
HAL Id: hal-00973913
https://enac.hal.science/hal-00973913

Submitted on 4 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to generate realistic network traffic ?
Antoine Varet, Nicolas Larrieu

To cite this version:
Antoine Varet, Nicolas Larrieu. How to generate realistic network traffic ?. IEEE COMPSAC 2014,
38th Annual International Computers, Software & Applications Conference, Jul 2014, Västerås, Swe-
den. pp xxxx. �hal-00973913�

https://enac.hal.science/hal-00973913
https://hal.archives-ouvertes.fr

 1

How to generate realistic network traffic?
Antoine VARET and Nicolas LARRIEU

ENAC (French Civil Aviation University) - Telecom/Resco Laboratory

ABSTRACT
Network engineers and designers need additional tools to generate

network traffic in order to test and evaluate, for instance,

application performances or network provisioning. In such a

context, traffic characteristics are the most important part of the

work. Indeed, it is quite easy to generate traffic, but it is more

difficult to produce traffic which can exhibit real characteristics

such as the ones you can observe through the Internet. With the

lack of adequate tools to generate data flows with “realistic

behaviors” at the network or transport level, we needed to develop

our tool entitled “SourcesOnOff”. The emphasis of this article is

on presenting this tool, explaining how we implemented it and

outlining the methodology it follows to produce traffic with

realistic characteristics.

Keywords Traffic generation, Network experimentation,

Network performance analysis, Network measurement

1. INTRODUCTION
Network engineers and designers need additional tools to

generate network traffic in order to test and evaluate application

performances or network provisioning for instance. In such a

context, traffic characteristics are the very important part of the

work. Indeed, it is quite easy to generate traffic but it is more

difficult to produce traffic which can exhibit real characteristics

such as the ones you can observe in the Internet. With the lack of

adequate tools to generate data flows with “realistic behaviors” at

the network or transport level, we needed to develop our tool

entitled “SourcesOnOff1”. In this paper, “realistic behavior” means

to generate traffic similar to the traffic a network administrator can

capture on his network backbone, end-systems, etc...

Previous research conducted us to design new methodologies

and tools to generate network data traffic as close as possible to

what we can find on Local Area Networks (LAN) and on the

Internet. It can be necessary for instance to evaluate performances

of new network entities. In this specific context, it is mandatory to

face them to generated traffic with characteristics as close as

possible as the Internet traffic. However, depending on what you

mean by “Internet network” and where you perform the study,

measurements may completely differ: Internet cannot be solely

characterized with a small set of parameters such as some

mathematical distributions and additional factors. Indeed, there is

not currently one unique mathematical modeling able to embrace

the different characteristics and the complexity of the Internet

traffic [1]. Anyway, Internet traffics hopefully show some

common properties and trends that help to its modeling. For

1
We would like to thank Benoit Sainct (MS student) for his work in

implementing statistical tools for traffic characterization.

Contact email: Nicolas.Larrieu@enac.fr

instance, an Internet Service Provider (ISP) providing access for

software engineering companies manage a different profile of data

communications than an ISP for private individuals [2]. However,

there are some common characteristics between both profiles. The

goal of the tool we have developed is to handle most of Internet

traffic profiles and to generate traffic flows by following these

different Internet traffic properties.

The rest of this paper is structured as the following. The first

section presents the mathematical model this tool is based on for

traffic generation: the ON/OFF sources. We chose to consider

different stochastic processes in order to model the complexity of

the original traffic we want to replay. General approaches consider

only one law for the On process and another law for the Off

process. In our approach, we are able to consider several laws and

to combine their effects to model accurately the original behavior

we analyzed in the real data. We then select the right parameters to

consider as inputs for our SourcesOnOff tool. This approach gives

really good traffic characteristics and, consequently, the generated

traffic is really close to reality as results presented at this end of

this paper demonstrate it. In the second section, we present why

the other tools currently available were not usable in our case. The

third section describes how our tool works plus some specific

points the user should know about its implementation. The fourth

section is dedicated to the validation of our tool with different

methods in order to conclude if the generated traffic has the same

properties than the original one. We have, in particular,

investigated the traffic characteristics generated by our software

and we demonstrate that it is able to generate network traffic with

realistic properties such as these we can capture on the Internet.

Different parameters have been considered to match generated

traffic characteristics with the original traffic. First, we considered

classical traffic parameters such as throughput, delay or losses but

we have also investigated more advanced statistical parameters

such as the correlation level of generated packets or their long

range dependence (by computing the Hurst factor).

1.1 How to characterize an “Internet-like”

profile?
Different studies were published with results related to

Internet-like traffic characterization: the word “Internet” can cover

very different profiles, but some common trends can be

highlighted. Thus, we will examine two of them: high variability

and self-similarity, respectively called the Noah and Joseph

Effects.

High variability is characterized by an infinite mathematical

variance and means that sudden discontinuous changes can always

occur. Some mathematical distributions like Pareto and Weibull

are heavy-tailed (i.e. the tail of the distribution is not exponentially

bounded) and thus can be used to generate sets of values with high

 2

variances and also high-variability. Different studies have shown

that classical distributions such as the Gaussian and the Poisson

distribution have failed to reproduce a LAN-like throughput [1, 3].

One of them [1] proposes to use Pareto’s and Weibull’s heavy-

tailed distributions and proved that the generated traffic shows

properties closer to real network traffic characteristics than other

mathematical distributions.

Figure 1: Emission process of ON/OFF traffic sources

Self-similarity is defined by a long-range dependence

characteristic, which means there are bursts of traffic any time

over a wide range of time scales. In other words, a small sub-range

of values is “similar” to the whole range of values. W. Willinger

found in [3] a relation between self-similarity and high variability

for Ethernet Local Area Network (LAN) throughputs: in particular,

he showed that the Noah and the Joseph effects are linked with a

degree-1 polynomial relation. In other words, using ON/OFF

sources with heavy-tailed distributions causes the traffic streams to

be highly variable and, consequently, the aggregation of these

streams to be also self-similar and highly variable.

1.2 ON/OFF sources to generate realistic

throughputs
W. Willinger proposed in [3] to generate data following

packet-train models, i.e. with strictly alternating, independent and

identically distributed ON- and OFF-periods and proved that these

ON/OFF sources generate data similar to experimental

measurements on real networks. A source corresponds to one

network flow. The flow is associated with a source and destination

couple and also with data, transmitted as a set of packets called a

train of packets. In our case, we use the transport protocols TCP

and UDP. The data stream is thus exchanged as a set of IP packets.

The source is associated to a departure time and a duration time.

The departure time of any source is computed with the departure

time of the preceding source plus a random duration. This

randomness follows the user-defined “Doff distribution” (also

named “distribution of inter-train durations”). The first source

starts at the beginning of the process.

Duration times should be similar for all sources. They should

follow a user-defined random distribution called “Don

distribution” (also named “distribution of train duration” or

“distribution of flow duration”). This Don distribution is

independent of the Doff distribution. For feasibility constraints and

to reduce the complexity of implementation, we use the Don

distribution to generate random values, not for time duration in

seconds but for quantity of transmission in bytes. Because of

TCP congestion control mechanisms, source durations are

correlated with quantities of transmitted data.

We can summarize the ON-OFF source generation algorithm

we use in our tool by:

For n from 1 to infinite do:

/* start a new source here */

1. Don_value := get a random value of distribution Don;

2. Doff_value := get a random value of distribution Doff;

3. Wait for the duration Doff_value

4. Start the transmission of Don_value bytes to a remote

host (do not wait the end to perform the next iteration, loop as

soon as data are sent into the transmission buffer)

End_For

Algorithm 1: Traffic generation with ON/OFF sources

In algorithm 1, the Don_value is the length (in bytes or

multiples of bytes) of each data flow, also called a “train”. This

train is exchanged between the local (transmitter) system and a

remote (receiver) system. The Doff_value (in seconds or more

often in milliseconds) is a duration called the inter-train distance

(i.t.d). This i.t.d. represents the time between two consecutive flow

creations. The Doff_values and the Don_values are completely

independent. They are issued from random number generators,

which follow respectively the “Don” and the “Doff” distributions.

These distributions should be heavy-tailed to ensure the self-

similarity of the generated data throughput [3]. Distribution

parameters are defined by the user on the command-line. Figure 1

illustrates an example of the total throughput we can expect on the

network following the ON/OFF sources generation process.

2. STATE OF THE ART OF TRAFFIC

GENERATORS

2.1 Network simulators
Different tools are available to simulate networks and their

behaviors, with integrated ON/OFF sources (for instance, NS-2

[4]). Most of them provide “Internet-like” flow generators, some

of them based on ON/OFF source generation processes. However,

the aim of our research work was to face new network systems to

real traffic. It means we wanted to perform our system evaluation

in real time and do not want to evaluate a model of our system.

Simulators cannot do this kind of real time experiments, only

emulators can do it. However, it is complex to deal with most

network emulators as they are complex to install, to configure with

the real network environment, and consume as well many CPU

resources. This is why we searched for and studied tools not to

simulate or emulate but to generate a realistic traffic load on real

networks.

 3

2.2 Traffic replay tools
Some software enables the user to replay previously captured

network traffics. This is done in two steps: the user captures data

on the networks he wants to reproduce (with tools called “sniffers”

such as the reference tool Wireshark [5]), then the user needs to

replay the captured traces, i.e. by retransmitting the sniffed packets

in the same order, and separated with the same delays as these

measured during the capture (cf. the “tcpreplay”2 tool for

instance). Harpoon3 is another existing Open Source flow-level

traffic generator, but this tool requires the user to define flow per

flow the data weight he wants to transmit on the network. The

automatic generation of the network profile is limited to constant

and uniform distributions. Moreover, Harpoon seems to be not

maintained since 2005. This is why we did not consider this tool

for our experiments.

This traffic replay process has different advantages. The two

steps may be done independently by two different users and at any

time (as long as the first step is started before the second one). The

capture may be filtered before being replayed and replay

parameters may be set up. However, replaying has also important

drawbacks. Indeed, before replaying any network trace, the user

must make or acquire the capture he wants to replay. Most of the

time, this is a difficult task: user privacy issues restrain the

administrators in allowing captures on the router they administer;

often ISPs do not want to extract advanced statistics from their

networks… The public data we have found on Internet are often so

anonymized that they not longer contain the useful information we

need to replay them. Moreover, if you continuously replay the

same trace you will reproduce periodically the same “events”

(throughput bursts, specific packet sequences or behaviors…).

2.3 Network throughput estimation tools
This is why different techniques and tools have been

elaborated to load a network and evaluate its capacity. One of the

existing tools we have studied is “iperf” [6]. It can generate TCP

or UDP flows to load the network. In TCP mode, an iperf client

transmits to the server an infinite quantity of data through one TCP

flow. After a user-defined duration, the iperf tool aborts the TCP

connection and prints on the screen different statistics and the total

quantity of data it succeeded in transmitting correctly.

A network capture shows often that mostly all the network

resources are used by the TCP flows [2]. Indeed, the TCP protocol

efficiently exploits the network and transmits data in an optimal

time span. However, in LAN captures, external and unexpected

events interact with the flow, they generate segment delays and

losses impacting the TCP connection which becomes longer than

the optimal time span expected. This drawback affects most of

methodologies based on studies using only one TCP flow. We can

cite, for example, when the tester uses an SSH or an FTP

2
 Tcpreplay website: http://tcpreplay.synfin.net/

3
 Harpoon website: https://github.com/jsommers/harpoon

connection to transmit a big file and consequently to artificially

load the network.

When configured to transfer multiple TCP streams, iperf

starts the different flows simultaneously at the beginning of the

program. This behavior is not realistic because in Internet later

flows are penalized at their start by the flows already established.

Moreover, this tool “iperf” performs measurements on “long” TCP

connections (100+ segments), allowing the TCP congestion

control mechanism to adjust the data throughput efficiently.

However, in most ISP studies the TCP connections are very

numerous and the majority is short (e.g. in study [6] 81% of TCP

connections carry less than 310 bytes), disabling the congestion

control mechanisms optimizations. Consequently, congestion

control mechanisms do not have the time to optimize the

connection. In UDP mode, the client transmits data periodically:

the period is computed depending on the user-defined quantity of

data per second to transmit. However, for the same reason than

previously, a single flow with constant throughput is not realistic

[1, 2].

Consequently, we have searched for other tools to generate

data throughput: BWPing [7], NetPerf [8]… All differ more or less

on the set of supported protocols, on the maximum admissible

throughputs and on the statistics printed on the screen for the user.

However, all have the same drawbacks as explained above. This is

why, in the rest of this article, we chose the tool “iperf” as a

comparison reference for our SourcesOnOff tool, because most

measurement tools are based on the same assumptions and work in

a similar manner: one or multiple identical and simultaneous TCP

and UDP flows in order to load the network at its maximum

available capacity.

3. THE SOURCESONOFF TOOL
We did not find in the state of the art we performed any tool

to generate data flows based on exact ON/OFF sources. This is

why we developed this one in C language and validated it with the

Debian Operating System. The tool we propose is free and Open

Source, under the General Public License v3 (GPLv3). Source

code can be downloaded at

http://www.recherche.enac.fr/~avaret/sourcesonoff.

3.1 Generation of the random values
ON/OFF sources are based on the generation of random

values following well-determined distributions. The following

distributions are currently implemented in the program. The

Uniform distribution is based on the drand48() and the random()

Linux functions, with corrections to ensure an exact uniformity on

any range. The Normal/Gaussian distribution is computed with

the help of the Box-Muller transformation. We use the Knuth’s

algorithm for the Poisson distribution. The Pareto, Weibull and

Exponential distributions use internally a transformation on the

uniform distribution. The generation process of all these

distributions have been statistically validated with the R statistical

software [9] and its comparison function qqplot(). An additional

pseudo-distribution is available: the Constant distribution. In this

 4

case, all generated values are equal to a user-defined constant. This

method enables the user to generate a more predicting behavior

(note that this behavior is similar to iperf behavior in UDP mode).

Multiplying factors enables users to convert the randomly

generated values into Bytes (for Don distributions), nanoseconds

(for Doff distributions) and their multiples (kB, MB, GB, us, ms,

s…). Distributions may be bounded by minimum and maximum

user-defined values. Our tool enforces also user-defined minimum

and maximum values for the generated random numbers, by

increasing values lower than the minimum boundary and

decreasing values greater than the maximum boundary.

3.2 Generation of the network flows
First of all, different sets of Don and Doff random values are

generated. They are then used for data communications. These

data flows can be fully parameterized in order to enable the user to

refine the tool behavior. Different sets of sources may run

simultaneously, each set is associated with independent Don and

Doff distributions and parameters. Contrary to programs like iperf,

this tool is only intended to generate data. It was not developed to

provide itself advanced statistics on the network: we use our tool

to generate background traffic and we use additional passive and

active measurement tools to evaluate network performances and

collect statistics.

3.3 Statistic profile extraction from a real

traffic trace
Before experimenting traffic generation, we have to define

what kind of traffic we want to generate. This step may be done

arbitrarily by choosing appropriate values or by selecting values

from existing studies like [1, 2]. We chose an alternative solution:

given that we belong to a research entity, we have easily access to

real data. Thus, we asked to our local network administrator to

capture the entire incoming and outgoing traffic, generated by

people from the university (students, administrative people,

teachers and researchers) on our local area network. The data were

captured on the firewall protecting the access link between our

LAN and other networks: REMIP and RENATER which are our

links to the Internet. Thus, we captured all data from our LAN to

Internet and all associated responses.

We captured different network traces: between 10 minutes

and 10 hours. We chose to capture traffic only on working days

and between working hours given that the point of presence is at

the output of a research entity and so, the main network activity is

spread from 8AM to 8PM (Monday to Friday). For concise

purposes, we will describe in the next subsections only one of the

different traffic traces we collected, but other captures showed the

same conclusions. Thus, in the next subsections we analyze a set

of 9 millions of IPv4 packets (97.7% of TCP, 2.2% of UDP and

0.1% of ICMP), collected during 10 hours between 8:00AM and

6:00PM, Tuesday the 29th of January, 2013. UDP datagrams are

negligible in our case (less than 2.2% of our traffic in packet

numbers, less than 0.5% of our traffic in bytes), so we replayed

only TCP sources and we will just model and reproduce the TCP

traffic in our study case (cf. section 4).

We used the tool tcpdump [10] to capture the raw packets and

then the tool ipsumdump [11] to ensure the anonymity. We finally

conducted a complete statistical analysis with bash and R scripts.

These tools enabled us to retrieve different statistical

characteristics of the captured data. This process is detailed in the

next subsection.

3.3.1 Statistic profile extraction process
Previous research work (such as [1, 2, 3 and 4] for instance)

have demonstrated that one unique statistical law cannot figure out

all the complexity of an original Internet traffic trace. This is why

we chose to decompose and to model the Internet traffic trace we

want to replay by using several different statistical laws. Thus, we

need, firstly, a decomposition algorithm and, secondly, a

distance criterion to evaluate the differences between real

original data and data generated by our tool. This distance criterion

will help us to select the best statistic laws to decompose original

data.

3.3.1.1 Traffic trace decomposition
We developed an algorithm able to detect a lack of continuity

in any data we want to characterize. This algorithm is mainly

based on the quantmod4 tool developed by Jeffrey A. Ryan. Based

on this algorithm, we are able to select different basic distributions

(Weibull, Pareto, Exponential, Gaussian…) that we can combine

to reproduce the whole complexity of the original data we want

first to characterize and finally to replay. To assess the distance

between selected statistical distributions and real data, we used the

Bayesian Information Criterion which is introduced in the next

subsection. We are thus capable of combining the different values

of the traffic to generate by considering those different

distributions in the SourcesOnOff tool.

3.3.1.2 BIC (Bayesian Information Criterion)

distance assessment
The goal of this step is to quantify the statistical distance that

exists between our original data and the data generated by our tool.

To compute this distance we introduce the Bayesian Information

Criterion [12]. This criterion is computed as

BIC = k * ln(n) – 2 * ln(L), where:

- n is the size of analyzed data;

- L is the likelihood of the model (Weibull, Pareto,

Exponential…) regarding the different original data;

- k is the total number of estimated parameters.

The final goal of this comparison is to select the smallest BIC

(minimum BIC value is -∞) according to the different candidate

statistic profile (Weibull, Pareto, Exponential, Gaussian…). Thus,

the tool can conclude that the selected model (which might be a

composition of different distributions) is the closest from the

original data.

4 Quantmod website: http://quantmod.r-forge.r-project.org

 5

4. SOURCESONOFF VALIDATION:
The objective of this section is to validate the traffic profile

generated by our tool by verifying its correctness according to the

real profile. We could have presented complex and realistic

topologies, but the goal of this section is to analyze in details the

traffic generation process provided by our tool. By introducing

additional complex topologies, the statistical analysis of the

generated traffic would have been too complex given that we

would have had difficulties to link a specific parameter variation

with a specific cause: our tool or the complex topology. This is

why we chose a simple experimental topology with only two hosts

and one router. The SourcesOnOff tool has been deployed on the

different hosts: the sender part on the transmitter host and the

receiver part on the receiver host. For this experiment, we use two

Linux Debian hosts (mono-core processor @1.2 GHz, 1GB of

RAM), connected to a Linux Debian router (quad-core processor

@3.8 GHz, 4 GB of RAM). The links between hosts are Ethernet

RJ45 connections manually configured to 10baseTx-HD, in order

to easily limit the link capacities without any software solution and

thus to capture all the traffic without any loss. For each original

trace replayed thanks to the SourceOnOff tool, we captured, on our

experimental topology, the same quantity of generated data in

order to be consistent between original and generated data. As a

reminder, we present only one set of results related to data

collected on 01/29/2013.

The validation of our tool needs to analyze its generated

traffic. This is why this section analyzes the original captured

traffic and explains how generated traffic is really close to the

original network traffic. Thus, we performed different quantitative

and qualitative verifications on the generated traffic to answer the

following questions: does the generated traffic comply with the

original one?

4.1 Statistic profile detection

Figure 2: Fitting of original (red curve) and generated

(black curve) for Doff traffic distributions

By applying the algorithm described in section 3.3, the tool is

able to detect several different statistic profiles in the same original

data as described in the Figure 2. We studied both Doff and Don

values but, to be concise, we describe in this section only Doff (i.e.

the inter-train durations) results. The Doff distribution is a

complex statistical process that we have modeled based on the

function composition algorithm described in the previous section.

Our algorithm chose a composition between Weibull and Dirac

functions (as plotted by the black curve). In the following sub

section, we are going to validate how this function composition fits

very well the original statistical process.

4.2 Qualitative analysis : quantile-quantile

plots
As qualitative estimators, we used quantile-quantile plots

diagrams (also called “QQPlots”) to represent on the same diagram

the measured values on the real network (i.e. the original data) and

the measured values on the experimental network (i.e. the

SourcesOnOff generated data). QQPlot diagrams sort

independently X and Y values, and then represent points to the

sorted coordinates. When the X and Y series are correlated, a

linear tendency is visible on the diagram. On our QQPlot

diagrams, we will represent a diagonal blue line of equation y=x,

in order to represent a perfect correlation between x and y values.

The set of values used for the X data is the set of durations

between two consecutive TCP connections observed in the capture

in the real network. The set of values used for the Y data is the set

of durations between two consecutive TCP connections measured

in the traffic generated by our tool SourcesOnOff. In other words,

the Y values are the durations our tool waited between starting two

TCP connections.

Figure 3: QQPlot for Doff values (generated traffic vs. real

traffic)

We can see on figure 7 that the values are very well

correlated: most of the 9,700 points drawn on this figure are near

the diagonal blue line of equation y=x. This means most values

measured in the real network were successfully reproduced in our

experimental network. The correlation factor is 99.8% in our case

for Doff values. A few points with high values are not well

correlated: they come from the tail of the Weibull distribution

densities.

We can conclude that our tool shows very good trends for the

generated traffic compared to the original one. However, it is

necessary to analyze more accurately how the generated traffic is

close to original. This is why we used additional tools (BIC

 6

distance and Hurst factor) to check quantitatively these results in

the following section.

4.3 Quantitative analysis

4.3.1 BIC distance
Table 1 shows BIC distance analysis. We can note that original

and generated traffics are the closest when the statistic model

combines both Weibull and Dirac profiles. The qualitative

similarity between original and generated traffics provided by

QQPlot is thus confirmed by BIC distance computations for both

Don and Doff profiles. This result validates that a combination of

both Weibull and Dirac distributions is the right statistical profile

to consider with our original data.

Table 1: BIC distance between original and generated

traffic

Statistic model Doff BIC distance Don BIC distance

Weibull (+ Dirac) 0.01558 0.02527

Pareto (+ Dirac) 0.0209 0.03834

Exponential (+ Dirac) 0.08892 0.06222

Gaussian (+ Dirac) 0.1027 0.07535

4.3.2 Hurst exponent computation
We wanted also to compute quantitatively the long-term

memory of the generated traffic compared to the original one. This

can be showed with the Hurst exponent computation: this value is

an indicator of long-term memory. In our case, we used the

Wavelet-based joint estimator of the Hurst exponent, as described

by D. Veitch and P. Abry in [13] to study the Long-Range

Dependence. In table 2, we compare the Hurst exponent estimation

for the throughput generated by our tool with the throughput of the

real capture at different time scales (from 100 us to 10 s).

Conforming to [13], data (see table 2) exhibit Long Range

Dependence (LRD). Indeed, data show LRD when 0.5 < H < 1.

Moreover, the dependence is stronger when H is closer to 1. Thus,

we can conclude than in our case, we have a strong Long Range

Dependence in both series of throughput, whatever the time

window is defined. We can also conclude that both generated and

original traffics exhibit the same LRD level (considering a 12 %

error interval).

Table 2: Hurst exponent estimations (H)

Sample duration for

throughput

measurements

H

for our tool

SourcesOnOff

H for real

throughput

Error

ratio

100 us 0.88 0.83 7 %

10 ms 0.97 0.95 2 %

100 ms 1.00 1.00 0 %

1 second 1.00 0.88 12 %

10 s 1.00 1.00 0 %

5. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a methodology to generate

network traffic with realistic characteristics. A tool has been

developed, based on the application of ON/OFF sources with

different statistical profiles. Parameters of the distributions can be

defined by the user or extracted from real traffic analysis. We have

completed this paper with a validation of both the traffic

generation methodology and the SourcesOnOff tool. Different

experiments have been conducted. All of them appear to validate

the proposition that our tool is able to generate traffic with the

same characteristics as real ones.

The tool is freely available and may be utilized for a wide

variety of network traffic profiles. We hope users can appreciate

the wide range of applications where SourceOnOff can be utilized.

This tool is currently unable to generate traffic other than TCP and

UDP protocols. In the future, the tool may be developed further in

order to support ICMP protocol. Moreover, the tool may support

other statistical distribution profiles and may provide additional

statistics for the users. Having completed the validation of this

tool, we can now take into account more complex network

topologies (cloud computing applications for instance) and

distribute different SourcesOnOff sender and receiver agents

among them for the future experiments we plan to conduct.

6. REFERENCES
[1] Olivier P. and Benameur N., Flow Level IP traffic characterization,

France Télécom, 2000

[2] Gebert S., Pries R., Schlosser D. and Heck K. 2011 Internet Access

Traffic Measurement and Analysis, Univ of Würzburg, Inst. Of

Computer Sciences, Germany, Hotzone GmbH

[3] Leland W. E., Taqqu S. M., Willinger W. and Wilson D. V., On the

Self-Similar Nature of Ethernet Traffic, (Extended Version)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 1,

FEBRUARY 1994

[4] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/,

2013/01/21

[5] Wireshark, Go Deep, http://www.wireshark.org/, 2013/01/21

[6] iperf, a modern alternative for measuring maximum TCP and UDP

bandwidth performance, http://iperf.sourceforge.net/,2013/01/21

[7] BWPing, Open Source bandwidth measurement tool,

http://bwping.sourceforge.net/, 2013/01/21

[8] The NetPerf HomePage, http://www.netperf.org/netperf/, 2013/01/21

[9] The R Project for Statistical Computing, http://www.r-project.org/,

2013/01/21

[10] Tcpdump & LibPcap public repository, www.tcpdump.org,

2013/01/31

[11] IPsumDump and IPaggCreate website,

http://www.read.seas.harvard.edu/~kohler/ipsumdump/, 2013/01/31

[12] Schwarz, Gideon E, Estimating the dimension of a model, Annals of

Statistics 6 (2): 461–464, 1978

[13] Veitch T. and Abry P. 1999 A Wavelet Based Joint Estimator of the

Parameters of Long-Range Dependence, pp.878-897, Vol.45(3), IEEE

Trans. Info. Theory, special issue "Multiscale Statistical Signal

Analysis and its Applications"

