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Abstract – Reliable GNSS positioning is a very 
challenging task in harsh urban environment. The 
main source of error is due to non-line-of-sight 
(NLOS) reception and multipath phenomena. The 
effect of assuming a direct path in a NLOS 
propagation environment leads to serious 
degradation in accuracy.  Instead of discarding all 
measurements which are found to be in NLOS 
conditions, we propose to properly use these 
observations to improve the positioning accuracy 
and integrity in harsh environments.  

In this paper, we combine the sigma-ε variance 
model with a mean jump (i.e. NLOS bias) to model 
the pseudorange (PR) errors. First, we use a 3D 
model of the environment to detect the NLOS state 
of reception and to predict the NLOS bias related to 
the excess delay phenomenon. For reliable 
positioning, we use a C/No-based variance 
adjustment for the LOS PRs, and we subtract the 
bias from the NLOS PRs during the trilateration 
step of position computation. The performance of 
the proposed scheme is assessed using real data 
and compared to a standard Kalman filter without 
predicted information from the 3D simulator.  
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I. INTRODUCTION  

Reliable navigation entails quality of service in 
terms of accuracy, continuity, availability and also 
integrity especially for safety and liability critical 
applications. Even for the majority of comfort 
applications, while few meters of accuracy is sufficient, 
the positioning quality cannot be guaranteed in general 
when traversing a deep urban environment. The reason 
is that GNSS signal reception in harsh urban settings is 
notoriously challenging. Buildings and other objects 
surrounding the receiving antenna may block the direct 
line-of-sight (LOS) to many satellites, hence reducing 
the visibility.  Often, the remaining signals have poor 
geometry and therefore degrade the position accuracy.   

Apart from being blocked, the signals are also 
reflected and diffracted from the buildings and other 
objects. These signals distort measurements and bias 
the calculated position.  If the signal is received only 
through reflections, the situation is known as non-line-



of-sight (NLOS) reception.  Multipath interference is a 
phenomenon when the signal is received through 
multiple paths. Even though both the NLOS reception 
and multipath interference are often grouped together 
as ‘multipath’, they are actually separate phenomena 
that cause very different ranging errors.  These 
degraded reception of multipath-contaminated LOS or 
NLOS are the dominant causes of reduced consumer 
grade positioning reliability in the urban environment. 
The effect of NLOS reception on a pseudorange (PR) 
measurement is associated to the additional path 
delay, i.e., the difference between the lengths of the 
path taken by the reflected signal as compared to the   
direct path, from satellite to the receiver.  Hence, this 
error is always positive and, while typically tens of 
meters, is potentially unbounded [1]. Whenever high 
sensitivity receivers are used, the number of received 
NLOS signals can increase significantly due to the 
ability of the receivers to acquire much weaker signals. 

Several existing techniques of multipath and NLOS 
mitigation may be categorized as hardware-based, 
signal processing in receiver and measurements 
domain [2, 3]. The work in [3] elaborates those 
techniques which make use of dual-polarization 
antenna, sky-pointing camera, beam forming antenna 
arrays, ground planes and choke rings.  Their main 
limitations are usually related to cost, size, weights and 
power consumption.  The common approaches to deal 
with the multipath problem through receiver-based 
techniques, such as the narrow correlators, do not 
bring the best improvement in the case of NLOS 
situations due to the absent of LOS signal. In post-
receiver techniques (i.e., prior to the position 
calculation), one way to solve the NLOS situation 
problem is to identify and exclude the associated 
measurements in the navigation algorithm, by using 
techniques such as consistency-checking which is 
similar in concept with RAIM.  However, this approach 
is not well adapted to positioning in harsh 
environments, when only degraded measurements 
may be available.   

Under the poor conditions of satellites visibility, the 
positioning algorithms have to take into account the 
fact that the received signal may reach the antenna 
from a non-direct path with an additional distance. For 
this purpose, few works exist in the literature on 
constructive use of NLOS signals [4]. One option is to 
approximate the PR errors model of NLOS 
measurements so that the PR may still be usable for 
positioning.  The bias can be treated either as a 
random variable, if a statistical characterization is 
available or as a deterministic quantity if it is somehow 
known or predictable.  

Mixing the bias with the additive noise, the 
resulting term is considered as random error and may 
be modeled by a Gaussian mixture [5] since the NLOS 
measurements noise has been observed to be non-
Gaussian, or by adapting the measurements variance 
[6]. In addition, authors in [7] shows that the 
measurement errors distributions depend on the 
observation window size. Over a short observation 

period, PR errors can be modeled by a Gaussian 
distribution, with time-varying mean and variance.  

In order to adopt such measurements error-model 
based processing, a reliable decision on the reception 
state of the received signal (i.e. LOS or NLOS status) is 
needed. In [5], authors use the Jump Markov System 
as probabilistic model with received signal-to-noise-
ratio (SNR) as indicator of the LOS/NLOS reception 
state. However, although it has the potential to be used 
independently of any heavy environment assumptions, 
SNR estimation is a critical issue in harsh 
environments, thus the decision based on 
contaminated information will affect the result. 
Furthermore, SNR values which are obtained from PRs 
collected in one area will not be representative any 
more for another area since the transition between LOS 
and NLOS depends greatly on the geometrical 
structure of the location.  

 In this paper, we analyze the benefit brought in the 
comfortable situation where a 3D city model can be 
used to predict the reception state and the bias of each 
satellite as a potential alternative. We integrate tightly 
these simulated information in the Kalman filter 
computing the PVT (position, velocity, time) and we 
assess the performance of the proposed approach. 

II. PREDICTING LOS/NLOS CONDITION VIA 3D MODEL 

As 3D city models becoming more accurate and 
widely available, there are growing interests in their 
application to predict satellite reception availability. The 
works of [8, 9] used 3D city model to predict GNSS 
availability considering LOS, diffracted and re-radiated 
signals. In [10], the authors used 3D digital map in 
order to detect and mitigate multipath in real-time 
where a ray tracing algorithm is used to check if 
satellite signals are reflected or blocked. The 
suspicious PRs are simply excluded from the 
observation set.  3D model along with camera image 
were used in [11] to filter out the PR measurements 
which are considered to be NLOS based on the 
comparison of the actual satellite elevation angle with 
the critical elevation angle calculated using the 3D 
model. In [12] the authors use a 3D model to predict 
the geometric paths of NLOS signals so that they may 
be used constructively in order to obtain enough 
information to compute the user’s position in harsh 
urban environment. 

In this work, we use SE-NAV software [13] to 
predict the signal reception of GNSS systems such as 
GPS into 3D virtual scenes of known urban areas. The 
propagation of signals is based on a ray-tracing 
algorithm that computes the shadowing and multipath 
effects. SE-NAV uses geometric optics to calculate the 
reflected, diffracted and transmitted rays. Based on 
these multiple rays that reach the receiver, the LOS or 
NLOS reception state of a satellite is provided. The 
position of the satellites and the receiver must be 
known.  The satellite positions are calculated based on 
the ephemeris data whereas the positions along the 
trajectory are obtained from the receiver.  



A. SE-NAV – Deterministic simulator of GNSS 
reception in constrained environment 

SE-NAV simulates the propagation of GNSS 
signals in constrained environment (urban area, indoor 
etc.). This software, developed by the company OKTAL 
Synthetic Environment, embeds a GPU Raytracing 
kernel to compute the masks and the multipath 
(reflections, transmission and diffractions) generated 
by the objects/buildings near the receiver. 

 

  

Figure 1: Left: Mask sphere showing the masking 
impact. Right: Example of multipaths reception in        

an urban area. – 3D Red arrows point to the        
location of the receiver  

1) Raytracing and BVH optimization 

A Raytracing algorithm consists in finding the 
intersections between a ray and a defined geometry as 
fast as possible. SE-NAV uses geometries made of a 
large number of triangles. For high frequency 
asymptotic EM simulation, a large number of such 
intersections has to be computed. A very naïve 
approach would require N*M ray-triangle intersections, 
N being the number of triangles and M the number of 
rays. Except for very simple situations, this cost is 
prohibitive, hence the need for acceleration methods. 
Among these methods, the Bounding Volume 
Hierarchy (BVH), an object-based subdivision structure 
is chosen. The principle is to build a tree-structure of a 
set of triangles. Each triangle is stored in a leaf of the 
tree. Each internal node stores for each of its children 
the bounding volume of the descendant triangles. A 
bounding-volume hierarchy is built according to the 
location of each triangle of the database, trying to 
minimize the extent and the number of nodes. 

Once the structure is built, the intersection 
between a ray and the scene is done by traversing the 
tree recursively from the root. A child is processed only 
if the ray intersects its bounding volume. If the two 
children are traversed, the process is repeated first on 
the children closest to the ray origin. If the child is a 
leaf, the ray is intersected with all triangles contained in 
the leaf, potentially updating the intersection data. 
Traversal is stopped as soon as no intersection closer 
than the current one can be found. This method 
decreases drastically the ray-scene intersection 
computation time, computing only O(log(N)*M) 
intersections instead of N*M for N triangles and M rays. 

 

 

 

Figure 2: Top: Triangles sorting – Bottom: Bounding-
volumes hierarchy 

 

2) GPU Resources 

The Raytracing kernel has been developed in 
CUDA 4.0 language and uses the GPU resources in 
order to compute masks and multipath in record times 
(1000 times quicker in optimal configurations). SE-NAV 
uses GPU to find rays and CPU to filtrate them 
according to Geometrical Optics rules. 

SE-NAV runs on NVIDIA Graphics board series 8 
or later. The video memory shall be greater than 512 
Mo and the compute capability rate greater than 1.1 
(atomic operations shall be allowed) 

 

3) Model Outputs 

SE-NAV uses Geometrical Optics to model 
reflections and transmissions and Uniform Theory of 
Diffraction to detect signal’s diffractions on the edges of 
the objects. As SE-NAV uses a deterministic method, 
the software can calculate and display the geometry of 
each ray reaching the receiver and then computes the 
total link budget and errors needed to forecast the local 
pseudorange. Thanks to the different DOPs provided 
as an output and also the visibilities of the constellation 
(LOS, NLOS, and hidden satellite), the user can assess 
the availability of the navigation system and its 
performance within a given area. 

SE-NAV computes a link budget and provides in 
output the received power per multipath and per 
channel. To do so, SE-NAV assesses the main source 
of attenuations during the propagation of the signal in 
the environment. 



 

Figure 3: Link budget 

SE-NAV takes into account cabling losses, 
antenna gain (satellite and receiver), free space losses, 
tropospheric losses and multipath losses. SE-NAV 
computes the complete field (modulus and phase) and 
therefore models interferences and fading effects. SE-
NAV also provides Signal-To-Noise Ratio and 
composite power (i.e. integrated power for a given 
channel). 

B. Reliability of 3D model for reception state prediction 
and NLOS bias prediction.  

The reliability of the computed position depends on 
the reliability of the PR measurements model. In this 
work, distribution of the errors on the final navigation 
solution depends on the quality of the decision taken 
on the NLOS and LOS situation as obtained from the 
3D model. Hence, it is crucial to determine the quality 
of the SE-NAV LOS/NLOS identification as well as the 
impact of this decision on the error modeling. 

While there have been several works such as in [8, 
9] where prediction of satellite availability based on 3D 
model were studied, there has not been many works 
studying the LOS/NLOS state of reception based on 
3D model. One of the approaches in categorising the 
LOS/NLOS state of reception is to base on the 
received C/No [5].  In this work, we compare the 
conformity of state reception prediction provided by the 
3D model with that one obtained using the C/No value. 
An example of conformity is when SE-NAV predicts a 
received signal as a NLOS and the C/No of that signal 
is below the set threshold (a value between 40 and 30 
dB-Hz). 

Apart from predicting the reception state, the 3D 
model is also utilized to predict the NLOS bias statistic, 
which is to be used for the PR corrections. In this case, 
how close the predicted bias to the measured NLOS 
bias will affect the similarity of the final computed 
position. 

III. POSITIONING APPROACH WITH NLOS SIGNALS 

A. LOS/NLOS Psudoranges measurements model  

Over a relatively long observation window, the 
NLOS measurements error has been observed to have 
a non-Gaussian distribution and may be approximated 
by a Gaussian mixture [5], as illustrated in Figure 4. 

 

Figure 4: NLOS error distribution 

However, for a short observation window, the most 
common approach consist of  modeling the 
pseudorange error as Gaussian distribution with a time-
varying mean and variance [7] as illustrated in Figure 5.  
Here, the error distributions of the same satellite are 
shown within different 40 seconds windows where it 
can be seen their change in the mean and variance. 

 

 

Figure 5: PR error distributions in short observations 
periods. 

In the NLOS case, the presence of only reflected 
signals introduce a jump on the mean value as a result 
of the extra distance.  In the case of degraded LOS 
path, an additional variance is introduced as 
increase of the uncertainty on the direct path. 
Accordingly, we model separately these effects of the 
degraded LOS noise and NLOS bias on the PR 
measurements error. 

For the case of multipath degraded LOS reception, 
implementing the signal-to-noise ratio based variance 
model, i.e. the SIGMA-ε model, would improve the 
positioning accuracy in the urban environment [6, 14]. 
The covariance matrix of the observation can be 

constructed as          
    

      
    where 

   
        

     

    (1) 

and   
   is the variance of the     observation.  The 

constant   and   are determined depending on the 
environment and user equipment.  
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The PR measurement model is commonly 
expressed as the true distance   between the receiver 
and satellite, plus with several other types of errors. 
For each satellite at k

th
 point in time, the pseudorange 

ρ can be written as, 

            
         

                 (2)  

with      represents clock offset (satellite or receiver), 
     represents both the ionospheric and tropospheric 

delays.   is the multipath delay and   is the receiver 

noise.  In harsh urban environment,   is the major 
contributor of error and could consist of the mixed 
LOS/NLOS conditions.  Once the ionospheric, 
tropospheric, ephemeris and clock errors are 
compensated, the model is reduced to the following 
expression, 

                (3) 

To further illustrate the LOS/NLOS conditions in 
the multipath, we may rewrite the equation as [15] 

                 (4) 

  

where:          {
                                       

                                        
 

                                                                                               

    {

                                     

√        
                          

           

and    is the centralized zero mean white 

Gaussian noise       . Then, in the case of NLOS, 
the affected measurement becomes 

    
                   ,  (5)  

and     √        
    

B. Integration of the 3D-based Bias Estimation in the 
PVT Kalman Filter 

In this paper, the well-established Extended 
Kalman Filter (EKF) is chosen as the positioning 
estimator for post-processing the measured PRs.  
Based on the measurement model in (4), the state 

equation can be provided by: 

                 (6) 

where   is the state vector,   is the state transition 

matrix and   is the process noise with zero mean 
Gaussian distribution.  

          ̇        ̇  
   (7) 

where    is the          position coordinates,  ̇  
are the velocities,    is the clock bias and   ̇ is the 
clock drift.    
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where   is the identity matrix and     is the 
sampling period.  
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The clock bias variance   
  and clock drift variance 

  
  depend on the quality of the receiver, while the 

acceleration variance   
  depend the motion of the 

receiver.  

Based on the prediction from the 3D model of the 
LOS/NLOS reception condition of each satellite, the PR 
measurement and its variance are treated accordingly.  
If the measured PR is predicted as a LOS signal, its 
covariance is adapted to the value using equation (1).  
However, if the measurement is predicted as a NLOS 

reception, the NLOS bias        is predicted from SE-

NAV and subtracted from PR measurement and the 

NLOS variance      
  is included in the covariance as 

described by equations (4) and (5).  

The observation equation can be formulated as, 

                    (12) 

where   describes the non-linear dependence of 
the observations on the state. The observation 
covariance is, 

                  (13) 

where   depends on the LOS/NLOS condition of 
the reception state.  

Usually, the values for the bias and variances of 
NLOS errors are obtained based on the PR error 
distributions. In this study, the PR error values are 
initially calculated based on the difference between the 
measured PRs vis-à-vis the reference PRs which are 
acquired by computing the distance from the satellite 
positions and the reference positions. However, such 
approach would be limited for positioning applications 
with a fixed and predetermined route. 

 In an attempt to make the application to be less 
restrictive, this work further considers the PR errors 
values generated from the predictions of the 3D-model.  
The delays of the PR ray-tracings from the 3D-model 
are treated as the errors of the PR measurements.  

C. Data Collection, Equipment and Software 

In this work, the measurements were obtained 
from a trajectory around Toulouse, France (Figure 6).  
The area represents a deep urban environment with 
narrow streets and buildings alongside the streets. 

The GPS receiver used for the PR measurements 
is the u-blox LEA-4T receiver while the NovAtel SPAN 
system is used for the reference trajectory. The 
measurement was sampled at 1 Hz. All data 
processing was accomplished using Matlab and SE-
NAV 



         

 

Figure 6: Reference trajectory in Toulouse, France. 

IV. RESULTS 

A. Estimation of Variance (C/No) Model Parameters  

In order to implement the SIGMA-ε variance model 
as in equation (1), the values for parameters   and   
have to be determined. This is achieved by fitting the 

                      √      
     

   to the plot 

of absolute pseudorange errors vs. C/No. The standard 
deviation is simply the square root of the variance in 
equation (1) and the absolute pseudorange errors are 

the magnitude of the pseudorange errors. Figure 7 
shows an example of the plot and Table 1 lists all the 
determined    and   values per visible satellite during 
data collection. 

 

Figure 7: C/No variance model. 

It is noted that during this early stage of research, 
the number of sampled measurements is rather small. 
Nevertheless, they are sufficient at the moment. 

B. LOS/NLOS Prediction by SE-NAV 

Determination between LOS/NLOS reception is 
indeed a challenging task.  Here, the LOS/NLOS 
prediction by SE-NAV is compared to the received 
C/No values of the PR measurements.  Threshold 

values of 40, 38 and 30 dB-Hz are used for 
comparisons. Percentages of conformity between SE-
NAV prediction and C/No values are listed in Table 2. 

Table 1: List of parameters for variance (C/No) model 
obtained by curve fitting with the absolute PR errors 

Sat     

5 164 -1 x 10
4
 

8 115 1 x 10
4
 

9 127 3336 

10 171 2 x 10
4
 

15 136 -1 x 10
4
 

17 325 1339 

18 48 2 x 10
4
 

24 982 - 4649 

26 55 -1 x 10
4
 

27 29 -7603 

28 8 1 x 10
4
 

 

Table 2: Conformity between SE-NAV LOS/NLOS 
prediction and the C/No values 

Sat C/No = 40 
dB-Hz 

C/No = 38 
dB-Hz 

C/No = 30 
dB-Hz 

5 61 % 45 % 2 % 

8 98 % 95 % 48 % 

9 89 % 87 % 54 % 

10 86 %  82 % 75 % 

15 64 %  47 % 5 % 

17 100 % 100 % 62 % 

18 100 % 100 % 72 % 

24 100 % 100 % 100 % 

26 91 % 80 % 14 % 

27 94 % 93 % 38 % 

28 93 % 83 % 15 % 

Total 89 % 83 % 44 % 

 

These C/No values may also be cross referenced 
with the elevation angle of the satellites since the 
signals of the lower elevation satellites are more likely 
to be received as NLOS in the urban environment as 
compared to those of the higher elevation ones. In 
Figure 8, satellites with lower than 26° elevation tend to 
be the satellites with higher conformity with the SE-
NAV LOS/NLOS prediction.  

C. Results on Position Estimation  

As a base of comparison, the error sequence of 
position estimation with NLOS bias correction is plotted 
against the error sequence of position estimation using 
the variance (C/No) only (i.e., without considering 
LOS/NLOS reception).  Figure 9 (a) shows the 
comparison in 3D while Figure 9 (b) and 9 (c) are their 
respective error plots in ENU format.  

From Figure 9 (a), it can be seen that the 
estimation with NLOS bias correction was generally 
better than the performance of the position estimation 
using only the variance (C/No) model.  After about the 
100

th
 sample it can be said that both estimators 
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seemed to converge on more or less of equal 
performance at the end. 

 

Figure 8: Elevation angle per satellite 

When comparing their performance in the ENU 
format, it is obvious that both of the error patterns of 
the two position estimation approaches are strongly 
influenced by their error estimation in the height 
direction.  If the height error is discounted, their 
performance can be compared in the XY plane (Figure 
10) where their performances are much better. The 
estimation with bias correction was able to reduce 
several large error values that exist in the estimation 
with variance (C/No) around the 37

th
, 66

th
 and 87

th
 

samples. 

D. Bias Prediction by SE-NAV 

Apart from predicting the LOS/NLOS reception, 
this study also attempts to use the 3D model to predict 
the NLOS bias. Figure 11 shows the comparison of the 
measured bias versus the predicted bias for Sat 5.  
While there is some similarity in the patterns, the 
values of the bias are quite different between them.  
Further research could be pursued in order to improve 
NLOS bias prediction by the 3D model. 

Figure 12 is the position error comparison between 
the positions estimate using measured bias for PR 
correction against the positions estimate using bias 
predicted by SE-NAV for the PR correction.  The plot is 
in the XY plane to discount the effect of the estimation 
error in the height direction.  Despite the difference 
between their bias values as indicated in Figure 11 
before, their positioning performances in XY plane are 
quite similar in general.  

 

V. CONCLUSIONS 

This paper proposed the utilization of 3D model in 
predicting the LOS/NLOS reception state. In addition, 
the 3D model is also used to predict the NLOS bias of 
the measurements. These simulated information is 
used for correction of the PR error according to the 
LOS or NLOS case and then processed in the PVT 
computation algorithm. The ability of the 3D model to 

predict LOS/NLOS was found to be encouraging when 
compared with other indicators such as C/No and 
satellite angle of elevation.  

 

(a) 

 

(b) 

 

(c) 

Figure 9: (a) Error of position estimates in 3D, (b) and 
(c) Error estimates in East, North and Height. 

The ability of the 3D model to predict the NLOS 
bias was deemed modest and not concluding for the 
short processed data. Further research and analysis 
are required to validate the quality of the predictions by 
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3D model. In term of the bias prediction, other technics 
of exploiting better the 3D information may be 
developed. 

 

Figure 10: Error of position estimates in XY plane 

 

Figure 11: Error of position estimates in XY plane 

 

Figure 12: Measured NLOS bias against SE-NAV 
predicted NLOS bias by  
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