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On the composition of convex envelopes for
quadrilinear terms*

Pietro Belotti, Sonia Cafieri, Jon Lee, Leo Liberti, and AaaiMiller

Abstract Within the framework of the spatial Branch-and-Bound ailipon for
solving Mixed-Integer Nonlinear Programs, different cexwvelaxations can be ob-
tained for multilinear terms by applying associativity iifferent ways. The two
groupingg (x1X2)x3)X4 and(x1X2X3)%4 of @ quadrilinear term, for example, give rise
to two different convex relaxations. In [6] we prove that imavfewer groupings of
longer terms yields tighter convex relaxations. In thisgrape give an alternative
proof of the same fact and perform a computational studygesssthe impact of the
tightened convex relaxation in a spatial Branch-and-Baetting.
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1 Introduction

One of the most crucial steps of the spatial Branch-and-Balgorithm for solv-
ing Mixed-Integer Nonlinear Programming (MINLP) probleraghe lower bound
computation. When the MINLP is factorable, it is possiblednstruct a convex re-
laxation automatically by means of a particular type ofigtreformulation (called
MINLP standard form [27, 10]) first proposed in [16] and thespleited in most
existing sBB algorithms [22, 1, 27, 9, 31, 5]. If we considetymomial problems,
higher order monomials are recursively rewritten as prtslaEmonomials of suf-
ficiently low order for which a tight convex relaxation (pdsg the convex enve-
lope) is known. Each lower order monomial is replaced by ateddariable, and
an equality constraint defining the added variable in terfrth@® monomial it re-
places is adjoined to the MINLP. This operation is carrietireaursively until the
MINLP consists of a linear objective, some linear constsgiand severalefining
constraintsof the formw; = hj(x,w) for all j in some appropriate s& where
the functiongh; represent monomials. To obtain a convex relaxation, eatthinig
constraint is replaced by a set of constraints defining tmwexorelaxation of its
feasible set, thus yielding a convex relaxation for the whmbblem.

Let B = [x-,xY]. The quadrilinear feasible s& = {(wy,x1,%2,X3,X4) | Wy =
X1X2X3Xa} N B over a box can be lifted in many different ways according t® th
way associativity is applied: the groupir{@xix2)x3)xs, for example, yields the
set 22 = {(wy, W, W3, X1,X2,X3,X4) | Wo = X1Xp A W3 = WoXa AWy = WaXg} N
B, whereas the groupin@, Xy, x3)X4 yields $2 = {(w1,Wo,X1,X2,X3,Xa) | Wp =
X1X2X3 A W1 = WoXq} N B. Since convex/concave envelopes exist in explicit form for
both bilinear [2, 16] and trilinear terms [18, 17], we canidertwo different con-
vex relaxations oB*. The first,5*%2, consists in replacing the bilinear constraints
W = XjX« appearing irs>22 by the corresponding bilinear envelopes. The second,
S*2, consists in replacing the trilinear terms with the triimenvelope and the bi-
linear term with the bilinear envelope. A question thenewiraturally: which one
is tighter? B _

In [6] we proved thaS*? C S22 and performed a computational study of the
containment of the convex relaxations when different patans were varied. In
this paper we provide an alternative proof (based on formaahgnars) of the same
result, and then test the impact of the tightened convexatitan S>2 using sBB.

The rest of this paper is organized as follows. In Sect. 2 vesgmt the main
motivations of this work and a literature review on convdaxations for multilinear
monomials and their impact on a sBB algorithm. In Sect. 3 veppse a theoretical
framework, based on concepts from the formal languagesythteacompare convex
relaxations of multilinear monomials obtained as a comjmosof convex envelopes
of lower-degree monomials. In Sect. 4 we discuss some catipnal experiments
aimed at comparing different convex relaxations of quadkdr terms in a spatial
Branch-and-Bound setting. Concluding remarks are giveSeict. 5.



On the composition of convex envelopes for quadrilineanger 3

2 Motivation and literature

The above discussion implies that deriving convex relaxatthat are as strong as
possible (i.e., that approximate the convex hull as cloaslpossible) for multilin-
ear monomials can be critically important for the perforemof a spatial branch-
and-bound algorithm designed to globally solve nonconwayrmomial optimiza-
tion problems. Because of this, numerous efforts have estltlie convex hulls of
sets defined by lower order product terms and the use of tleesex hulls in recur-
sively factorized formulations (such as the MINLP standardh defined above).

Four valid inequalities for the three-dimensionalSet {w, x;, X : W= X1Xp,X €
[x-,x]} were proposed by [16], and later [2] showed that these foemualities
suffice to describe the convex hull. At present most globallM? solvers that use
general sBB methods (among recent examples see [5], [13]), (Be the convex
hull for recursively defined instances 8t to define the polyhedral relaxations that
are solved at each node of the branch-and-bound tree.

However, it may be thought that limiting solvers to the usemfelopes defined
by simple bilinear terms may result in convex approximadifor the original prob-
lem that are less strong (perhaps much less so) than thasexilait envelopes
for more complex expressions. For problems involving rlinéar multinomials
defined by products of more than two variables, this conaiiter has motivated
research into the envelopes tofinear functions [18, 17]. Comparing the use of
convex envelopes for bilinear and trilinear forms in builgiconvex approximations
for MINLPs motivated the study in [6], and comparisons iminog more general
functional forms motivate the present article.

A natural generalization of bi- and tri-linear functionsdunctions that are
known to havevertex polyhedratonvex envelopes. (The convex envelope of an
n-dimensional functiorf (x) is said to be vertex polyhedral if its domairis a poly-
hedron, and if every extreme point of the convex huj £, f (x) : x € X} is defined
by an extreme point oX itself.) In [19] Meyer and Floudas generalized the ap-
proach developed for trilinear functions to functions witrtex polyhedral convex
envelopes. Essentially, their approaches can be thougts ehumerative methods
that consider all possible combinationsrof 1 extreme points oK (equivalently,
extreme points of corf{ (x, f(x)) : x € X})), and then establish conditions under
which the hyperplane defined by such a set of points definegarlinequality sat-
isfied by all the other extreme points of cdfix, f (x)) : x € X}). Such an inequality
is then valid for{(x, f (x)) : x € X} and facet-defining for the convex hull of this set.

General multilinear functions (i.e., any function compbséa sum of products
of variables, in which the degree of each variable in eacldyxrbis O or 1) were
shown to have vertex polyhedral convex envelopes by [21]iMplication of this
result is that many of the concepts mentioned in the pregepémagraph can be
used for general mutilinear functions; their use is nottédito monomial products
(for example). The extension of such results to define comverlopes for multi-
linear functions (and generalizations of them) has beerudiged in [26, 28, 29, 30],
among other references.
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Empirical testing of the approaches mentioned above (lbytom use of bilin-
ear envelopes defined by [16]) has been limited, but recenttliors have begun
exploiting some of these concepts to solve quadraticalhstained quadratic pro-
grams, in which sums of bilinear products often figure pramity. In particular,
the authors of [4] discuss how to dynamically generate fackthe convex hull of
the sum of bilinear products in order to define a strongexegian of the original
MINLP, and they report that strengthening the formulatiathveuch inequalities
can significantly improve the performance of BARON [23], eihby default uses
only McCormick envelopes to exploit multilinear terms infideng convex relax-
ations. Even more recently, [15] provides rigorous bourmshbw much the ap-
proach of [23] (and, implicitly, of [26]) can strengthen thredaxations defined by
the use of McCormick envelopes, and also provides numetsallts illustrating
that these bounds are tight.

Itis important to note that the bounds defined by [15] apply tmproblems that
have sums of bilinear products, but not quadratic terms f{fithe quadratic function
in a given constraint is represented fy(x) = x” Qx, the bounds defined in [15] are
valid for problems in which the diagonal elementgXére all 0). Moreover, compu-
tational experience seems to confirm that the smaller thaatiessalues of elements
on the diagonal of) are in comparison to the off-diagonal elements, the more im-
portant the role played by strong convex relaxations fanedr functions becomes
in defining strong relaxations for the MINLP. (Defining effiee relaxations for
nonconvex quadratically constrained problems in whichdtagonal elements of
Q are large requires, in addition to the techniques desciibélis section, other
methods that are fundamentally different. Referencesdisatiss solving noncon-
vex quadratically constrained problems with large diagabaolute values include
[3, 4, 8, 24, 25], and the references contained therein.)

An unresolved issue that is directly related to much of tiseaech on multilinear
functions described above is the question of whether ornti®piossible to define a
description of the convex envelope of multilinear functidnat does not require the
explicit a priori enumeration of all of the extreme pointstioé domain. More for-
mally, given am-dimensional functiorf (x) = [, x; over a domairB = [x-,x"],
is it possible to define a set of criteria that 1) each facet@tbnvex envelope must
satisfy, and 2) can be checked in time polynomiahth Most of the approaches
described above, as well as the motivation of this artidke besed on the implicit
assumption that the answer to this question is no. Howewdy,a comparatively
small number of research efforts (e.g., [26, 15]) have astdr@ this question di-
rectly. Moreover, their consideration of this question basn limited to establishing
criteria forxt andx" that are sufficient to guarantee that the answer is yes.

Computational complexity theory, and in particular resolt [7] suggests that a
short (i.e., polynomial im) description of the convex envelopes of multilinear func-
tions can be defined if and only if the following optimizatiproblem is polynomial
solvable:
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n n
min x-S cx; 1)
= =
st.xt<x<xi=1,..n, (2)
3

wherec € R" is some rational vector. It seems that this problem is likelybe
NP-complete unless fairly restrictive assumptionsxdrandxV are satisfied. For
example, generalizing some of the results of [15], in [2@ #uthors show that it
is possible to solve the above optimization problem in poiyial time if there ex-
ists a constard < 1 such thagx} = >¢J fori=1,....n. Itis also clear that slightly
more general conditions can be established. However, the@of [20] conjecture
that the above optimization problem hP-complete in general, and the complex-
ity of this problem remains an important open question inatesa of how best to
approximate the convex envelopes of functions involvingdtitimear terms.

We will next turn to the general question of when, and how, approach to
defining convex relaxations of factorable functions canHzms to yield relaxations
that are stronger than those generated by another appfbaelprimary contribu-
tion of this article is to establish a general result conicgyhis issue. We should
perhaps first note, however, that this contribution doesetlais how much stronger
the dominant formulation will be; this is necessarily an @éopl question. More-
over, the comparative ease with which different relaxatioan be solved is also a
necessarily empirical criterion, and in general both otheonsiderations must be
weighed in considering relaxation to use in a given situatio

3 The composition of convex envelopes

In this section we prove that a stronger relaxation is olethiwhen one replaces
“large terms” with tight convex relaxations instead of tkieg up such terms in

sums/products of smaller terms before replacing each seradlwith its respective

convex relaxation. Although we find that this is quite an iti\e result, because
of the inherently recursive nature of factorable functiansl of the fact that we

deal with a recursive symbolic procedure for constructieedonvex relaxation, we
did not find it easy to prove this result formally. For this pase, we use theoret-
ical tools that are well known to the formal languages comityusut perhaps not

so commonly found in the optimization literature: this isywe detail every step

and attempt to be somewhat didactical in presentationnaitieg formal statements
to informal explanations and examples. To the well-verseslich matters, a brief
glimpse to the section might suffice to understand our gjyatassign a special
semantic value (the corresponding convex relaxation) th e@erator node of an
expression tree, define the semantics of the compositioratipeand finally com-

pare the resulting relaxation with the tight convex relagiven for the composite
operator at “atomic” level.
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3.1 Alphabets, languages and grammars

An alphabete is a set of symbols. We le’* be the set of all finite sequences of
elements of7. A formal language? is a subset of7*. A language? is decidable
if, given a strings € &/*, there exists a finite algorithmic procedure that decides
whethers € . or not.

Informally, decidability of a language is concerned with $iyntax: is a string
a valid element of the language or not? Having decided whanhguage is, we
have to decide what it says: to every string there correspansemantic value,
which, in the theory and language of Zermelo-Fraenkel, isalhg a set. In this
setting, our formal language is the set of all valid funcsidiix) that can be writ-
ten as finite strings of simbols in infix notation. The semantlues assigned to
f(x) are sets such agw,x) € R™! |w= f(x) Axt <x < xU} (exact semantics)
and {(w,x) € R™1 | we R(f,x,xY) Axt < x< U} (relaxed semantics) where
R(f,x-,x) is a convex relaxation of the exact semantics. Since theradity of
our language is countably infinite, we cannot explicitlyiggexact/relaxed seman-
tics to each function in the language. Instead, we recatlahdecidable language
has finite procedure for recognizing strings in the languéagyesach of the (finitely
many) operations specified by this procedure we define asmwraling operation
on the semantic values involved, thus obtaining a semaefinition for the whole
language.

To this effect, we make use of possibly the best known dewicespecifying
the syntax of a formal languag#’, i.e. aformal grammar This is a quadruplet
I =(Z,N,P,S) such that:

2 C « is the set oterminal symbols

N is a set ohonterminal symboleNN > = 0)

P is a set ofewriting, or production rulegP C (XUN)*N(ZUN)* — (ZUN)*)
Se N is thestart symbal

In practice, one recursively applies the production rubethé start symbol as many
times as possible, generating string$3nJN)*. Those generated strings that are in
2* are strings of the languag#. If a string in.&* is not in the set of all strings in
2* that the grammar generates, then it is nat4n

Example 1Consider the alphabét, b} and the grammar given By = {S} where
Sis the start symbolX = {a,b} and the production rule§p; = aS— bSp; =
Sb— Sa ps =S— aSShps = SS— 0). We repeatedly applgy, ..., ps to the start
symbol, obtaining the situation below:
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S ———= aSSh
P4 P* aSSa
@ D3¢ Ps

Ps3
other strings

From this, we conclude tha, ab,ba,bbare in the language specified by the gram-
mar. It must be remarked that formal grammars can also ben darelanguages
which are not decidable (for example if the recursion dodsterninate); this is
one such grammar: the repeated applicatiopp§ields longer and longer strings
all involving the nonterminal symb@&. O

3.2 Mathematical expression language: syntax

We now formally define our function language through the dseformal grammar.
We use an alphabet = XUKUBUO whereX = {xi, ..., X} is the set of symbols
denoting original variableX is the set of all computable numbeB&~= {'(,)’ }
and O is a finite set of operator§+,—, ><,+,T,\/,Iog, exp sin,costan}, where
+, x are binary operators; can be unary or binary anflis the (binary) power
operator. The grammdr is defined as follows. The start symbol4, N = { %},
> =4,andPis:

F —xeX (4) F — cod.F) (11)
Z —keK (5) F — tan(%) (12)
F — (F) (6) F—(F-7F) (13)
F — (—F) (7) F—— (Z=F)  (14)
Z — log(7) (8) F—(Z17) (15)
F — exp(.F) (9) F — (F+7F) (16)
F —sin(Z)  (10) F—(FxF) @17)

Notice that rules (4)-(5) are given in schematic form: ite string on the left of
the arrow is not i > UN)*, but it is possible to define “sub-languages” that decide
whether a string is itX or in K.

Example 2In order to recognize that the strifg= x1 + ((x2 T 2) + (X3 X (X4 x
log(x1)))) is in £ we can apply the production rules as follows (there are other
possible orders in which the rules can be applied yieldiegstme result):
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Z -] — (F+.97) by (16)
-2 — (4 (F+F)) by (16)
—B = (F+(F17)+F)) by (15)
~[4] = (F+(F 1 F)+(F xTF)) by (17)
=8l —= (F+(FTF)+(F x(F xF)))) by (17)
—[6]— (F+(F1F)+(F x(F xlog(F))))) by (8)
—[7—= (a+ (T F)+(F x(F xlog(F))))) by (4)
—[8] = (a+((x2TF)+(F x(F xlog(:#))))) by (4)
—[9] = (a+ (1 F)+(x3x (F xlog(#))))) by (4)
—[10] = (X1 +((x2 T F) + (x3 x (xa x log(:F))))) by (4)
—[1 = X+ (% TF)+(xax (xaxlog(x1))))) by (4)
—[12 = (1 + (% T2) + (X3 x (xaxlog(x1))))) by (5)
—[13] = X1+ ((x2 T 2) + (X3 x (X4 x log(X1)))) by (6).

We need to apply 13 rewriting rules in order to recognize fhat.¥. O

3.3 Mathematical expression language: semantics

We are now going to use the formal grammato assign semantic values to strings.
Informally, we assign different sets to the different oceuces of the symbo¥#

in each production rule, in such a way that the set assigne#d &ppearing in the
left hand side of each rule is defined in terms of the sets aaditp the symbols”
appearing in the right hand side. More precisely, for a patida rulep in (4)-(17)

of the form.% — T, whereT € (XUN)*, let v(p) be the number of occurrences
of the symbol.Z in the stringT. Let Xp(p) be the set assigned to the symbsl
appearing on the left hand side pf and for alli € {1,...,v(p)} let Xi(p) be the
set assigned to theth occurrence of the symboF in T.

3.3.1 Exact semantics

Theexact semanticsf . is defined according to the following rules.
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F —xeX
F — kekK
F — (=F)
7 — log(F)
F — exp(.F)
F — sin(F)
F — c0q.F

X0 =[x, x]

: Xo = {k}

Xo=X1

:Xo:{(vv,x)|w:—x/\xeX1}

t Xo = {(w,x) |w=log(x) Ax € X}

1 Xo = {(w,x) |[w=expx) AXxe X;}

1 Xo = {(w,x) [w=sin(X) Ax € X3 }

1 Xo = {(w,x) |[w=cogx) AxeE X1}

: Xo = {(w,x) |w=tan(x) Ax € X}

tXo = {(WXg,X2) |[W=X; — X AVi € {1,2} X € X}
1 Xo = {(W,Xg,X2) | W= X1 /X AVi € {1,2} % € X}
X0 = {(W,xg, %) |w=xX2AVi € {1,2} x € X}

i Xo = {(W,xq,X2) |[Ww=Xx1+XAVi € {1,2} x; € X}
: Xo = {(W,Xg,%2) | W= XX AVi € {1,2} X € %}

A meta-linguistic note: the naming of the semantic valgs<, X, must be local to
each rule. Otherwise, if the same ryglés applied twice, we might get two different
definitions assigned to the same naxgép). In order to obtain a consistent naming,
we observe that the recursive nature of string recognitioryi is finite, so the
different strings of X UN)* generated during the recognition procedure can be listed
in the order of rewriting, as in Example 2. For a strihg . letr(f) be the length

of this list. For allk < r(f), we can now leX} be the semantic value assigned to
% appearing in the left hand side of the production milleeing applied at th&-th

rewriting step, and Iexy, ..

,X\‘j(rho) be the sets assigned to the various occurrences

of # in the right hand side gb.

As will appear clear in Example 3, some of the semantic sdtd@projections
of other semantic sets on some of their coordinates. Foya@nantic seX we
shall therefore le¥’(X) be the sequence of variable symbols in terms of whiéh

defined (so thax C RI”*

), and for allw C 7 (X) let 77(X,W) be the projection

of X on thew coordinate (iW = {w}, we write 71(X,w)).

Example 3The exact semantics &f, as defined in Example 2, is derived as follows.

= {(Wp, W2, W3) | Wy = Wa + W3 AW € X{ Awg € X3}
XO = {(Wa,Wq,Ws) | W3 =Wy +Ws AWy € XZAWs € X2} and Xy = (X3, ws)
Xg = {(Wa,We,W7) | Wg = W57 AWg € X2 AW, € X3} andX{ = 11(X3, Wa)
X3 = {(ws,Wg,Wo) | Ws = Wawg A Wg € X} Awg € X3} andX2 = 11(X3, ws)
X = {(Wg,W10,Wi11) | Wg = WigWi1 AWip € XP AWy € X3} andXy = 11(X3, Wo)
X8 = {(wy1,Wi2) | Wiz = log(wi2) Awia € X8} andX3 = m(X§, wi1)
X3 = [Xg,xq] andX{ = XJ
X§ = [%6,%3] andX3 = X§
X5 = [x5.)§] andX{' = X3
X0 = [, %4 ] andxy = X3°
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XO“ [x1,%7 ] andXp = X3
= {2} andX$ = x?
><o13 X5
Replacing symbols where possible, we obtain a definitioheftxact semantics of

our string in function of only six sets and ten variables (giorl variables and 6
added variables):

= {(wy, X1, Wa) | Wy = X3 + W3 Axg € XX ] Aws € (X3, wa)}
= {(W3, Wy, Ws) | W3 = Wy + W5 AWy € n(XO Wg) AWs € n(XO ws) }
Xg’ {(wa,%2) | Wa =33 A %2 € [X5,%5 ]}
X§ = {(Ws,x3,Wo) | Ws = WeWg A Xz € [X5,X5 | AWy € TT(X3,Wo)}
X5 = {(Wa,X4,W11) | Wo = WioWi1 AXq € [X, X5 ] Awgg € 11(X8,wi1)}
(

X8 = {(w11,x1) | wi1 = log(x1) Axg € X5, %]}

Suppose now we consider an enriched alphasetvith one more 4-ary operator
® such thatx (X, ...,X4) = X1 +x§+x3x4log(x1), and an extended grammar with
one more production rulp’ = .% — % +.% 1 2+ .% x Flog(%). The gener-
ated language”” is identical to.Z because we showed previously thé&tcontains
strings as that appearing in the right hand sidgp’oéven without the production
rule p’. However, using the extended grammar, the stfingan be recognized in
only one step. By replacement of the appropriate variabig®}sw,, the exact se-
mantics{(w,X) | w = ®(Xy,...,Xs) AVi < 4x € [x, %]} of F computed with the
extended grammar is precisely the projection(ébn the subspace @1° spanned
by (w1,Xq,...,%). O

3.3.2 Relaxed semantics

We now define the relaxed semantics@f Whereas in the exact semantics we as-
signed to each string the set of values taken by the corréépgfunction as its
arguments range in the appropriate (recursively defindd) $e relaxed semantics
assigns to strings convex relaxations of such sets. To tids we shall describe
an operatorZ that computes the convex relaxation of a set using the compos
tion of production rules if”. For each operatap € O, let a(@®) be its arity (the
number of its arguments). Denat€®) by ¢, T the class of all closed and bounded
intervals inR, and letl,...,l, € I; then we use the notatio# (®,11,...,l;) to
indicate a convex relaxation iR of the exact semantic value @f, i.e. the set
{(Wo,W1,...,Wp) | Wo = B(Wi,..., W) AVi <n(w €li)}. We impose a consistency
(monotonicity) requirement:

VB EO, ... 1, del st i< lICl;
%I—(@vllv"ﬂlf) :_) %I—(@vllv'"7|i71;‘]7|i+l;"'7|€))7 (18)
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which means that convex relaxations should get tighter vithedefinition intervals
get smaller.

We remark thatZ is a symbol in the metalanguage, in the sense that it should
be replaced by an actual description of the convex setsraes$itp each operator
(in other words, it stands for the sentence “for all possityys of defining convex
relaxations of operators..."). A typical definition & used by most sBB solver
codes (e.g. 000PS [13] and Couenne [5], both based on a gravenyasimilar to
) is as follows: for all linear operatorsz applied to that operator is the same
as the exact semantics (because, as an affine space defimex caréesian prod-
uct of intervals, it is convex). The logxp operators are concave/convex univariate,
and henceZ is defined as a convex subset®? delimited by the function itself
and the secant at the interval endpoints [9]; for piecewis®ex/concave functions
we employ the convex envelope defined in [12]; for trigonatodtinctions it is
easy to work out convex relaxations/envelopes using seeard convex/concave
portions of the functions themselves. We remark that piagicconvex/concave
relaxations/envelopes of convex/concave functions aadepiise convex/concave
functions suffices to defin@- over all univariate monomials of the fork§ where
x € | € 1. For bilinear products, we employ the well-known McCormétvelopes:

20, W, WE T, (w3, W5 ]) = { (wo, W, wp) |
Wo > WEWa + Wawy — whw A
Wo > WL1JW2+V\/§JW1—WL1JV\/§ A
Wo S\N%W2+Wl§W1—W&V\}éJ/\
Wo < WY Wa 4+ wswy —wE wh) A
wi € Wi, Wi AW, € [ws, w5}

It is easy to check that the above definitionZdfsatisfies (18).
Therelaxed semanticsf . is defined according to the rules:

F—@(F,....F) Xo=%r (®,11,.... q(e))-

Relaxed semantics can be combined following grammaticypriboh rule compo-
sition in much the same way as exact semantics can, by ngticat whenX is a
convex subset dR", the projection oK on one coordinate axis is always an interval
(because projection preserves convexity).

Now letF be a valid string ofZ’: thenF is a mathematical expression with, say,
X = (Xg,...,%n) @s variable symbol arguments corresponding to a certaihemst-
ical functionf : R" — R. Then we can certainly add the following ruleffo

p=F —F(Z,. .. F), (19)
n

yielding an extended grammaér, and still obtain® as generated language. The
advantage is thdt’ allows recognition of the string in one step, and assignment
of a special relaxed semanticsHdinstead of relying on the composition of relaxed
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semantics of substrings &f through the production rules). This is useful for those
operators which do not appear in the list of production rubes for which we have
a tight convex relaxation (or a convex envelope).

3.4 Comparison of relaxed semantics

Let F € .Z represent am-ary function such thap’, defined as in (19), is not a
production rule ofl". Defines/’ as«/ U{F} andl"’ asI with p’ as an added
production rule. Assume that the given relaxed semantick ia "’ is included in
the computed relaxed semanticsffoin I (which is usually the case in practice, for
otherwise we would not add the “useless” rplego I'’), i.e. that, for alll,...,1, €1,

Hri(Fa, .. 10) CZr (F g, ... (20)

Theorem 1. For all strings T € . that are functions of p variable symbol argu-
ments and for all{,...,1, € I, we haveZr/(T,l1,...,1p) CZr (T,l1,...,1p).

Proof. If recognition of T throughl”’ never involves rulgp’, both grammars yield
the same relaxed semantics. Otherwise, considdagiéime thatp’ is used onT :
thenl"’ matches a string# which is an operatoF of n arguments. Lefy,...,J;

be the relaxed semantics assigned to each ohtamyuments. Since this the last
time p’ is used, each of th& (i < n) are the same whether we uSeor I'’, which
means that, by (20)];-/ = %/-/(F, Ji,... ,J[) C %r (F, Ji,... ,Jg) =Jr.By (18), any
relaxed semantics involving- will be contained in the same relaxed semantics
with Jr+ replaced byd-. Thus, if the statement holds from tkle+ 1)-st to the last
time rulep’ is used, thek-th time p’ is used the argument intervals of the relaxed
semantics in”’ must be contained in the argument intervals of the corredipgn
relaxed semantics if.

In particular, we have the following.

Corallary 1. If F(x1,X2,X3) = X1X2x3 and we assign to F the relaxed semantics
given by the trilinear envelopes given in [18, 17], the conredaxation obtained
through™’ is at least as tight as that obtained throughfor any mathematical
function in.Z.

Proof. Assumption (20) holds by definition of convex envelope.

4 Computational results

In this section, we computationally evaluate the tightrafssonvex relaxations for
quadrilinear monomials obtained combining bilinear ailoh&rar convex envelopes
in different ways. Specifically, we consider relaxationstaf following four sets:
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22 = {(x,w) e R* x R3|x € [x-, ]
22 — {(x,w) e R* x R3|x € [x-, X! ] A wy = XyX2, W = X3Xa, W3 = WiWa },
S22 = {(x,w) € R* x R?|x; € X, X! ] A wy = XpXoXa, Wo = WiXg ),

3= {(xw) [ ]

e R R2|x € X, XA wy = XgX2, Wo = WiXaXs ).

A Wi = X1X2, W2 = W1X3,W3 = WoXs},

In [6] numerical experiments were carried out in order tolexee the relative
tighteness of the four considered relaxations. The corspanvas mainly made in
terms of volume of the corresponding enveloping polytopesjécted ontdR® to
have comparable results) on a set of randomly generateghires. It showed that
the smallest values of volumes correspond to relaxatiomdiimg the composition
of trilinear and bilinar envelopes, and in particular thetheesults for more than
80% of the considered instances were obtained using réa@t>. Numerical ex-
periments on some real-life problems were carried out uaifgpund evaluation
algorithm, whose purpose is to assess the quality of thegsexpalternative bounds
for quadrilinear terms. This “partial SBB” algorithm at &abranching step only
records the most promising node and discards the other,etkpisring a single
branch up to a leaf. The best bounds were obtained usingetin involving a
trilinear envelope.

In the present paper, we further investigate the strengtiieproposed relax-
ations in a sBB algorithm. To that effect, we implementeddbmputation of the
four relaxations for quadrilinear monomials@QOUENNE [5]. Computational exper-
iments were carried out runnif@UENNE on 7 instances of the Molecular Distance
Geometry Problem (MDGP) [11], the problem of finding an emtiegx : V — R3
of the verticed/ of a weighted grapls = (V,E) such that all the edge weightgy
(for {u,v} € E) are equal to the Euclidean distandies — x,||. The MDGP mathe-
matical programming formulation is:

. 2
min Z (||Xu*XVHZ*d5v)7 (21)
X

{u,v}eE

a nonconvex NLP involving polynomials of fourth degree. lir @xperiments we
impose a time limit equal to 4 hours. Results were obtaineal2d GHz Intel Xeon
CPU of a computer with 8GB RAM shared by three other similataBnning
Linux. For the smallest MDGP instance, the optimal solui®eomputed within
the time limit using all the considered relaxations. A congzan of CPU time is
reported in Table 1 and shows that the time needed to solyathdem when relax-
ationS3 is used is 81% smaller than the time needed uS#i§ that is the second
best time to solve the problem. For the other instances, faciwthe optimal solu-
tion is not reached within the time limit, we compare the @opwbounds obtained
with the four relaxations. Results are shown in Table 2. @hesults confirm the
results obtained in [6]. It appears that the best boundslesmeya obtained using a
relaxation involving a trilinear envelope and, in 5 casesaib, correspond to re-
laxationS?3. The sBB based on this relaxation gives bounds which aréfisigntly
better than the ones obtained using a relaxation based eotiygosition of bilinear
envelopes, in particular on the largest instances. For tbigriistance in Table 2 the
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optimal solution is found with relaxatior®22 andS?3 within the time limit. It took
8311.97 seconds in the first case and 7063.73 seconds incihvedsene.

Instance] S22 | §22 | 2 3
| avor 3|311.934372.306475.83558.0872

Table1 Comparison of CPU time (seconds) obtained by rungiogenne with relaxationss??,
§22 32 3 on the smallest MDGP instance. The best value is reportedlihface. Solutions
were obtained on a 2.4 GHz Intel Xeon CPU of a computer with &8/ shared by three other
similar CPU running Linux.

Instance | 22 22 S 3

l avor5 [228.574]199.864 200.45[228.574)
| avor6 | 93.4905 | 135.899 84.9467 144.399
l avor 7 | 2.75184|90.3962 70.9786 207.255
| avor 8 | 24.5401|95.0223 36.421| 334.968
| avor 10| -266.843|-105.584-91.4539 93.6579
| avor 20| -1571.58| -1215.7|-589.636| -1146.5

Table 2 Comparison of lower bounds obtained by runnamuenne with relaxationss?22, §222
S%2, $*% on MDGP instances. Bounds were obtained within a 4h timet lifitie best values are
reported in bold face. The symbol (*) denotes optimal sohgifound. Solutions were obtained
on a 2.4 GHz Intel Xeon CPU of a computer with 8GB RAM sharedtrge other similar CPU
running Linux.

5 Conclusion

We analyzed four different convex relaxations for quadeéir monomials, obtained
by the composition of the known convex envelopes for bilireead trilinear mono-
mials. Starting from theoretical as well as computatioeauits given in [6], we
further investigated these relaxations. We provided araditive proof of the fact
that a relaxation ok-linear terms that employs a successive use of relaxingdaii
terms (via the bilinear convex envelope) can be improvediyyleying instead a re-
laxation of a trilinear term (via the trilinear convex erveé). We computationally
evaluated the impact of the tightened convex relaxatiores $patial Branch-and-
Bound algorithm on a set of instances of a real-life problem.
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