to solve the
KNP using heuristics);

2. convert the optimization problem to the corresponding decision problem for
a given objective function value (3)

3. relax some constraints by means of a multiplicative tolerance;

4. adjoin an objective that maximizes the tolerance (4);

5. derive a symmetry-free narrowing and a convex relaxation of (4) (in order
to solve via sBB).

The two heuristics tested on (2) are VNS and the MINLP Feasibility Pump
(FPMINLP) [21]. Both rely on certain subproblems of (2) obtained by adjoin-
ing appropriate constraints: VNS requires Local Branching type constraint [22],
whilst FPMINLP requires a specific outer approximation. The reformulations
listed in 2.-4. above can be implemented using the basic reformulations encoded
in ROSE. The symmetry-free narrowing in 5. is obtained automatically using
a chain of software packages (i.e. AMPL, ROSE, nauty [23], GAP [24]) held
together via Unix scripts. In particular, ROSE is used to analyze an AMPL flat
MP and produce its Directed Acyclic Graph (DAG) encoding [4, 5], which is then
fed into nauty in order to derive its symmetry group. ROSE can also obtain a
convex relaxation of (4) based on the ideas given in [20, 3, 4]. Computational
results for sBB on (4) are reported in [15].

It may be noted that the above examples were chosen arbitrarily by a large
set of ROSE applications (see Sect. 5). We believe that the first example shows
how ROSE can be useful per se, whereas the second demonstrates ROSE’s ability
to interface with other tools in order to perform complex reformulating tasks.

The Reformulation-Optimization Software Engine 11

5 ROSE’s existing applications

ROSE’s current role is to help automatize flat MP reformulations which would
be too long to perform by hand, but which are necessary to implement and
test research ideas. ROSE was and is instrumental to several past and current
research projects: in some cases it is key to their success, in other cases it allows
research teams to quickly weed out bad ideas; it is sometimes influential to other
software, in that ideas found in ROSE are re-implemented (for practical reasons)
in other codes.

– Fundamentals of reformulation theory [17, 18], where ROSE served as a proof
of concept (successful).

– Experiments on spherical cuts for Binary Linear Programs (BLPs) [25] (suc-
cessful).

– An investigation of the convex relaxation of quadrilinear terms [26, 27], where
ROSE was used both to produce the convex relaxation and to automatically
write input data to other software packages (e.g. cdd [6]) (successful).

– Experiments with symmetry-breaking narrowing reformulations [28, 15, 29,
30] (successful).

– The FPMINLP heuristic [21], where ROSE is used both to analyze MINLPs
(e.g. to find convex constraints), and to reformulate them, i.e. to build the
Feasibility Pump subproblems (successful).

– The RECIPE MINLP heuristic [31] was implemented independently of ROSE
with what was essentially ROSE code (influential).

– The conception of the Couenne [4] solver code that builds the convex re-
laxation was heavily influenced by ideas implemented in ROSE (influential).

– Reduced RLT-based relaxations for polynomial programs (current work, un-
published).

– A general-purpose MINLP Tabu Search heuristic based on tabu spheres (un-
successful, unpublished).

– A general-purpose MINLP feasibility heuristic based on branching with no
bounding until a feasible solution is found (unsuccessful, unpublished).

References

1. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)

2. Lougee-Heimer, R.: The common optimization interface for operations research:
Promoting open-source software in the operations research community. IBM Jour-
nal of Research and Development 47(1) (2003) 57–66

3. Liberti, L.: Writing global optimization software. In Liberti, L., Maculan, N., eds.:
Global Optimization: from Theory to Implementation. Springer, Berlin (2006)
211–262

4. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods and Software
24(4) (2009) 597–634

5. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global
optimization. Journal of Global Optimization 33(4) (2005) 541–562

12 Liberti, Cafieri, Savourey

6. Fukuda, K., Prodon, A.: Double description method revisited. In Deza, M., Euler,
R., Manoussakis, Y., eds.: 8th Franco-Japanese and 4th Franco-Chinese Conference
on Combinatorics and Computer Science. Volume 1120 of LNCS., London, Springer
(1995) 91–111

7. Christof, T., Löbel, A.: The porta manual page. Technical Report v. 1.4.0, ZIB,
Berlin (1997)

8. Sahinidis, N., Tawarmalani, M.: BARON 7.2.5: Global Optimization of Mixed-
Integer Nonlinear Programs, User’s Manual. (2005)

9. Brook, A., Kendrick, D., Meeraus, A.: GAMS, a user’s guide. ACM SIGNUM
Newsletter 23(3-4) (1988) 10–11

10. Orban, D., Fourer, R.: Dr. AMPL: a meta solver for optimization (2004) Presen-
tation slides.

11. Colombo, M., Grothey, A., Hogg, J., Woodsend, K., Gondzio, J.: A structure-
conveying modelling language for mathematical and stochastic programming.
Mathematical Programming Computation 1(4) (2009) 223–247

12. Kucherenko, S., Belotti, P., Liberti, L., Maculan, N.: New formulations for the
kissing number problem. Discrete Applied Mathematics 155(14) (2007) 1837–1841

13. Maculan, N., Michelon, P., MacGregor Smith, J.: Bounds on the kissing numbers
in R

n: Mathematical programming formulations. Technical report, University of
Massachusetts, Amherst, USA (1996)

14. Gill, P.: User’s guide for SNOPT version 7. Systems Optimization Laboratory,
Stanford University, California. (2006)

15. Liberti, L.: Symmetry in mathematical programming. In Lee, J., Leyffer, S.,
eds.: Mixed Integer Nonlinear Programming. Volume IMA. Springer, New York
(accepted)

16. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite
programming. Journal of the American Mathematical Society 21 (2008) 909–924

17. Liberti, L.: Reformulations in mathematical programming: Definitions and sys-
tematics. RAIRO-RO 43(1) (2009) 55–86

18. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical program-
ming: A computational approach. In Abraham, A., Hassanien, A.E., Siarry, P.,
Engelbrecht, A., eds.: Foundations of Computational Intelligence Vol. 3. Number
203 in Studies in Computational Intelligence. Springer, Berlin (2009) 153–234

19. Fortet, R.: Applications de l’algèbre de Boole en recherche opérationelle. Revue
Française de Recherche Opérationelle 4 (1960) 17–26

20. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound al-
gorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical
Engineering 23 (1999) 457–478

21. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: Experiments with a feasi-
bility pump approach for nonconvex MINLPs. In Festa, P., ed.: Symposium on
Experimental Algorithms. Volume 6049 of LNCS., Heidelberg, Springer (2010)

22. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98 (2005)
23–37

23. McKay, B.: nauty User’s Guide (Version 2.4). Computer Science Dept. , Australian
National University. (2007)

24. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.10.
(2007)

25. Liberti, L.: Spherical cuts for integer programming problems. International Trans-
actions in Operational Research 15 (2008) 283–294

The Reformulation-Optimization Software Engine 13

26. Cafieri, S., Lee, J., Liberti, L.: Comparison of convex relaxations of quadrilinear
terms. In Ma, C., Yu, L., Zhang, D., Zhou, Z., eds.: Global Optimization: Theory,
Methods and Applications I. Volume 12(B) of Lecture Notes in Decision Sciences.,
Hong Kong, Global-Link Publishers (2009) 999–1005

27. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. Journal
of Global Optimization, DOI 10.1007/s10898-009-9484-1

28. Liberti, L.: Reformulations in mathematical programming: Automatic symmetry
detection and exploitation. Mathematical Programming, DOI 10.1007/s10107-010-
0351-0

29. Costa, A., Hansen, P., Liberti, L.: Formulation symmetries in circle packing. In
Mahjoub, R., ed.: Proceedings of the International Symposium on Combinatorial
Optimization. Electronic Notes in Discrete Mathematics, Amsterdam, Elsevier (ac-
cepted)

30. Costa, A., Hansen, P., Liberti, L.: Static symmetry breaking in circle packing. In
Faigle, U., ed.: Proceedings of the 8th Cologne-Twente Workshop on Graphs and
Combinatorial Optimization, University of Köln (2010)

31. Liberti, L., Mladenović, N., Nannicini, G.: A good recipe for solving MINLPs. In
Maniezzo, V., Stützle, T., Voß, S., eds.: Hybridizing metaheuristics and mathe-
matical programming. Volume 10 of Annals of Information Systems., New York,
Springer (2009) 231–244

