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Antoine VARET and Nicolas LARRIEU 
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ABSTRACT 
Network engineers and designers need additional tools to generate 

network traffic in order to test and evaluate, for instance, 

application performances or network provisioning. In such a 

context, traffic characteristics are the most important part of the 

work. Indeed, it is quite easy to generate traffic, but it is more 

difficult to produce traffic which can exhibit real characteristics 

such as the ones you can observe through the Internet. With the 

lack of adequate tools to generate data flows with “realistic 

behaviors” at the network or transport level, we needed to develop 

our tool entitled “SourcesOnOff”. The emphasis of this article is 

on presenting this tool, explaining how we implemented it and 

outlining the methodology it follows to produce traffic with 

realistic characteristics.  

Keywords Traffic generation, Network experimentation, 

Network performance analysis, Network measurement 

1. INTRODUCTION 
Network engineers and designers need additional tools to 

generate network traffic in order to test and evaluate application 

performances or network provisioning for instance. In such a 

context, traffic characteristics are the very important part of the 

work. Indeed, it is quite easy to generate traffic but it is more 

difficult to produce traffic which can exhibit real characteristics 

such as the ones you can observe in the Internet. With the lack of 

adequate tools to generate data flows with “realistic behaviors” at 

the network or transport level, we needed to develop our tool 

entitled “SourcesOnOff1”. In this paper, “realistic behavior” means 

to generate traffic similar to the traffic a network administrator can 

capture on his network backbone, end-systems, etc... 

Previous research conducted us to design new methodologies 

and tools to generate network data traffic as close as possible to 

what we can find on Local Area Networks (LAN) and on the 

Internet. It can be necessary for instance to evaluate performances 

of new network entities. In this specific context, it is mandatory to 

face them to generated traffic with characteristics as close as 

possible as the Internet traffic. However, depending on what you 

mean by “Internet network” and where you perform the study, 

measurements may completely differ: Internet cannot be solely 

characterized with a small set of parameters such as some 

mathematical distributions and additional factors. Indeed, there is 

not currently one unique mathematical modeling able to embrace 

the different characteristics and the complexity of the Internet 

traffic [1]. Anyway, Internet traffics hopefully show some 

common properties and trends that help to its modeling. For 
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instance, an Internet Service Provider (ISP) providing access for 

software engineering companies manage a different profile of data 

communications than an ISP for private individuals [2]. However, 

there are some common characteristics between both profiles. The 

goal of the tool we have developed is to handle most of Internet 

traffic profiles and to generate traffic flows by following these 

different Internet traffic properties. 

The rest of this paper is structured as the following. The first 

section presents the mathematical model this tool is based on for 

traffic generation: the ON/OFF sources. We chose to consider 

different stochastic processes in order to model the complexity of 

the original traffic we want to replay. General approaches consider 

only one law for the On process and another law for the Off 

process. In our approach, we are able to consider several laws and 

to combine their effects to model accurately the original behavior 

we analyzed in the real data. We then select the right parameters to 

consider as inputs for our SourcesOnOff tool. This approach gives 

really good traffic characteristics and, consequently, the generated 

traffic is really close to reality as results presented at this end of 

this paper demonstrate it. In the second section, we present why 

the other tools currently available were not usable in our case. The 

third section describes how our tool works plus some specific 

points the user should know about its implementation. The fourth 

section is dedicated to the validation of our tool with different 

methods in order to conclude if the generated traffic has the same 

properties than the original one. We have, in particular, 

investigated the traffic characteristics generated by our software 

and we demonstrate that it is able to generate network traffic with 

realistic properties such as these we can capture on the Internet. 

Different parameters have been considered to match generated 

traffic characteristics with the original traffic. First, we considered 

classical traffic parameters such as throughput, delay or losses but 

we have also investigated more advanced statistical parameters 

such as the correlation level of generated packets or their long 

range dependence (by computing the Hurst factor). 

1.1 How to characterize an “Internet-like” 

profile? 
Different studies were published with results related to 

Internet-like traffic characterization: the word “Internet” can cover 

very different profiles, but some common trends can be 

highlighted. Thus, we will examine two of them: high variability 

and self-similarity, respectively called the Noah and Joseph 

Effects. 

High variability is characterized by an infinite mathematical 

variance and means that sudden discontinuous changes can always 

occur. Some mathematical distributions like Pareto and Weibull 

are heavy-tailed (i.e. the tail of the distribution is not exponentially 

bounded) and thus can be used to generate sets of values with high 
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variances and also high-variability. Different studies have shown 

that classical distributions such as the Gaussian and the Poisson 

distribution have failed to reproduce a LAN-like throughput [1, 3]. 

One of them [1] proposes to use Pareto’s and Weibull’s heavy-

tailed distributions and proved that the generated traffic shows 

properties closer to real network traffic characteristics than other 

mathematical distributions. 

 

Figure 1: Emission process of ON/OFF traffic sources 

Self-similarity is defined by a long-range dependence 

characteristic, which means there are bursts of traffic any time 

over a wide range of time scales. In other words, a small sub-range 

of values is “similar” to the whole range of values. W. Willinger 

found in [3] a relation between self-similarity and high variability 

for Ethernet Local Area Network (LAN) throughputs: in particular, 

he showed that the Noah and the Joseph effects are linked with a 

degree-1 polynomial relation. In other words, using ON/OFF 

sources with heavy-tailed distributions causes the traffic streams to 

be highly variable and, consequently, the aggregation of these 

streams to be also self-similar and highly variable. 

1.2 ON/OFF sources to generate realistic 

throughputs 
W. Willinger proposed in [3] to generate data following 

packet-train models, i.e. with strictly alternating, independent and 

identically distributed ON- and OFF-periods and proved that these 

ON/OFF sources generate data similar to experimental 

measurements on real networks. A source corresponds to one 

network flow. The flow is associated with a source and destination 

couple and also with data, transmitted as a set of packets called a 

train of packets. In our case, we use the transport protocols TCP 

and UDP. The data stream is thus exchanged as a set of IP packets. 

The source is associated to a departure time and a duration time. 

The departure time of any source is computed with the departure 

time of the preceding source plus a random duration. This 

randomness follows the user-defined “Doff distribution” (also 

named “distribution of inter-train durations”). The first source 

starts at the beginning of the process. 

Duration times should be similar for all sources. They should 

follow a user-defined random distribution called “Don 

distribution” (also named “distribution of train duration” or 

“distribution of flow duration”). This Don distribution is 

independent of the Doff distribution. For feasibility constraints and 

to reduce the complexity of implementation, we use the Don 

distribution to generate random values, not for time duration in 

seconds but for quantity of transmission in bytes. Because of 

TCP congestion control mechanisms, source durations are 

correlated with quantities of transmitted data. 

We can summarize the ON-OFF source generation algorithm 

we use in our tool by: 

For n from 1 to infinite do: 

/* start a new source here */ 

1.   Don_value := get a random value of distribution Don; 

2.   Doff_value := get a random value of distribution Doff; 

3.   Wait for the duration Doff_value 

4.   Start the transmission of Don_value bytes to a remote 

host (do not wait the end to perform the next iteration, loop as 

soon as data are sent into the transmission buffer) 

End_For 

Algorithm 1: Traffic generation with ON/OFF sources 

In algorithm 1, the Don_value is the length (in bytes or 

multiples of bytes) of each data flow, also called a “train”. This 

train is exchanged between the local (transmitter) system and a 

remote (receiver) system. The Doff_value (in seconds or more 

often in milliseconds) is a duration called the inter-train distance 

(i.t.d). This i.t.d. represents the time between two consecutive flow 

creations. The Doff_values and the Don_values are completely 

independent. They are issued from random number generators, 

which follow respectively the “Don” and the “Doff” distributions. 

These distributions should be heavy-tailed to ensure the self-

similarity of the generated data throughput [3]. Distribution 

parameters are defined by the user on the command-line. Figure 1 

illustrates an example of the total throughput we can expect on the 

network following the ON/OFF sources generation process.  

2. STATE OF THE ART OF TRAFFIC 

GENERATORS 

2.1 Network simulators 
Different tools are available to simulate networks and their 

behaviors, with integrated ON/OFF sources (for instance, NS-2 

[4]). Most of them provide “Internet-like” flow generators, some 

of them based on ON/OFF source generation processes. However, 

the aim of our research work was to face new network systems to 

real traffic. It means we wanted to perform our system evaluation 

in real time and do not want to evaluate a model of our system. 

Simulators cannot do this kind of real time experiments, only 

emulators can do it. However, it is complex to deal with most 

network emulators as they are complex to install, to configure with 

the real network environment, and consume as well many CPU 

resources. This is why we searched for and studied tools not to 

simulate or emulate but to generate a realistic traffic load on real 

networks. 
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2.2 Traffic replay tools 
Some software enables the user to replay previously captured 

network traffics. This is done in two steps: the user captures data 

on the networks he wants to reproduce (with tools called “sniffers” 

such as the reference tool Wireshark [5]), then the user needs to 

replay the captured traces, i.e. by retransmitting the sniffed packets 

in the same order, and separated with the same delays as these 

measured during the capture (cf. the “tcpreplay”2 tool for 

instance). Harpoon3 is another existing Open Source flow-level 

traffic generator, but this tool requires the user to define flow per 

flow the data weight he wants to transmit on the network. The 

automatic generation of the network profile is limited to constant 

and uniform distributions. Moreover, Harpoon seems to be not 

maintained since 2005. This is why we did not consider this tool 

for our experiments. 

This traffic replay process has different advantages. The two 

steps may be done independently by two different users and at any 

time (as long as the first step is started before the second one). The 

capture may be filtered before being replayed and replay 

parameters may be set up. However, replaying has also important 

drawbacks. Indeed, before replaying any network trace, the user 

must make or acquire the capture he wants to replay. Most of the 

time, this is a difficult task: user privacy issues restrain the 

administrators in allowing captures on the router they administer; 

often ISPs do not want to extract advanced statistics from their 

networks… The public data we have found on Internet are often so 

anonymized that they not longer contain the useful information we 

need to replay them. Moreover, if you continuously replay the 

same trace you will reproduce periodically the same “events” 

(throughput bursts, specific packet sequences or behaviors…).  

2.3 Network throughput estimation tools 
This is why different techniques and tools have been 

elaborated to load a network and evaluate its capacity. One of the 

existing tools we have studied is “iperf” [6]. It can generate TCP 

or UDP flows to load the network. In TCP mode, an iperf client 

transmits to the server an infinite quantity of data through one TCP 

flow. After a user-defined duration, the iperf tool aborts the TCP 

connection and prints on the screen different statistics and the total 

quantity of data it succeeded in transmitting correctly. 

A network capture shows often that mostly all the network 

resources are used by the TCP flows [2]. Indeed, the TCP protocol 

efficiently exploits the network and transmits data in an optimal 

time span. However, in LAN captures, external and unexpected 

events interact with the flow, they generate segment delays and 

losses impacting the TCP connection which becomes longer than 

the optimal time span expected. This drawback affects most of 

methodologies based on studies using only one TCP flow. We can 

cite, for example, when the tester uses an SSH or an FTP 
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connection to transmit a big file and consequently to artificially 

load the network. 

When configured to transfer multiple TCP streams, iperf 

starts the different flows simultaneously at the beginning of the 

program. This behavior is not realistic because in Internet later 

flows are penalized at their start by the flows already established. 

Moreover, this tool “iperf” performs measurements on “long” TCP 

connections (100+ segments), allowing the TCP congestion 

control mechanism to adjust the data throughput efficiently. 

However, in most ISP studies the TCP connections are very 

numerous and the majority is short (e.g. in study [6] 81% of TCP 

connections carry less than 310 bytes), disabling the congestion 

control mechanisms optimizations. Consequently, congestion 

control mechanisms do not have the time to optimize the 

connection. In UDP mode, the client transmits data periodically: 

the period is computed depending on the user-defined quantity of 

data per second to transmit. However, for the same reason than 

previously, a single flow with constant throughput is not realistic 

[1, 2].  

Consequently, we have searched for other tools to generate 

data throughput: BWPing [7], NetPerf [8]… All differ more or less 

on the set of supported protocols, on the maximum admissible 

throughputs and on the statistics printed on the screen for the user. 

However, all have the same drawbacks as explained above. This is 

why, in the rest of this article, we chose the tool “iperf” as a 

comparison reference for our SourcesOnOff tool, because most 

measurement tools are based on the same assumptions and work in 

a similar manner: one or multiple identical and simultaneous TCP 

and UDP flows in order to load the network at its maximum 

available capacity. 

3. THE SOURCESONOFF TOOL 
We did not find in the state of the art we performed any tool 

to generate data flows based on exact ON/OFF sources. This is 

why we developed this one in C language and validated it with the 

Debian Operating System. The tool we propose is free and Open 

Source, under the General Public License v3 (GPLv3). Source 

code can be downloaded at 

http://www.recherche.enac.fr/~avaret/sourcesonoff.  

3.1 Generation of the random values 
ON/OFF sources are based on the generation of random 

values following well-determined distributions. The following 

distributions are currently implemented in the program. The 

Uniform distribution is based on the drand48() and the random() 

Linux functions, with corrections to ensure an exact uniformity on 

any range. The Normal/Gaussian distribution is computed with 

the help of the Box-Muller transformation. We use the Knuth’s 

algorithm for the Poisson distribution. The Pareto, Weibull and 

Exponential distributions use internally a transformation on the 

uniform distribution. The generation process of all these 

distributions have been statistically validated with the R statistical 

software [9] and its comparison function qqplot(). An additional 

pseudo-distribution is available: the Constant distribution. In this 
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case, all generated values are equal to a user-defined constant. This 

method enables the user to generate a more predicting behavior 

(note that this behavior is similar to iperf behavior in UDP mode). 

Multiplying factors enables users to convert the randomly 

generated values into Bytes (for Don distributions), nanoseconds 

(for Doff distributions) and their multiples (kB, MB, GB, us, ms, 

s…). Distributions may be bounded by minimum and maximum 

user-defined values. Our tool enforces also user-defined minimum 

and maximum values for the generated random numbers, by 

increasing values lower than the minimum boundary and 

decreasing values greater than the maximum boundary. 

3.2 Generation of the network flows 
First of all, different sets of Don and Doff random values are 

generated. They are then used for data communications. These 

data flows can be fully parameterized in order to enable the user to 

refine the tool behavior. Different sets of sources may run 

simultaneously, each set is associated with independent Don and 

Doff distributions and parameters. Contrary to programs like iperf, 

this tool is only intended to generate data. It was not developed to 

provide itself advanced statistics on the network: we use our tool 

to generate background traffic and we use additional passive and 

active measurement tools to evaluate network performances and 

collect statistics.  

3.3 Statistic profile extraction from a real 

traffic trace 
Before experimenting traffic generation, we have to define 

what kind of traffic we want to generate. This step may be done 

arbitrarily by choosing appropriate values or by selecting values 

from existing studies like [1, 2]. We chose an alternative solution: 

given that we belong to a research entity, we have easily access to 

real data. Thus, we asked to our local network administrator to 

capture the entire incoming and outgoing traffic, generated by 

people from the university (students, administrative people, 

teachers and researchers) on our local area network. The data were 

captured on the firewall protecting the access link between our 

LAN and other networks: REMIP and RENATER which are our 

links to the Internet. Thus, we captured all data from our LAN to 

Internet and all associated responses. 

We captured different network traces: between 10 minutes 

and 10 hours. We chose to capture traffic only on working days 

and between working hours given that the point of presence is at 

the output of a research entity and so, the main network activity is 

spread from 8AM to 8PM (Monday to Friday). For concise 

purposes, we will describe in the next subsections only one of the 

different traffic traces we collected, but other captures showed the 

same conclusions. Thus, in the next subsections we analyze a set 

of 9 millions of IPv4 packets (97.7% of TCP, 2.2% of UDP and 

0.1% of ICMP), collected during 10 hours between 8:00AM and 

6:00PM, Tuesday the 29th of January, 2013. UDP datagrams are 

negligible in our case (less than 2.2% of our traffic in packet 

numbers, less than 0.5% of our traffic in bytes), so we replayed 

only TCP sources and we will just model and reproduce the TCP 

traffic in our study case (cf. section 4). 

We used the tool tcpdump [10] to capture the raw packets and 

then the tool ipsumdump [11] to ensure the anonymity. We finally 

conducted a complete statistical analysis with bash and R scripts. 

These tools enabled us to retrieve different statistical 

characteristics of the captured data. This process is detailed in the 

next subsection.  

3.3.1 Statistic profile extraction process 
Previous research work (such as [1, 2, 3 and 4] for instance) 

have demonstrated that one unique statistical law cannot figure out 

all the complexity of an original Internet traffic trace. This is why 

we chose to decompose and to model the Internet traffic trace we 

want to replay by using several different statistical laws. Thus, we 

need, firstly, a decomposition algorithm and, secondly, a 

distance criterion to evaluate the differences between real 

original data and data generated by our tool. This distance criterion 

will help us to select the best statistic laws to decompose original 

data.  

3.3.1.1 Traffic trace decomposition 
We developed an algorithm able to detect a lack of continuity 

in any data we want to characterize. This algorithm is mainly 

based on the quantmod4 tool developed by Jeffrey A. Ryan. Based 

on this algorithm, we are able to select different basic distributions 

(Weibull, Pareto, Exponential, Gaussian…)  that we can combine 

to reproduce the whole complexity of the original data we want 

first to characterize and finally to replay. To assess the distance 

between selected statistical distributions and real data, we used the 

Bayesian Information Criterion which is introduced in the next 

subsection. We are thus capable of combining the different values 

of the traffic to generate by considering those different 

distributions in the SourcesOnOff tool. 

3.3.1.2 BIC (Bayesian Information Criterion) 

distance assessment 
The goal of this step is to quantify the statistical distance that 

exists between our original data and the data generated by our tool. 

To compute this distance we introduce the Bayesian Information 

Criterion [12]. This criterion is computed as  

BIC = k * ln(n) – 2 * ln(L), where: 

- n is the size of analyzed data; 

- L is the likelihood of the model (Weibull, Pareto, 

Exponential…) regarding the different original data; 

- k is the total number of estimated parameters. 

The final goal of this comparison is to select the smallest BIC 

(minimum BIC value is -∞) according to the different candidate 

statistic profile (Weibull, Pareto, Exponential, Gaussian…). Thus, 

the tool can conclude that the selected model (which might be a 

composition of different distributions) is the closest from the 

original data. 
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4. SOURCESONOFF VALIDATION: 
The objective of this section is to validate the traffic profile 

generated by our tool by verifying its correctness according to the 

real profile. We could have presented complex and realistic 

topologies, but the goal of this section is to analyze in details the 

traffic generation process provided by our tool. By introducing 

additional complex topologies, the statistical analysis of the 

generated traffic would have been too complex given that we 

would have had difficulties to link a specific parameter variation 

with a specific cause: our tool or the complex topology. This is 

why we chose a simple experimental topology with only two hosts 

and one router. The SourcesOnOff tool has been deployed on the 

different hosts: the sender part on the transmitter host and the 

receiver part on the receiver host. For this experiment, we use two 

Linux Debian hosts (mono-core processor @1.2 GHz, 1GB of 

RAM), connected to a Linux Debian router (quad-core processor 

@3.8 GHz, 4 GB of RAM). The links between hosts are Ethernet 

RJ45 connections manually configured to 10baseTx-HD, in order 

to easily limit the link capacities without any software solution and 

thus to capture all the traffic without any loss. For each original 

trace replayed thanks to the SourceOnOff tool, we captured, on our 

experimental topology, the same quantity of generated data in 

order to be consistent between original and generated data. As a 

reminder, we present only one set of results related to data 

collected on 01/29/2013. 

The validation of our tool needs to analyze its generated 

traffic. This is why this section analyzes the original captured 

traffic and explains how generated traffic is really close to the 

original network traffic. Thus, we performed different quantitative 

and qualitative verifications on the generated traffic to answer the 

following questions: does the generated traffic comply with the 

original one? 

4.1 Statistic profile detection 

 

Figure 2: Fitting of original (red curve) and generated 

(black curve) for Doff traffic distributions  

By applying the algorithm described in section 3.3, the tool is 

able to detect several different statistic profiles in the same original 

data as described in the Figure 2. We studied both Doff and Don 

values but, to be concise, we describe in this section only Doff (i.e. 

the inter-train durations) results. The Doff distribution is a 

complex statistical process that we have modeled based on the 

function composition algorithm described in the previous section. 

Our algorithm chose a composition between Weibull and Dirac 

functions (as plotted by the black curve). In the following sub 

section, we are going to validate how this function composition fits 

very well the original statistical process. 

4.2 Qualitative analysis : quantile-quantile 

plots 
As qualitative estimators, we used quantile-quantile plots 

diagrams (also called “QQPlots”) to represent on the same diagram 

the measured values on the real network (i.e. the original data) and 

the measured values on the experimental network (i.e. the 

SourcesOnOff generated data). QQPlot diagrams sort 

independently X and Y values, and then represent points to the 

sorted coordinates. When the X and Y series are correlated, a 

linear tendency is visible on the diagram. On our QQPlot 

diagrams, we will represent a diagonal blue line of equation y=x, 

in order to represent a perfect correlation between x and y values. 

The set of values used for the X data is the set of durations 

between two consecutive TCP connections observed in the capture 

in the real network. The set of values used for the Y data is the set 

of durations between two consecutive TCP connections measured 

in the traffic generated by our tool SourcesOnOff. In other words, 

the Y values are the durations our tool waited between starting two 

TCP connections. 

 

Figure 3: QQPlot for Doff values (generated traffic vs. real 

traffic) 

We can see on figure 7 that the values are very well 

correlated: most of the 9,700 points drawn on this figure are near 

the diagonal blue line of equation y=x. This means most values 

measured in the real network were successfully reproduced in our 

experimental network. The correlation factor is 99.8% in our case 

for Doff values. A few points with high values are not well 

correlated: they come from the tail of the Weibull distribution 

densities. 

We can conclude that our tool shows very good trends for the 

generated traffic compared to the original one. However, it is 

necessary to analyze more accurately how the generated traffic is 

close to original. This is why we used additional tools (BIC 
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distance and Hurst factor) to check quantitatively these results in 

the following section. 

4.3 Quantitative analysis 

4.3.1 BIC distance 
Table 1 shows BIC distance analysis. We can note that original 

and generated traffics are the closest when the statistic model 

combines both Weibull and Dirac profiles. The qualitative 

similarity between original and generated traffics provided by 

QQPlot is thus confirmed by BIC distance computations for both 

Don and Doff profiles. This result validates that a combination of 

both Weibull and Dirac distributions is the right statistical profile 

to consider with our original data. 

Table 1: BIC distance between original and generated 

traffic 

Statistic model Doff BIC distance Don BIC distance 

Weibull (+ Dirac) 0.01558 0.02527 

Pareto (+ Dirac) 0.0209 0.03834 

Exponential (+ Dirac) 0.08892 0.06222 

Gaussian (+ Dirac) 0.1027 0.07535 

4.3.2 Hurst exponent computation 
We wanted also to compute quantitatively the long-term 

memory of the generated traffic compared to the original one. This 

can be showed with the Hurst exponent computation: this value is 

an indicator of long-term memory. In our case, we used the 

Wavelet-based joint estimator of the Hurst exponent, as described 

by D. Veitch and P. Abry in [13] to study the Long-Range 

Dependence. In table 2, we compare the Hurst exponent estimation 

for the throughput generated by our tool with the throughput of the 

real capture at different time scales (from 100 us to 10 s). 

Conforming to [13], data (see table 2) exhibit Long Range 

Dependence (LRD). Indeed, data show LRD when 0.5 < H < 1. 

Moreover, the dependence is stronger when H is closer to 1. Thus, 

we can conclude than in our case, we have a strong Long Range 

Dependence in both series of throughput, whatever the time 

window is defined. We can also conclude that both generated and 

original traffics exhibit the same LRD level (considering a 12 % 

error interval).  

Table 2: Hurst exponent estimations (H) 

Sample duration for 

throughput 

measurements 

H 

for our tool 

SourcesOnOff 

H for real 

throughput 

Error 

ratio  

100 us 0.88 0.83 7 % 

10 ms 0.97 0.95 2 % 

100 ms 1.00 1.00 0 % 

1 second 1.00 0.88 12 % 

10 s 1.00 1.00 0 % 

5. CONCLUSION AND FUTURE WORK 
In this paper, we have introduced a methodology to generate 

network traffic with realistic characteristics. A tool has been 

developed, based on the application of ON/OFF sources with 

different statistical profiles. Parameters of the distributions can be 

defined by the user or extracted from real traffic analysis. We have 

completed this paper with a validation of both the traffic 

generation methodology and the SourcesOnOff tool. Different 

experiments have been conducted. All of them appear to validate 

the proposition that our tool is able to generate traffic with the 

same characteristics as real ones.  

The tool is freely available and may be utilized for a wide 

variety of network traffic profiles. We hope users can appreciate 

the wide range of applications where SourceOnOff can be utilized. 

This tool is currently unable to generate traffic other than TCP and 

UDP protocols. In the future, the tool may be developed further in 

order to support ICMP protocol. Moreover, the tool may support 

other statistical distribution profiles and may provide additional 

statistics for the users. Having completed the validation of this 

tool, we can now take into account more complex network 

topologies (cloud computing applications for instance) and 

distribute different SourcesOnOff sender and receiver agents 

among them for the future experiments we plan to conduct. 
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