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INTRODUCTION

Predicting aircraft trajectories with great accuracy
is central to most operational concepts ([1], [2]) and
automated tools that are expected to improve the air
traffic management (ATM) in the near future.

On-board flight management systems predict the air-
craft trajectory using a point-mass model describing the
forces applied to the center of gravity. This model is
formulated as a set of differential algebraic equations
that must be integrated over a time interval in order to
predict the successive aircraft positions in this interval.
The point-mass model requires knowledge of the aircraft
state (mass, thrust, etc), atmospheric conditions (wind,
temperature), and aircraft intent (target speed or climb
rate, for example).

Many of these informations are not available to
ground-based systems, and those that are available are
not known with great accuracy. The actual aircraft mass
is currently not transmitted to the ATM ground sys-
tems, although this is being discussed in the EUROCAE
group in charge of elaborating the next standards for
air-ground datalinks. The atmospheric conditions are
estimated through meteorological models. Finally, the
current ground-based trajectory predictors make fairly
basic assumptions on the aircraft intent (see the "airlines
procedures" that go with the BADA1 model). These
default "airline procedures" may not reflect the reality,
where the target speeds are chosen by the pilots ac-
cording to a cost index that is a ratio between the cost
of operation and the fuel cost. These costs are specific
to each airline operator, and not available in the public
domain.

As a consequence, ground-based trajectory prediction
is currently fairly inaccurate, compared to the on-board
prediction. A simple solution would be to downlink the
on-board prediction to the ground systems. However, this

1BADA: Base of Aircraft Data

is not sufficient for all applications: some algorithms
(citation AlliotDurand) require the computation of a mul-
titude of alternate trajectories that could not be computed
and downlinked fast enough by the on-board predictor.
There is a need to compute trajectory predictions in
ground systems, for all traffic in a given airspace, with
enough speed and accuracy to allow a safe and efficient
4D-trajectory conflict detection and resolution.

In this paper, we compare different ways to address
this trajectory prediction problem, focusing on the air-
craft climb with a 10 minutes look-ahead time. As a first
approach, the point-mass model is tried with different
settings for the model parameters, considering a con-
stant CAS/Mach climb procedure where the aircraft first
climbs at a constant Calibrated Air Speed (CAS) until it
reaches the CAS/Mach crossover altitude and continues
the climb at a constant Mach number. In this approach,
the basic parameter setting consists in using the standard
CAS and Mach values of the BADA climb procedures
file, and a standard reduced thrust during climb, with an
average reference aircraft mass. The second setting still
uses the reference mass and standard thrust reduction
factor, but the actual CAS is computed from the past
aircraft positions.

The second approach is radically different and is based
on regression methods. The predicted aircraft position is
considered as a function f(x, θ) where x is a vector of of
input variables and θ a vector of parameters. In our case,
the input variables are the past aircraft positions, the
observed CAS at the current altitude, the deviation of the
air temperature from the standard atmosphere, and the
predicted wind at different flight levels. The parameters
(vector θ) must be adjusted using historical data so
that the computed output fits the observed position as
best as possible. Three regression methods are tried.
In the first one, the function f is an artifial neural
network predicting a couple (d, z) (along-track distance,
altitude). In the second method, genetic programming is



used to find a function f predicting the altitude z: an
initial population of functions follows a darwinian-like
evolution during several generations, with crossovers,
mutations, and selection of the best predictors at each
generation. The third method uses fuzzy regression to
predict a possibility function describing the uncertainties
on the future aircraft position, instead of a single position
or altitude as in the two other regression methods.

The rest of this paper is organized as follows: ...

I. THE POINT-MASS MODEL
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Figure 1. Simplified point-mass model.

A. Simplified equations

Most ground systems use a simplified point-mass
model, sometimes called total energy model, to predict
aircraft trajectories. This model, illustrated on figure 1,
describes the forces applying to the center of gravity of
the aircraft and their influence the aircraft acceleration,
making several simplifying assumptions2. It is assumed
that the thrust and drag vectors are colinear to the
airspeed vector, and that the lift is perpendicular to
these vectors. Thus, projecting the forces on the airspeed
vector axis, the longitudinal acceleration a = dVTAS

dt
along

the true airspeed (VTAS) axis can be expressed as follows:

m.a = T −D −m.g.sin(γ) (1)

where T is the total thrust, D the aerodynamic drag
of the airframe, m the aircraft mass, g the gravitational
acceleration, and γ the path angle (i.e. the angle between
the airspeed vector and the horizontal plane tangent to
the earth surface).

2Note that more complex point-mass models have been proposed
for UAV or fighter airplanes (see [3]), modeling also the side-slip
angle.

Introducing the rate of climb/descent dh
dt

=
VTAS.sin(γ), where h is the altitude in meter, this equa-
tion can be rewritten as follows (see [4]):

(T −D).VTAS = m.VTAS.
dVTAS

dt
+ m.g.

dh

dt
(2)

Sereral equivalent forms of this equation can be used
(see Eurocontrol BADA3 User Manual), depending on
what unknown variable is being calculated from the other
known variables.

Actually using equation 2 to predict a trajectory re-
quires a model of the aerodynamic drag for any airframe
flying at a given speed through the air. In addition, we
may need the maximum thrust, which depends on what
engines the aircraft is equipped with. In the experiments
presented here, the Eurocontrol BADA model was used
to that purpose.

In addition, one cannot use equation 2 without prior
knowledge of the initial state (mass, position, speed,...)
of the aircraft, and also of the pilot’s intents as to how the
aircraft will be operated in the future (thrust law, speed
law, or rate of climb). When the aircraft is operated at
a given calibrated air speed (CAS4) or mach number,
computing the true air speed (TAS) requires knowledge
of the atmospheric conditions (the air temperature and
pressure). Finally, as we need to predict the trajectory
over the ground surface, and not only through the air,
the wind intensity and direction are also required.

B. Aircraft operation during climb

Generally, when no external constraints apply during
the climb, the aircraft is operated at constant CAS5 and
variable Mach number, until a specified Mach number
is reached. Above this CAS/Mach crossover altitude,
the aircraft is operated at a constant Mach number, and
variable CAS. External constraints may apply, however.
After take-off, the aicraft cannot exceed a specified
maximum CAS until Flight Level 1006 is reached. This
first climb segment is followed by an acceleration at
FL100, and then a second climb segment at a higher
calibrated air-speed, until the CAS/Mach crossover alti-
tude is reached.

In this paper, we shall consider only this second climb
segment at constant CAS, followed by the constant Mach
climb, as we are mostly interested in predicting the

3BADA: Base of Aircraft DAta
4CAS: Calibrated Air Speed, which can be assimilated to the speed

indicated on the pilot’s intruments.
5CAS: Calibrated Air Speed.
6FL100 = 10000 feet above isobar 1013 hPa.



aircraft trajectory in the en-route airspace. Note that
some other air traffic control constraints may apply, that
modify the aircraft operation during climb. For instance,
the aircraft may be operated at a chosen rate of climb,
on some flight segments, in order to be above a specified
flight level over a given waypoint.

Even without such constraints, and assuming a climb
at constant CAS/Mach, predicting the aircraft trajectory
is not easy for ground systems. The actual CAS and
Mach values are chosen by the airlines’ operators, ac-
cording to a cost index specific to each airline. The cost
index, and the chosen CAS and Mach values, are not
known to air traffic control systems today, although some
studies show the improvements that such knowledge
would provide in the trajectory prediction ([5], [6]).

II. REGRESSION METHODS

Regression methods aim at predicting an output y as
a function of a given input x and a vector of parameters
θ:

y = f(x, θ) (3)

In our trajectory prediction problem, we shall predict
one of the following outputs, depending on the chosen
method:

• a couple (d(t), z(t)) where d is the horizontal
distance flown by the aircraft and z its altitude at
time t > t0, where t0 is the current time,

• only the altitude z(t),
• or possibility distributions Πd(t) and Πz(t) char-

acterizing the uncertainties on the values of
d and z at time t. These possibility distribu-
tions can be approximated by two quadruples
Πd(t) = (d1(t), d2(t), d3(t), d4(t)) and Πz(t) =
(z1(t), z2(t), z3(t), z4(t)) as illustrated on figure (*
FIGURE TBD *).

The input x shall be a vector of values extracted from
the following values:

• the current and previous aircraft states, character-
ized by z[k], d[k], CAS[k], Mach[k], with k ∈
[−10, 0]. The past trajectory is sampled every δt
seconds. z[k] denotes the value measured for the
altitude z at time t = t0 + k.δt. With this notation,
z[0] = z(t0) is the current altitude, z[−1] is the
altitude δt seconds before t0, and so on. The same
notation applies for d, CAS and Mach,

• the difference between the actual air temperature at
sea level and the air temperature of the International
Standard Atmosphere (ISA) at sea level,

• the along-track and cross-track wind w and the
temperature T at different altitudes.

The parameters θ must be adjusted using historical
data, so that the computed outputs are as close as
possible to the observed data. The performance of the
tuned model shall be measured by assessing how the
model generalizes on fresh inputs. k-fold cross validation
can be used for that purpose.

In order to start with a relatively simple problem, we
shall predict only one point (or one couple of fuzzy
sets) of the future trajectory, N steps ahead. Let us now
shortly describe the regression methods that are used
to predict this future aircraft position (or uncertainty
intervals).

III. REGRESSION USING NEURAL NETWORKS (NN)

Artificial neural networks are algorithms inspired from
the biological neurons and synaptic links. An artificial
neural network is a graph, with vertices (neurons, or
units) and edges (connections) between vertices. There
are many types of such networks, associated to a wide
range of applications. Beyond the similarities with the
biological model, an artificial neural network may be
viewed as a statistical processor, making probabilistic
assumptions about data ([7]). The reader can refer to [8]
and [9] for an extensive presentation of neural networks
for pattern recognition.

In our experiments, We used a specific class of neu-
ral networks, referred to as feed-forward networks, or
multi-layer perceptrons (MLP). In such networks, the
units (neurons) are arranged in layers, so that all units
in successive layers are fully connected. Multi-layers
perceptrons have one input layer, one or several hidden

layers, and an output layer.
For a network with one hidden layer, the output vector

y = (y1, ..., yk, ..., yq)
T is expressed as a function of the

input vector x = (x1, ..., xi, ..., xp)
T as follows:

yk = Ψ(

q
∑

j=1

θjkΦ(

p
∑

i=1

θijxi + θ0j) + θ0k) (4)

where the θij and θjk are weights assigned to the
connections between the input layer and the hidden
layer, and between the hidden layer and the output
layer, respectively, and where θ0j and θ0k are biases
(or threshold values in the activation of a unit). Φ is
an activation function, applied to the weighted output
of the preceding layer (in that case, the input layer),
and Ψ is a function applied, by each output unit, to the
weighted sum of the activations of the hidden layer. This



expression can be generalized to networks with several
hidden layers.

The output error – i.e. the difference between the
desired output (target values) and the output y computed
by the network – will depend on the parameters θ
(weights and biases), that must be tuned by training
the network, so as to minimize a chosen function of
the output error. In our case, the minimized function is
the sum of quadratic errors. The optimization method is
either a gradient descent with momentum, or a BFGS
quasi-Newton method. The activation function is the
logistic sigmoÃŕd, and the output function is the identity.

Neural network have already been applied to trajectory
prediction, in [10]. However, they were used to predict
both the climb and cruise flight segments, given a
requested flight level, and lateral navigation as well. This
approach, where the altitude error is likely to be small
after the cruise flight level has been captured, is difficult
to compare to our approach focused on minimizing the
prediction error on the climb segment only. A mix of
neural networks proved efficient for the chosen purpose,
though.

IV. REGRESSION USING GENETIC PROGRAMMING

(GP)

Genetic Programming (GP) is part of the Evolution
Algorithm family. It is a population-based algorithm
as can be seen on figure 2. Each individuals of the
population encodes a computer program. A fitness crite-

rion is assigned to those computer programs according
their capacity in doing a predifined task. These fitnesses
are then used for selecting individuals to recombined,
giving then a new population. This approach is inspired
from biology principles like genetic recombination and
Darwinian selection principle.

In GP as it was popularized in [11], individuals are
represented by a tree. They have a variable length.
Typically, leafs contain inputs from the terminal set T ,
and nodes contain functions from the function set F
which will be applied to the evaluation of its children.
[11] has also defined a standard crossover and a standard
mutation operation.

In a standard crossover, one subtree is randomly se-
lected on each parents, and then the two selected subtree
are then exchanged, as illustrated in figure 3.

In a standard mutation, one subtree is randomly se-
lected and is then replaced by a generated tree, as showed
in figure 4.

These recombination operators implies the closure

property. Each functions shall accept any elements in
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Figure 2. Flow chart of Evolutionary Algorithms.
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Figure 4. Standard mutation.

T and any output of the functions in F .
1) Our terminal set T and function set F : We have

to find a function f(x, θ) parametrized by θ which
predicts a variable y from a vector of input variables
x = (x1, . . . , xn). A natural way to do that is to take
T = {x1, . . . , xn,ℜ} and F = {+, ∗,−, /, cos, sin}
for instance, with ℜ a variable which is replaced by
a randomly generated constant at the creation of the
tree. In fact, this method to generate constant terms
in our expression is said to be inefficient. In order
to cope with this issue, we have hybridized GP with
a multiple regression technique, the Ridge regression
[12]. The execution of a tree gives us a set of func-
tions G = {g1, . . . , gk} which will be used to build

a function f(x, {λ0, . . . , λk}) = λ0 +
k
∑

i=1
λigi(x) with

its parameters adjusted by a Ridge regression. The gi

generated are piecewise monomials. We have defined
T = {{x1} , . . . , {xp}}. If we consider n input variables
x1, . . . , xn, N instances in our training set and two sets
A = {a1, . . . , akA

} and B = {b1, . . . , bkB
}, we have

build operators to combine these two sets of functions
A and B:

• ⊕(A, B) = A ∪B

• ⊗(A, B) =
kA

∪
i=1
{ai.b1, . . . , ai.bkB

}

• ∆i,p(A, B) =

{δ({xi ≤ vi,p} , a1), . . . , δ({xi ≤ vi,p} , akA
)}∪

{δ({xi > vi,p} , b1), . . . , δ({xi > vi,p} , bkB
)}

with :

– vi,p, the p-th bigger value of xi observed in our
training set.

– δ(COND, expr)(x) =
{

expr(x) if ∀ cond ∈ COND, cond(x)

0 otherwise
where x is an instance.

With these definitions, we can notice that:

• δ(COND1, expr1).δ(COND2, expr2) =
δ(COND1 ∪ COND2, expr1.expr2)

• δ(COND1, δ(COND2, expr2)) =
δ(COND1 ∪ COND2, expr2)

• COND defines a multi-dimensionnal interval
though it can be simplified. For instance
{8 < x1, 9 < x1, x1 ≤ 14, x1 ≤ 15} can be
simplified in {9 < x1, x1 ≤ 14}. Thus, no more
than two conditions have to be associated with
one variable xi, making conditions sets easy to
compare between each other.

In our implementation we have chosen F =

{⊕,⊗}
⋃ n
∪

i=1

N−1
∪

p=1
{∆i,p} as the function set. Con-

sequently, we can assume that the set encoded by

a tree only contains expressions such as
n
∏

i=1
xki

i or

δ(COND,
n
∏

i=1
xki

i ) with ki ∈ N. Thus, expressions are

easy to compare, making the ∪ operation manageable
on our function sets.

With this choice, f(x, {λ0, . . . , λk}) is a piecewise
polynomial. Conditions are used there as we assume that
the trajectory prediction problem to be piecewise.

2) Fitness criterion: We have to assess a fitness to
each candidate function f(x, {λ0, . . . , λk}). We want
this function to make good prediction on unseen data.
Typically, we learn parameters λ0, . . . , λk from a finite
training set containing N instances. Using those N
instances, the more we have parameters, the less their es-
timation will be reliable. In order to take into account this
issue, we have used the AICc criterion [13], [14] defined
as AICc = N.log(MSE)+2(k +2)+ 2(k+2)(k+3)

N−k−2 with

MSE = min
λ0,...,λk∈R

1
N

N
∑

i=1
(y(i) − f(x(i), {λ0, . . . , λk}))

2.

The algorithm was parametrized as follow :

T = ROCD + CAS + DCAS +
MACH + DMACH + ESF + Dtemp0ISA +
WalongF L190 + WcrossF L190 + TempF L190 +
WalongF L250 + WcrossF L250 + TempF L250 +
WalongF L310 + WcrossF L310 + TempF L310 +
WalongF L340 + WcrossF L340 + TempF L340 +
WalongF L370 + WcrossF L370 + TempF L370 +
DdAIRminus9 + DdAIRminus7 + Dzminus7 +
DdAIRminus5 + Dzminus5 + DdAIRminus3 +
Dzminus3 + DdAIRminus1 + Dzminus1



General parameters
population size 200

number of generation 100
maximum depth 5

Initialization parameters
initialization method ramped half-and-half

P ({⊕,⊗} |F ) 0.91

Fitness
αridge 0.001
Scaling sigma scaling [15]

Selection
stochastic remainder

Selection method without replacement selection

[15]

Recombination
Pcrossover 0.5
Pmutation 0.45

V. INTERVAL REGRESSION USING K NEAREST

NEIGHBOURS (I-KNN)

A. Possibility theory

Possibility theory, introduced Zadeh [16], [17], was
initially created in order to deal with imprecision and
uncertainty due to incomplete information. This kind of
uncertainty may not be handled by probability theory,
especially when a priori knowledge about the nature
of the probability distribution is lacking. A possibility
distribution π is a function from Ω, the universe of dis-
course (R in our case), to (R→ [0, 1]). The definition of
the possibility measure Π is based on the the possibility
distribution π such that :

Π(A) = sup(π(x),∀x ∈ A). (5)

The α-cut of a possibility distribution Aα is the interval
for which all the points located inside, have a possibility
membership π(x) greater or equal to α. We have :

Aα = {x|π(x) ≥ α, x ∈ Ω}. (6)

One interpretation of possibility theory is to consider
a possibility distribution as a family of probability dis-
tributions (see [18] for an overview). Thus, a possibility
distribution π will represent the family of the probability
distributions Θ for which the measure of each subset of
Ω will be bounded its possibility measures :

Θ = {P |∀A ∈ Ω, P (A) ≤ Π(A)}. (7)

Given a probability distribution p, a confidence interval
Iα is a subset of Ω such as P (Iα) = α. We define
I∗α, also referred as quantile, as the smallest confidence

Figure 5. The maximum specified possibility distribution for N(0,1).

interval with probability measure equal to α. Thus, an
alternative of the equation 7 is:

∀α ∈ [0, 1], p ∈ Θ, I∗p,(1−α) ⊆ Aα. (8)

Thus, a possibility distribution encode a family of distri-
butions for which each quantile is bounded by α-cuts. In
many cases it is desirable to move from the probability
framework to the possibility framework. Probability-
possibility transformation [19] is based on the maximum
specificity principle. Given a probability distribution p,
what we obtain is the possibility distribution π∗ which is
the most specific one that bound p. Given p we compute
π∗ as follows :

∀x ∈ Ω, pi∗(x) = maxα,x∈Iα
(1− α). (9)

Then, in the spirit of equation 8, given p and its trans-
formation π∗ we have :

A∗

1−α = I∗α

Figure 5 presents the maximal specific transformation of
a normal distribution p is the π possibility distribution.

B. Possibility distribution for a Gaussian family com-

puted on a set of data

When we suppose that our data comes from a Normal
distribution with unknown mean (µ) and variance (σ2).
The solution that comes immediately to our mind is to
estimate µ and σ from the data. However, computing
a value of these parameters that is statistically faithful
requires a lot of data. One solution is to compute
confidence intervals confidence interval for the mean and
the variance. Based of the χ2 distribution, the confidence
intervals [µmin, µmax] and [σmin, σmax] will contains
respectively 95% of the possible values for µ and σ
given a set of data. We propose to compute the maximal
specific possibility distribution that contains all the nor-
mal distributions that have parameters in the confidence
intervals (Θ = {g|g = N(µ, σ2), µ ∈ [µmin, µmax], σ2 ∈
[σ2

min, σ2
max]}). We compute le possibility distribution

π∗

Θ as follows :

• ∀x ∈ [µmin, µmax] : π∗

Θ(x) = 1



Figure 6. An example of the possibility distribution for the family
Θ, with a confidence level of 0.95 and a dataset with n=10.

• ∀x < µmin : π∗

Θ(x) = sup(1−P (I∗α), x ∈ I∗α) with
p = N(µmin, σ2

max)
• ∀x > µmin : π∗

Θ(x) = sup(1−P (I∗α), x ∈ I∗α) with
p = N(µmax, σ2

max)

where G is the probability measure associated with the
density g. In the following, in a simplification purpose,
we will call respectively, the normal distribution built
from the estimated mean and the estimated variance and
the maximum specified possibility distribution encoding
the family Θ described above, N(µe, σe) and π∗

Θ. Figure
6 present the distribution π∗

Θ for a data set of size 10
that follows a Gaussian distribution. In this figure the
Θ family is represented by a set of green distribution
functions N(a, b), the distribution π∗

Θ is in black. When
the dataset size grows, π∗

Θ converges to the normal
distribution.Thus, the size of π∗

Θ (his specificity) depends
on the quantity of data available and allows us to have
a statistically significant representation of the data.

C. K-nearest neighbours (KNN)

The k-nearest neighbours(KNN) algorithm is a re-
gression method which finds the response value of the
input data based on closest training instances. For any
given input instance X , the KNN algorithm finds the K
nearest instances (KsetX ) and chooses the mean of their
response values (Y ) as the estimated value (Yestimated).
In our case, we are not only interested in obtaining the
most probable position of the plane, but we are also
interested to find the interval which contains the response
value with an high probability. With global regression
approaches, this interval can be computed by using the
standard deviation of the error (RMSE). Since it is a
global estimation, the size of the interval is constant, so
it does not depend on the inputs. Moreover, it supposes
that the distribution of the error follows an a priori known
distribution (usually a Gaussian one) and that we have
enough data to estimate precisely the parameters. The
advantage of the KNN algorithm is that it can give a

local estimation of the data distribution. However, the
imprecision about the parameters of the function depends
on the value of k. When k is high the parameters are
precise, but the distribution will contain a lot of data that
are different to the input one. Then, quantile will be very
large. On the contrary, if k is low, the k-set will contain
data that are close to the input but the imprecision about
the parameters of the distribution will be high. In our
method, we propose, given k, to compute the possibility
distribution that bounds all the Gaussian distributions
that may have generated the k-set (see previous section).
For each input value we choose the value of k that is
the best trade off between the precision and the size of
the quantile. The algorithm is described in Alg The idea

Algorithm 1 For any input X , finds the minimum
interval which should contain the response value

1: KsetX ← Find the K nearest neighbours of X
2: MINK ← K
3: IntervalSizemin ← Inf
4: for all i ∈ 5, . . . ,K do

5: Compute [µmin, µmax] and [σmin, σmax] w.r.t. the
i-th first example in KsetX

6: IntervalSize ← G−1(0.975, µmax, σ2
max) −

(G−1(0.25, µmin, σ2
max)

7: if IntervalSize ≤ PIIntervalSizemin then

8: MINK ← i
9: IntervalSizemin ← IntervalSize

10: end if

11: end for

of the approach is to have intervals that guarantee to
contain the expect quality of data. For instance, given
k, the 0.05-cut of π∗

Θ will contain at least 95% of
the data since it contains the 0.95 quantiles of all the
Gaussian distribution that may have generated the k-set.
This approach may be useful for instance for detecting
conflict or for defining safe area zone because it will take
into account all the cases that are statistically possible.

VI. DATA AND EXPERIMENTAL SETUP

A. Data pre-processing

Recorded radar tracks from Paris Air Traffic Control
Center were used to build the patterns used in the re-
gression methods. This raw data is made of one position
report every 1 to 3 seconds, over two months (july 2006,
and january 2007). In addition, the wind and temperature
data from Meteo France are available at various isobar
altitudes over the same two months.



The raw Mode C altitude7 has a granularity of 100
feet. So the recorded aircraft trajectories were smoothed,
using a local quadratic model, in order to obtain: the
aircraft position (X ,Y in a projection plan, or latitude
and longitude in WGS84), the ground velocity vector
(Vx, Vy), the smoothed altitude (z, in feet above isobar
1013.25 hPa), the rate of climb or descent (ROCD). The
wind (Wx, Wy) and temperature (T ) at every trajectory
point were interpolated from the meteo datagrid. The
temperature at isobar 1000 hPa was also extracted for
each point, in order to compute a close approximation of
(∆T0)ISA, the difference between the actual temperature
and the ISA model temperature at isobar 1013.25 hPa
(mean sea level in the ISA atmospheric model). This
(∆T0)ISA is one of the key parameters in the BADA
model equations.

Using the position, velocity and wind data, we com-
puted the true air speed (TAS), the distance flown in
the air (dAIR), the drift angle, the along-track and
cross-track winds (Walong and Wcross). The successive
velocity vectors allowed us to compute the trajectory
curvature at each point. The actual aircraft bank angle
was then derived from true airspeed and the curvature
of the air trajectory. The climb, cruise, and descent
segments were identified, using triggers on the rate of
climb or descent to detect the transitions between two
segments.

Finally, the BADA model equations were used to
compute additional data, such as: calibrated airspeed
(CAS), Mach number (M), energy share factor8 (ESF),
as well as the derivatives of these quantities with respect
to time.

B. Filtering and sampling climb segments

As our aim is to compare several prediction models,
we focused on a single aircraft type (Airbus A320), and
selected all flights of this type departing from Paris Orly
(LFPO) or Paris Roissy-Charles de Gaulle (LFPG). The
trajectories were then filtered so as to keep only the climb
segments. An additionnal 40 seconds were clipped from
the beginning and end of each segment, so as to remove
climb/cruise or cruise/climb transitions.

The trajectories were then sampled every 15 seconds,
with time and distance origins at the point P0 where the
climb segment crosses flight level FL1809. The trajectory

7This altitude is directly derived from the air pressure measured
by the aircraft. It is the height in feet above isobar 1013.25 hPa.

8The energy share factor (ESF) says how much of the energy is
devoted to climb or to longitudinal acceleration.

9FL180: 18000 feet above isobar 1013 hPa.

segments were sampled so as to obtain 10 points preced-
ing P0, and a number of points after P0, depending on
the chosen look-ahead time. So the trajectory observed
during the preceding time steps (2 minutes 30 seconds),
can be used to predict the aircraft position at one or
several future time steps. The predicted position can be
compared to the actual aircraft position at the same time
step.

Trajectories exhibiting a bank angle greater than 5
degrees were discarded, so that the influence of trajectory
turns on the rate of climb can be neglected. This allows
us to disregard the lateral navigation in our trajectory
prediction problem, and focus on the longitudinal and
vertical dimensions of the trajectory.

C. Building patterns for regression

The regression models y = f(x, θ) are tuned and
assessed using sets of patterns (x, d), where x is an
input vector, and d is the corresponding desired output
that can be compared to the computed output y. These
patterns, that we have already described in section II
were extracted from the sampled climb segments. 1500
patterns were randomly chosen, to build the set used in
our experiments.

Each pattern used for regression contains the current
ground speed, true and calibrated air speed, Mach num-
ber, and their derivatives with respect to time, the energy
share factor, the altitude variations and distance flown for
the ten preceding time steps, and also the predicted wind
and temperature at several altitudes that the aircraft may
cross in the look-ahead time. It also contains the target
variables: distance flown, in the air or above the ground,
and altitude reached after N time steps in the future.

D. Principal component analysis

The final patterns set contains 79 numerical variables,
measured for 1500 aircraft climbs. There are 76 explana-
tory variables, and 3 variables to explain. A principal
component analysis was performed on the explanatory
variables, so as to reduce the dimensonality and avoid
redundant input variables in the trajectory prediction.

Figure 7 shows the standard deviations of the principal
components: 9 components have a standard deviation
above 1, and 7 other components are between 0.5 and 1.

Principal components are linear combinations of the
initial variables, that we can use as explanatory variables
in the regression method. This reduces the dimensonality
to 10 to 15 significant principal components, instead of
the 76 initial variables. One must keep aware, however,
that using linear combinations representing projections
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Figure 7. Principal components standard deviations.

on a basis of orthogonal vectors may not take account
of some non-linearities in the initial variables.

E. Experimental setup

The methods applied to our prediction problem for
climbing aircraft are listed in table I.

BADA BADA point-mass model, using the reference
mass for each aircraft and BADA values for the
constant CAS/Mach, assuming reduced climb
(eq. 3.8.1 and 3.8.2, p.22 in [4]), and taking
account of the (∆T0)ISA temperature differ-
ence.

BADA(obs) Same BADA model as above, but using the
CAS observed at t0, and the BADA target
Mach number

LR Ordinary least squares linear regression
NN Regression with neural networks
GP Regression with genetic programming, using

Akaike’s AIC to assess the fitness of each
prediction function in the population.

I-KNN Interval regression using K-nearest neighbours,
returning intervals of uncertainty

Table I
METHODS APPLIED TO ALTITUDE PREDICTION

In our experiments, these methods are scored using
a 10-fold cross-validation on the dataset described in
section VI-C. This set is split in ten subsets. Nine of
these subsets are used to tune the model parameters θ,
and the remaining subset is used to assess the model
performance. This operation is repeated 10 times, cycling
through the subsets. The models’ performace is assessed
over the ten runs, considering the mean score, the
standard deviation, and also confidence intervals for the
computed output.

Uncertainty on the prediction can be assessed in sev-
eral ways. Once the model parameters have been tuned
on the training set (i.e. the concatenation of 9 subsets

used in cross-validation), we can compute a theoritical
95%-confidence interval using the root mean square
error (RMSE) observed on this training set, assuming
a Gaussian distribution of the error in altitude (and also
in distance, if predicted). We can then count how many
instances of the validation subset actually fall within this
confidence interval.

We can also assess the uncertainty on the predicted
altitude (or distance) by considering the actual distribu-
tion of errors in the training set. We can then assume
a Gaussian distribution, but with some uncertainty on
the mean value and standard deviation. This gives us
a family of Gaussian distributions from which we can
compute a possibility distribution (see section V-B). This
is the approach chosen in the possibilistic regression
using K-nearest neighbours. For every instance in the
validation set, the K nearest instances of the "training
set"10 are found, using a distance between vectors of
variables. The possibility distribution is computed on
these K neighbours. In theory, the 0.05-cut of this
possibility distribution is guaranteed to contain at least
95% of the data. We can then check if our instance in
the validation set falls within this interval or not. This
is repeated for all instances in the validation set, such
providing the ratio of predictions actually within the
confidence interval of variable size (there is an interval
for each instance).

VII. RESULTS

Method MAE RMSE
BADA 1440 (79) 1824 (95)
BADA(obs) 1440 (77) 1819 (86)
LR 745 (35) 965 (47)
NN 841 (47) 1080 (55)
GP 744 (28) 964 (41)
I-KNN - -

Table II
AVERAGE PREDICTION ERRORS (AND STANDARD DEVIATIONS)

ON THE ALTITUDE (IN FEET) FOR AIRBUS A320 AIRCRAFT, USING

15 PRINCIPAL COMPONENTS AS INPUT, WITH THE REFERENCE

POINT AT FL180 AND A 10-MINUTES LOOK-AHEAD TIME.

Table II shows the prediction errors (mean absolute
error, and root mean squared error) over the 10 runs of
the cross-validation, for all tested methods. The 15 prin-
cipal components of higher variance were used as input
to the regression methods. This selection was made by

10This is not actually a training set, as there is no training when
using KNN, but actually a dataset of examples.



prior trials, adding successively the principal components
until no significant improvement was observed.

All regression methods perform significantly better
than the BADA point-mass model. There are several
factors explaining the poor performance of the point-
mass models. The parameters’choice assumed a constant
CAS/Mach climb at economic thrust, and the same
reference mass for all aircraft, which is actually not
the case in reality. Also, the regression method use the
past trajectory to predict the future altitude, whereas our
BADA models do not. Using the observed CAS instead
of the BADA standard CAS does not improve the results
on altitude prediction.

We also observed that the mean predicted altitude
with BADA models is biased toward lower altitudes. The
mean error, averaged over the 10 runs, is −735 feet for
the first BADA model, and −603 feet for the second
BADA model. After some investigation, it appears that
the CAS is highly sensitive to the air density, and that
much more realistic values are obtained when using a
more accurate temperature model (Meteo France data
at successive altitudes) than when extrapolating from
(∆T0)ISA. At the time of this publication, this was not
implemented in our BADA model. It is expected that it
would give errors more centered around zero, but with
a similar dispersion than today’s implementation.

It came as a surprise that non-linear regression meth-
ods did not perform better than the ordinary least squares
linear regression. There may be several explanations
to this. Using the principal components as inputs does
favour linear methods. In addition, tuning the parameters
with the ordinary least squares linear regression can be
done with an exact method, whereas non-linear methods
require iterative approximations, that may have difficul-
ties to find the optimum when using very noisy data.

Method Ratio in the-
oretical 95%
interval

Theoretical
95% |δz|

Actual 95%
|δz|

BADA 0.92 (0.025) 3279 (20) 3593 (249)
BADA(obs) 0.93 (0.021) 3369 (19) 3674 (260)
LR 0.94 (0.013) 1863 (10) 2015 (187)
NN 0.905 (0.030) 1846 (92) 2203 (215)
GP 0.93 (0.019) 1818 (26) 1923 (162)
I-KNN 0.986 3376 (714) -

min. 417
max. 6082

Table III
UNCERTAINTY ON THE ALTITUDE PREDICTION (AIRBUS A320),

FOR A REFERENCE POINT AT FL180 AND A 10-MINUTES

LOOK-AHEAD TIME.

Some results on the uncertainty of the altitude predic-
tion are shown in Table III. The second column shows
the ratio of predictions, computed with instances from
the validation set, that actually fall within the 95%
confidence interval computed using the training set. For
all methods but I-KNN, this interval is simply the in-
terquantile interval corresponding to the 95% confidence,
assuming a Gaussian distribution of the error. For I-
KNN, this is the 0.05-cut of the possibility distribution
computed from a family of Gaussian distributions. The
third column shows the width of this theoretical interval.
As this interval is of variable size for I-KNN, the lower,
mean, and higher half-width observed on all instances
are given. The last column shows the actual value of |δz|
(the interval half-width) for which 95% of the observed
altitudes zobs fall in the interval [z − δz, z + δz], where
z is the predicted altitude.

CONCLUSION

In this paper, we have applied several methods to the
prediction of altitude, focusing on a single aircraft type
(A320). The aim was to compare these methods when
predicting the altitude of climbing aircraft 10 minutes
ahead, starting from an initial point at flight level FL180,
and possibly using the past trajectory to improve the
prediction. Radar and Meteo data recorded over two
months (july 2006, january 2007) were used to build
a dataset of explanatory and target variables. A principal
component analysis of this data allowed us to reduce the
dimensionality to 10 to 15 significant components, in-
stead of the 76 initial explanatory variables. The models
are compared by performing a 10-fold cross-validation
on a set of 1500 climb segments.

Our results show that the regression methods perform
better than the point-mass model. This is not surprising
as the former learn from the observation of the past
trajectory, whereas the point-mass model uses the same
standard values for most parameters (mass, power reduc-
tion, target speeds) for all aircraft. The genetic program-
ming approach proved efficient, although not better, on
our noisy data, than standard regression methods.

Two different kinds of predictive methods have been
applied to our problem, with two different ways to
compute confidence intervals on the predicted altitude.
In the first approach (LR, GP, NN, and also BADA
models), the target variable to predict is the altitude
itself. A probabilistic confidence interval can be obtained
by considering the interquantile interval, assuming a
Gaussian distribution of the error. This confidence inter-
val, although statistically relevant when measured on an



infinity of instances, is not guaranteed to actually contain
the expected ratio of accurate predictions (e.g. 95%)
for a limited number of instances. This explains why
we observed less than 95% of the predictions actually
falling in the theoretical confidence interval, with these
methods.

In the second approach, the interval regression using
K-nearest neighbours (I-KNN) returns a confidence in-
terval, instead of the altitude itself. This method still
assumes a Gaussian distribution of the error, but with
some uncertainty on the distribution’s parameters. This
gives a family of probability distributions, from which
we can deduce a possibility distribution. I-KNN com-
pute one such possibility distribution for each instance,
using the instance’s nearest neighbours in the examples’
dataset. So the size of the confidence interval obtained
from this distribution depends on the quantity of data in
the neighborhood of the considered instance. Obviously,
these intervals are generally larger than the probabilistic
confidence intervals obtained with standard methods.
However, they are statistically guaranteed to contain at
least the expected ratio of accurate predictions. This is
confirmed in our experiments, where we found 98.6%
instances actually falling in the 95% confidence interval.

From an operational point of view, the proposed
methods could be applied to the detection of poten-
tial conflicts between trajectories. Standard regression
methods could be used to provide a relatively narrow
probabilistic interval allowing us to detect conflicts with
a great look-ahead time, although with some uncertainty.
With smaller look-ahead times, when more certainty is
required before actually deviating conflicting trajectories,
interval regression could provide guaranteed confidence
intervals on the altitude prediction.

In future works, we plan to conduct a more thorough
analysis of the available data, trying to filter the climb
segments according to the actual aircraft mode of oper-
ation (constant CAS or constant ROCD, for example),
so as to obtain less noisy data. We could then learn the
aircraft climbs in a specific operation mode, thus giving
a better chance to the point-mass model. It could also
be interesting to learn some of the point-mass model
parameters (mass, thrust law) from the observed data.
Concerning the regression methods, we could try to im-
prove the genetic programming approach by introducing
elements of the point-mass model in the population of
predictors.

REFERENCES

[1] SESAR Consortium. Milestone Deliverable D3: The ATM

Target Concept. Technical report, 2007.
[2] H. Swenson, R. Barhydt, and M. Landis. Next Generation

Air Transportation System (NGATS) Air Traffic Management
(ATM)-Airspace Project. Technical report, National Aeronau-
tics and Space Administration, 2006.

[3] F. Imado T. Kinoshita. The application of an uav flight simulator
- the development of a new point mass model for an aircraft. In
SICE-ICASE International Joint Conference Conference, 2006.

[4] A. Nuic. User manual for base of aircarft data (bada) rev.3.7.
Technical report, EUROCONTROL, 2009.

[5] R. A. Coppenbarger. Climb trajectory prediction enhancement
using airline flight-planning information. In AIAA Guidance,

Navigation, and Control Conference, 1999.
[6] Study of the acquisition of data from aircraft operators to aid

trajectory prediction calculation. Technical report, EUROCON-
TROL Experimental Center, 1998.

[7] M. I. Jordan and C. Bishop. Neural Networks. CRC Press,
1997.

[8] C. M. Bishop. Neural networks for pattern recognition. Oxford
University Press, 1996. ISBN: 0-198-53864-2.

[9] B. D. Ripley. Pattern recognition and neural networks. Cam-
bridge University Press, 1996. ISBN: 0-521-46086-7.

[10] Y. Le Fablec. Prévision de trajectoires d’avions par réseaux

de neurones. PhD thesis, Institut National Polytechnique de
Toulouse, 1999.

[11] John R. Koza. Genetic Programming: On the Programming of

Computers by Means of Natural Selection (Complex Adaptive

Systems). The MIT Press, December 1992.
[12] Arthur E. Hoerl and Robert W. Kennard. Ridge regression:

Biased estimation for nonorthogonal problems. Technometrics,
12(1):55–67, 1970.

[13] H. Akaike. A new look at the statistical model identification.
Automatic Control, IEEE Transactions on, 19(6):716 – 723, dec
1974.

[14] Clifford M. Hurvich and Chih-Ling Tsai. Model selection for
extended quasi-likelihood models in small samples. 51:1077–
1084, 1995.

[15] David E. Goldberg. Genetic Algorithms in Search, Optimiza-

tion, and Machine Learning. Addison-Wesley Professional, 1
edition, January 1989.

[16] L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility.
Fuzzy Sets and Systems, 1(1):3–28, 1978.

[17] D. Dubois and H. Prade. Fuzzy sets and systems - Theory and

applications. Academic press, New York, 1980.
[18] D. Didier. Possibility theory and statistical reasoning. Compu-

tational Statistics and Data Analysis, 51:47–69, 2006.
[19] Didier Dubois, Henri Prade, and Sandra Sandri. On possibil-

ity/probability transformations. In Proceedings of Fourth IFSA

Conference, pages 103–112. Kluwer Academic Publ, 1993.


	The point-mass model
	Simplified equations
	Aircraft operation during climb

	Regression methods
	Regression using neural networks (NN)
	Regression using Genetic Programming (GP)
	Our terminal set T and function set F
	Fitness criterion


	Interval regression using K nearest neighbours (I-KNN)
	Possibility theory
	Possibility distribution for a Gaussian family computed on a set of data
	K-nearest neighbours (KNN) 

	Data and experimental setup
	Data pre-processing
	Filtering and sampling climb segments
	Building patterns for regression
	Principal component analysis
	Experimental setup

	Results
	References

