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CHERNOFF AND BERRY–ESSÉEN INEQUALITIES

FOR MARKOV PROCESSES
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Abstract. In this paper, we develop bounds on the distribution function of the empirical mean for

general ergodic Markov processes having a spectral gap. Our approach is based on the perturbation

theory for linear operators, following the technique introduced by Gillman.
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1. Introduction

Let (Xt) be an ergodic irreducible Markov process on a general state space E, whose stationary distribution
is denoted by π. Then for any measurable bounded function f and any initial distribution q, the weak law

of large numbers states that the empirical mean t−1St := t−1
∫ t

0
f(Xs)ds converges in probability to π(f) :=

∫

f(y)π(dy). This result is the basis of the simulation method to evaluate the mean of the function f . In this
paper, we will quantify the rate of convergence by studying the probability

Pq

{

∣

∣t−1St − π(f)
∣

∣ ≥ γ
}

,

where Pq denotes the probability measure of the process with the initial distribution q, and the size of deviation γ
is a small number.

The aim of this work is to obtain some bounds usable to decide when exactly the simulation algorithm should
be stopped. This bound will be useful if it is accurate and easy to compute. Even if the initial distribution is the
stationary one, the problem of the convergence control subsists, since a confidence interval must be determined

with a fixed level 0 < α < 1, such that Pq

{

∣

∣t−1St − π(f)
∣

∣ ≥ u(α)
}

≤ α. The determination of a sufficient

time for the simulation, with fixed α and γ, will be obtained by two different ways.The first one consists in

bounding the quantity Pq

{

∣

∣t−1St − π(f)
∣

∣ > γ
}

, the second one uses the central limit theorem which claims

that t−1/2(St − π(f)) converges in law to a centered Gaussian with variance

σ2
f := lim

t→∞
t−1 Varπ(St) > 0.

The first bound is called Chernoff’s bound, whereas the second method refers to a Berry–Esséen’s bound.
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There are many works on deviation inequalities for Markov chains in the literature. An example is the large
deviation principle theorem of Donsker and Varadhan [7] which involves the logarithmic spectral radius of the
Feynman–Kac operator in the rate function. This result was simplified in [11]. However, asymptotic results are
not satisfactory if one wants to achieve bounds that are useful for fixed time. In [16] the saddle point method
is used to obtain the Edgeworth expansions of the deviation probability. Finally, an approach based on the
concentration inequalities developped by [22] and [24] gives deviation inequalities for Markov chains.

Another approach based on the interpretation of the Feynman–Kac operator as a linear perturbation of the
Markov kernel has been introduced by Nagaev [23] and Gillman [14]. Improvements of the result of Gillman
was obtained in [9] for a finite state and reversible Markov chains and in [20] for finite state Markov chains
and Markov processes. As the Feynman–Kac operator and its logarithmic spectral radius also is involved in
the context of continuous-time processes [7], the perturbation interpretation is pertinent also in this context.
So by using the perturbation theory for closed operator, we firstly improve the previous bound given in [20]
and extend it to Markov processes with spectral gap. Our main result is the following Chernoff’s bound, which
yields a Gaussian behavior for the small values of γ and a Poissonian behavior for the large ones:

Theorem 1.1. Let Pt an ergodic Markov semigroup with invariant probability measure π. Let assume that

its infinitesimal generator L has a simple isolated eigenvalue λ = 0 and that the initial distribution q has a

L2(π)-density relatively to the measure π. Then, for all f ∈ D2(L) such that π(f) = 0, ‖f‖∞ ≤ a, for all t > 0
and all 0 < γ,

Pq

{

t−1St ≥ γ
}

≤ Nq exp



















− 2tγ2

σ2
f

(

1 +

√

1 + 4aγ/
(

λ1σ
2
f

)

)2



















, (1.1)

where λ1 is the spectral gap of (L+L∗)/2 and Nq is the L2(π)-norm of the density of q related to the stationary

distribution π.

Remark 1.2. If ‖f‖2
2 ≤ b2, the asymptotic variance of St is bounded by 2b2/λ1, so in that case, we can replace

in the inequality (1.1), the asymptotic variance by its upper bound. Therefore, if γ ≤ b2/a, we obtain a Gaussian
bound since

Pq

{

t−1St ≥ γ
}

≤ Nq exp

{

−γ
2λ1t

4b2

(

1 − aγ

b2

)

}

,

whereas for γ > b2/a, we obtain a Poissonian bound

Pq

{

t−1St ≥ γ
}

≤ Nq exp

{

−γλ1t

4

(

1 − b2

aγ

)}

·

Remark 1.3. Obviously, we can take b2 = a2 in inequality (1.1), which gives

Pq

{

t−1St ≥ γ
}

≤ Nq exp











− λ1tγ
2

4a2
(

√

1 + 2γ/a + 1
)2











≤ Nq exp

(

−λ1tγ
2

8a2

)

· (1.2)

Remark 1.4. In [1], the authors express their scepticism about the implications of the estimates of spectral
gap for finite-time behavior of non-reversible Markov processes. For example, Dinwoodie, in [10], shows that
for counterclockwise randow walk on the circle Z/pZ, very much is lost by symmetric reversibilization. Some
recent results to include non-reversible effects have been obtained in [10] and [8].
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The central limit theorem was established by Doeblin for positive recurrent Markov chains by using a renewal
approach [6] (I.16, Th. 1). In [18] Landers and Rogge derived a bound of the error for the central limit theorem
for Markov chains. This result was improved by Bolthausen in [3]. Perturbation theory of linear operators is
a fruitful method also to achieve explicit Berry–Esséen’s bound. In [21] Mann used this approach to obtain an
explicit Berry–Esséen’s bound for discrete Markov chains. In this paper, we improve and extend the result of
Mann to continuous-time Markov processes. Our result is the following Berry–Esséen’s bound:

Theorem 1.5. Referring to the setting of Theorem 1.1, let assume futhermore that the Markov semigroup is

reversible. Then, for all f ∈ D2(L) such that π(f) = 0, ‖f‖∞ ≤ a, for all t > 0 and all 0 < γ,

∣

∣

∣

∣

Pq

{

1

σf

√
t
St ≤ x

}

− F (x)

∣

∣

∣

∣

≤ Nq
26a

λ1σf

√
t

+
Nq

π
e−λ1t, (1.3)

where F (x) is the standard Gaussian distribution.

Example 1.6 (Ornstein–Uhlenbeck process). Let γn(dx) be the standard Gauss measure on Rn and let con-
sider the Ornstein–Uhlenbeck operator L(f) = ∆(f) − x.∇(f), where ∆ is the Laplace operator and ∇ the
gradient operator. For all n-tuples k = (k1, · · · , kn) with ki ∈ N, the Hermite polynomials

Hk(x) = Πn
i=1hki

(x)/
√

ki!, with hk(x) = (−1)kex2/2 dk

dxk
e−x2/2,

form a complete system of orthonormal eigenfunctions in L2(γn) for the operator L with eigenvalue k1k2 · · ·kn.
So the Theorems 1.1 and 1.5 apply with λ1 = 1 only for bounded functions f .

Example 1.7 (Continuous-time Markovian jump processes). Let consider a positive-recurrent continuous-time
Markovian jump process with measurable state space (E, E), transition kernel J(x, dy) and reversible measure π.
The transition rates are supposed essentially bounded, i.e.,

π − ess sup xJ(x, {x}c) ≤M <∞.

Then the infinitesimal generator L of this jump process:

Lf(x) =

∫

(f(x) − f(y))J(x, dy),

is selfadjoint. Bounds on the spectral gap λ1 are derived in [19] by a generalization of Cheeger’s inequality.
More precisely, the Cheeger’s isoperimetric constant is

k ≡ inf
A∈E

0<π(A)<1

k(A),

where

k(A) ≡
∫

IA(x)J(x, Ac)π(dx)

π(A)π(Ac)
=

〈f, g〉L2(π)

π(A)π(Ac)
·

Then [19] (Th. 2.1)

κk2/8M ≤ λ1 ≤ k,

where κ is an explicit positive constant such that κ ≥ 1. So the Theorems 1.1 and 1.5 apply with λ1 ≥ k2/8M
only for bounded functions f .
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Example 1.8 (Diffusion processes). Let M be a d-dimensional, connected, compact Riemannian manifold.
Let ∆ denote the Laplace–Beltrami operator, and consider the associated heat flow semigroup Pt, which is
reversible with respect to the normalized Riemann measure µ. The spectrum of ∆ is discrete and each eigen-
projection is a finite-rank operator [13], so Theorems 1.1 and 1.5 can be applied.

The previous theorem applications can be expand to the framework of general diffusion processes with
spectral gap. For instance, let M be a connected, noncompact, complete Riemannian manifold and let consider
the elliptic operator L = ∆ +∇V for some V ∈ C2(M) with exp[V ] integrable with respect to the Riemannian
volume measure. In [26], Wang has given conditions for the existence of the spectral gap of L in L2(µ), where
dµ = Z−1 exp[V ]dx, with Z :=

∫

M
exp[V ]dx. Estimation of spectral gap for elliptic operators was studied

by [5].

A short description of the paper is as follows. Section 2 of this paper proves Theorem 1.1 for finite-state
Markov process. We will prove all results without using the large deviation theory, since we wish a self-
contained article. In Section 3, by following [21], we obtain a Berry–Esséen’s bound for finite state Markov
process. Nevertheless, by using estimates on eigenvalues and eigenvectors given in [17], we simplify the proof
of Mann and improve the numerical constant by a factor of 400. Section 4 shows how a Chernoff’s bound and
a Berry–Esséen’s bound can be achieved for a general-state Markov processes having a spectral gap. Finally,
Annexe A sets out preliminaries on the perturbation theory of linear operator. In particular, we explain why
the estimates on eigenvalues which have been obtained in finite-dimensional vector space, may be extended to
closed operator with isolated eigenvalue. Always following the Kato’s approach, we show that these estimates
can be used for semigroups with spectral gap which are perturbated by addition of a bounded operator.

2. Chernoff-type bound for a finite-state Markov processes

This section proves Theorem 2.4, stated in the introduction, for a finite-state Markov process. So that,
we consider an irreducible time homogeneous Markov process (Xt) on a finite-state space E. Its infinitesimal
generator, denoted by L, defines an operator acting on ℓ2(π) endowed with the inner product

〈f, g〉 =
∑

x∈E

f(x)g(x)π(x),

by

Lf(x) =
∑

y∈E

L(x, y)f(y).

Throughout this paper, ‖ · ‖ will always denote the ℓ2(π) − norm. We first proves the following lemma:

Lemma 2.1. Referring to the setting of Theorem 2.4, let r > 0. Then for any t > 0,

Pq

{

t−1St > γ
}

≤ e−rtγ 〈q/π, exp(−Λ(r)t).1〉 , (2.1)

where Λ(r) = −L− rMf , Mf being the multiplicative operator by the function f, i.e. Mfg(x) := f(x)g(x).

Proof. The Markov process being on finite-state space, we may assume that for each ω the sample function
t→ Xt(ω) is right continuous and has left hand limits everywhere in [0,∞). So, t−1St is the limit of Riemann
sums:

t−1St = lim
k→∞

k−1
k
∑

i=1

f(Xit/k).
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Now, let consider the Markov kernel Pt/k for k fixed. Then for any r > 0, by Chebyshev inequality

Pq

{

k−1
k
∑

i=1

f(Xit/k) > γ

}

≤ e−rtγEq

[

exp

(

k−1
k
∑

i=1

rtf(Xit/k)

)]

≤ e−rtγ
〈

q/π, P k
t/k(r).1

〉

,

where Pt/k(r)g(x) :=
∑

y Pt/k(x, y) exp
(

rtk−1f(y)
)

g(y). This operator can be written

Pt/k(r) = exp(Lt/k) exp(rMf t/k).

We conclude the proof by using Fatou lemma and the following result, available for all matrices A and B:

lim
k→∞

(

exp(A/k) exp(B/k)
)k

= exp(A+ B).

Lemma 2.2. For any r > 0,

Pq

{

t−1St > γ
}

≤ Nq exp {−t (rγ + λ0(r))} , (2.2)

where λ0(r) is the smallest eigenvalue of selfadjoint operator

Λ̃(r) := −(L+ L∗)/2 − rMf .

Proof. Let Pt(r) be the semigroup generated by −Λ(r). This Feynman-Kac operator acts on ℓ2(π) this way

Pt(r)g(x) = Ex(exp(rSt)g(Xt)).

Set ϕ(t) = ‖Pt(r)g‖2. Then

ϕ′(t) = −2
〈

Λ̃(r)Pt(r).g, Pt(r).g
〉

·

Furthermore, the selfadjoinness of Λ̃(r) implies that all its eigenvalues are real, so that, by the minimax principle

the smallest eigenvalue of ˜Λ(r) may be characterized by

λ0(r) = inf
{〈

Λ̃(r)g, g
〉

/‖g‖2, g 6= 0
}

= inf
{

〈Lg, g〉 − rπ(fg2) : ‖g‖2 = 1
}

·

This gives the inequality ϕ′(t) ≤ −2λ0(r)‖Pt(r)g‖2. Thus the function ϕ(t) exp
(

2λ0(r)t
)

is non increasing and
it follows that

|Pt(r)| ≤ exp (−λ0(r)t) , (2.3)

since ϕ(0) = ‖g‖2. We conclude by applying the Cauchy–Schwarz inequality to (2.1) combining with the
previous result.

Thus, bounding the distribution function of the empirical mean will be achieve by estimating the perturbated
eigenvalue λ0(r). Actually, λ0(r) is the perturbation of the simple eigenvalue 0 of (L+L∗)/2. So, we can directly
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use the identities (A.8) in the setting of selfadjoint operator with linear perturbation. More precisely, if λ1 is
the smallest positive eigenvalue of −(L+ L∗)/2, then for any |r| < λ1/2

λ0(r) = −
∞
∑

n=1

λ
(n)
0 rn (2.4)

λ
(n)
0 = − 1

n

∑

k1+···+kn=n−1

tr
[

MfS
(k1)MfS

(k2) · · ·MfS
(kn)

]

, (2.5)

the sum being taken on all combinations of positive integers k1, · · · , kn such that k1 + · · ·kn = n − 1. Here S
denotes the reduced resolvent of −(L+ L∗)/2 with respect the eigenvalue λ0 = 0 and

S(0)g = −π(g), S(k)g = Skg, g ∈ ℓ2(π).

This operator may be expressed as the limit of the resolvent R(ζ) of −(L + L∗)/2 as ζ → 0. We obtain the
following identity

S =

∫ ∞

0

exp {t(L+ L∗)/2}dt.

For instance, if L is selfadjoint then S is the fundamental matrix of the Markov process

Z :=

∫ ∞

0

Ptdt.

Lemma 2.3. For any r < λ1/(2‖f‖∞),

λ0(r) ≥ −
(

σ2
fλ

2
1

2‖f‖2
∞

)

Φ

(‖f‖∞r
λ1

)

≥ −
r2σ2

f/2

1 − 2
(

‖f‖∞

λ1

)

r
,

where σ2
f := 2〈f, Sf〉 and

Φ(x) =

(

1 − x

2

)

{

1 −
√

1 − 4x2

(1 − x)2

}

for − 1 ≤ x ≤ 1/3.

Proof. Define the following equivalence relation on the nonnegative sequences (k1, · · · , kn) by: (k1, · · · , kn) ≡
(m1, · · · , mn) iff there exists a circular permutation which maps the first sequence on the second one. Denote
by [·] the corresponding equivalence classes and notice that at least one ki = 0 when the sequence is such that
k1 + · · ·+ kn = n− 1. In this case, we will choose the sequence (0, k1, · · · , kn−1) as lifting of [0, k1, · · · , kn−1].
The well-known identity tr(AB) = tr(BA), available for all matrices A and B, and a straightforward calculation
allow us to rewrite (2.5) by

λ
(n)
0 =

∑

[0,k1,··· ,kn−1]

〈

f, S(k1)Mf · · ·MfS
(kn−1)f

〉

· (2.6)

For instance, we have

λ
(1)
0 = 0, λ

(2)
0 = 〈f, Sf〉,

λ
(3)
0 = −〈f, (SMfS)f〉, λ

(4)
0 = 〈f, (SMf )2Sf〉 − 〈f, Sf〉〈Sf, Sf〉 ·
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Notice that for a reversible Markov process, the coefficient 2λ
(2)
0 is nothing else than the asymptotic variance

of St, i.e.

2λ
(2)
0 = lim

t→∞
t−1 Varπ(St) := σ2

f .

Now, we go back to study each coefficient λ(n). For that, notice that only the equivalence classes, different from
[0, k1, · · ·, kn−2, 0], contribute to the sum in (2.6). Accordingly, the number of nonzero terms in the sum is given
by

βn :=

⌈n/2⌉
∑

m=1

1

m

(

n −m− 1

m− 1

)(

n− 2

n−m− 1

)

,

where m is precisely the number of (non adjacent) zeros in the sequence (0, k1, · · · , kn−1). The generating
function of the βn is

Φ(x) =

(

1 − x

2

)

{

1 −
√

1 − 4x2

(1 − x)2

}

for − 1 ≤ x ≤ 1/3.

Therefore, equation (2.6) may be rewritten as

λ
(n)
0 =

⌈n/2⌉
∑

m=1

(−1)m

m

(

n−m− 1

m− 1

)(

n− 2

n−m− 1

)

λ(n)
m ,

where

λ(n)
m =

∑

〈f, Sk1MfS
k2Mf · · ·MfS

ki1 f〉〈f, Ski1+2Mf · · ·MfS
ki1+i2+1f〉

· · · 〈f, Ski1
+···+im−1+mMf · · ·MfS

kn−1f〉,

the sum being taken on all sequences

(0, k1, · · · , ki1 , 0, ki1+2, · · · , ki1+i2+1, 0, ki1+i2+3, · · · , 0, ki1+···+im−1+m, · · · , kn−1),

so that each ki ≥ 1,
∑

ki = n− 1 and i1 + i2 + · · · im +m = n (m being the number of zeros in the sequence).
The challenge is now to obtain an accurate upper bound on each term 〈f, Sk1MfS

k2Mf · · ·MfS
ki1 f〉. Before

using the Cauchy–Schwarz inequality, let us introduce the square root operator S1/2 of the positive operator S.
If ‖T‖p,q denotes the norm of the linear operator T , from ℓp(π) into ℓq(π), then ‖S1/2‖2,2 = 1√

λ1
. Let σ2

f =

2‖S1/2f‖2 which is the asymptotic variance for a reversible Markov process. By this way, we obtain the following
bound

〈f, Sk1MfS
k2Mf · · ·MfS

ki1 f〉 ≤ ‖S1/2f‖‖Sk1−1/2‖2,2‖f‖∞‖Sk2Mf · · ·MfS
ki1 f‖

≤
σ2

f

2

(

1

λ1

)k1+···+ki1
−1

‖f‖i1−1
∞ . (2.7)
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Hence,

|λ(n)
0 | ≤

⌈n/2⌉
∑

m=1

1

m

(

n−m− 1

m− 1

)(

n− 2

n−m− 1

)

(

σ2
f

2

)m

‖f‖n−2m
∞ ‖S‖n−1−m

2,2

≤
(‖f‖n

∞
λn−1

1

)

(

σ2
fλ1

2‖f‖2
∞

)

βn,

since σ2
fλ1/(2‖f‖2

∞) ≤ 1.

To conclude the proof of the Lemma 2.3, we use the generating function Φ(x) and the inequality Φ(x) ≤
x2/(1 − 2x).

Theorem 2.4. Let (Pt, π) be an irreducible Markov process on a finite set E and L its infinitesimal generator.

Let f : E → R be such that π(f) = 0, ‖f‖∞ ≤ a. Then, for any initial distribution q, all t > 0 and all

0 < γ ≤ a,

Pq

{

t−1St ≥ γ
}

≤ Nq exp











− 2tγ2

σ2
f

(

1 +
√

1 + 4aγ/(λ1σ
2
f)
)2











(2.8)

where Nq = ‖q/π‖2 and λ1 is the smallest positive eigenvalue of −(L+ L∗)/2.

The proof of Theorem 2.4 is now easy, since it is enough to maximize the function

r → rγ −
r2σ2

f/2

1 − 2
(

‖f‖∞

λ1

)

r
·

This optimum is reached for

r0 =
λ1

2‖f‖∞



1 −
(

1 +
4γ‖f‖∞
λ1σ

2
f

)−1/2


 ,

hence the following inequality

Pq

{

t−1St ≥ γ
}

≤ Nq exp







−
tλ2

1σ
2
f

8‖f‖2
∞

(√

1 +
4‖f‖∞γ
λ1σ

2
f

− 1

)2






·

Remark 2.5. The numbers βn are known as the Motzkin numbers Mn. More precisely, the Motzkin number
generating function is M(x) = (1 − x −

√
1 − 2x− 3x2)/(2x2), so βn+2 = Mn. The Motzkin numbers enu-

merate various combinatorial objects. In particular, they give the number of paths from (0, 0) to (0, n) which
never dip below y = 0 and are made up only of the steps (1, 0), (1, 1), (1,−1), i.e. →,ր,ց. The first are
1, 2, 4, 9, 21, 51, · · · We have the recurrence relation

Mn = Mn−1 +
n−2
∑

k=0

MkMn−2−k
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with M0 = 1. The Motzkin number Mn is also given by

Mn = −1

2

∑

a+b=n+2,a,b≥0

(−3)a

(

1/2

a

)(

1/2

b

)

=
(−1)n+1

22n+5

∑

a+b=n+2,a,b≥0

(−3)a

(2a− 1)(2b− 1)

(

2a

a

)(

2b

b

)

·

Remark 2.6. A slightly more accurate Chernoff’s bound can be obtained by using the function Φ instead. In
this case, we get

Pq

{

t−1St ≥ γ
}

≤ Nq exp

{

− tλ1b
2

a2
h(aγ/b2)

}

,

where h is an explicit function such that

y

4
log(1 + y) − 13y4

192
≤ h(y) ≤ y

4
log(1 + y).

Thus, the previous Chernoff’s bound is not so far from the following expression

Nq exp

{

− tλ1γ

4a
log
(

1 +
aγ

b2

)

}

,

which looks like the Bennett’s inequality achieved for independent random variables.

Example 2.7 (Markov process on two-points state-space). Let consider a Markov process on state-space E =
{a, b}, so its infinitesimal generator is a matrix

L =

(

−λ λ
µ −µ

)

,

and the stationary reversible distribution is π = (µ/(λ+ µ), λ/(λ+ µ)).
The eigenvalues of −L are 0 and λ1 = λ + µ, and an eigenvector corresponding to the eigenvalue λ1 is

ϕ = (
√

λ/µ,−
√

λ/µ).
Let f be a function on E such that π(f) = 0, i.e. µf(a) + λf(b) = 0. The asymptotic variance is

σ2
f = 2

µ/λ

λ+ µ
f(a)2 =

−f(a)f(b)
λ+ µ

=
|f(a)f(b)|
λ+ µ

and the fundamental matrix

Z =
−1

(λ+ µ)2
L, Z1/2 =

−1

(λ+ µ)3/2
L.

Now, let consider the perturbated matrix Λ(r) = −L− rf , whose eigenvalues are

λ±(r) =
1

2

(

(λ+ µ) − r(f(a) + f(b)) ±
√

∆
)

,

with ∆ = (λ+ µ− r(f(a) + f(b))2 − 4r2f(a)f(b) ≥ 0.
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Assume now that r < (λ+ µ)/|f(a) + f(b)|. Then, the eigenvalue λ0(r) may be written as

λ0(r) =
1

2
((λ+ µ) − r(f(a) + f(b)))

(

1 −
√

1 − 4r2f(a)f(b)

(λ+ µ− r(f(a) + f(b)))2

)

·

We deduce the Taylor series expansion of λ0(r):

λ0(r) = (λ+ µ)
∞
∑

n=2

(

r

λ+ µ

)n ⌈n/2⌉
∑

m=1

1

m

(

2(m− 1)

m− 1

)(

n− 2

2(m− 1)

)

(f(a)f(b))m(f(a) + f(b))n−2m.

A comparison between this last expression and (2.4) gives

|λn
0 | ≤

1

(λ+ µ)n−1

⌈n/2⌉
∑

m=1

1

m

(

2(m− 1)

m− 1

)(

n− 2

2(m− 1)

)

(µ

λ
f(a)2

)m

|f(a) + f(b)|n−2m

=

(

σ2
f

2

)n/2 ⌈n/2⌉
∑

m=1

1

m

(

2(m− 1)

m− 1

)(

n− 2

2(m− 1)

)

(λ/µ)n/2−m

(λ+ µ)n/2−1
|1− µ/λ|n−2m

≤
(

σ2
f

2

)n/2

‖Z1/2‖n−2
2,∞βn

where ‖Z1/2‖2,∞ = max(
√

λ/µ,
√

µ/λ)/
√
λ+ µ.

Thus, we get that

λ0(r) ≥ − 1

‖Z1/2‖2
2,∞

Φ



‖Z1/2‖2,∞

(

σ2
f

2

)1/2

r



 ·

3. Berry–Esséen bound for a finite-state reversible Markov processes

In this section, we assume that the Markov process is reversible for the stationary distribution π. To obtain
a Berry–Esséen bound, we will follow the approach of [21], which is based on the following inequality (see (3.13)
in [12], p. 538)

∣

∣

∣P
(

St/(σf

√
t) ≤ x

)

− F (x)
∣

∣

∣ ≤ 1

π

∫ W

−W

|ϕq(ω) − e−ω2/2|
|ω| dω +

24

π
√

2πW
,

where ϕq(ω) = Eq(iωSt/(σf t
1/2)), F (x) is the standard Gaussian distribution and W is a positive constant.

Mann used perturbation theory to bound |ϕq(ω) − e−ω2/2| and obtained a Berry–Esséen bound for Markov
chains with finite or countably infinite state space. We extend its result to Markov processes and obtain a
sharper bound by using Kato’s perturbation theory.

Theorem 3.1. Let (Pt, π) be an irreducible reversible Markov process on a finite set E and L its infinitesimal

generator. Let f : E → R be such that π(f) = 0, ‖f‖∞ ≤ a. Then, for any initial distribution q, all t > 0,

∣

∣

∣

∣

Pq

{

1

σf

√
t
St ≤ x

}

− F (x)

∣

∣

∣

∣

≤ Nq
26a

λ1σf

√
t

+
Nq

π
e−λ1t, (3.1)

where F (x) is the standard Gaussian distribution and σf = limt→∞ t−1 VarπSt is the asymptotic variance of St.
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Let L be the infinitesimal generator of the reversible Markov process, so this operator is selfadjoint. For
ω ∈ R, let χ = iω/(σf t

1/2), where σ2
f is the asymptotic variance, and consider the perturbated operator

Λ(ω) = −L+ χMf . Using (A.8) gives the following Taylor series expansion for λ0(χ) noted by λ0(ω)

λ0(ω)t =
ω2

2
+ t
∑

n≥3

λ
(n)
0 (−1)n

(

iω

σf

√
t

)n

·

Now, assuming that ‖f‖∞ ≤ a, we get the following inequalities valid if |ω| < λ1σf

√
t/(2a)

|λ0(ω) − ω2

2
| ≤ t

∑

n≥3

|λ(n)
0 |

(

ω

σf

√
t

)n

≤ tλ1

∑

n≥3

(

an

λn−1
1

)

(

σ2
fλ1

2a2

)

βn

= λ1t

(

σ2
fλ1

2a2

)(

Φ

(

aω

λ1σf

√
t

)

−
(

aω

λ1σf

√
t

)2
)

≤ aω3

λ1σf

√
t

(

1 − 2aω

λ1σf

√
t

)−1

·

We deduce that
∣

∣

∣exp(−λ0(ω)t) − e−ω2/2
∣

∣

∣ ≤ e−ω2/2
(

eH(|ω|) − 1
)

where

H(|ω|) =
a|ω|3
λ1σf

√
t

(

1 − 2a|ω|
λ1σf

√
t

)−1

·

Let u(ω) be the eigenvector of Λ(ω) for the eigenvalue λ0(ω) normalized by 〈1, u(ω)〉 = 1. Moreover, we have

|ϕq(ω) − e−λ0(ω)t| ≤ Nq‖e−Λ(ω)t1− e−λ0(ω)t1|
= Nq‖e−Λ(ω)t(1− u(ω)) − e−λ0(ω)t(1− u(ω))|

≤ Nq‖1− u(ω)‖
(

e−λ1t + eH(|ω|)−ω2/2
)

,

where we used the inequality (2.3) with

λ0(ω) = inf
{

〈(Λ(ω) + Λ∗(ω)/2)g, g〉 /‖g‖2, g 6= 0 π(g) = 0
}

= inf
{

〈−Lg, g〉 /‖g‖2, g 6= 0 π(g) = 0
}

= λ1.

Getting an upper bound of ‖1− u(ω)‖ is not so difficult, since the relation (A.11) gives here

u(ω) − 1 = χ (I − Z[χMf + λ(χ)])
−1
Zf

‖1− u(ω)‖ ≤ |χ|‖Z1/2‖2,2‖Z1/2f‖2

1 − |χ|‖ZMf‖2,2 − |λ0(χ)|‖Z‖2,2
≤

|χ|
(

σ2
f/(2λ1)

)1/2

1 − |χ|a/λ1 − Φ(a|χ|/λ1)
≤ 3|χ|σf√

2λ1

=
3ω√
2λ1t

,

since Φ(x) ≤ 1/3 for x ≤ 1/3. As σf ≤ a
√

2/λ1, we get ‖1− u(ω)‖ ≤ 3|ω|a/(λ1σf t
1/2). Now, assuming that

|ω|a/(λ1σf t
1/2) ≤ 1/6 gives H(|ω|) ≤ ω2/4, thus

|ϕq(ω) − e−λ0(ω)t| ≤ Nq
3|ω|a

λ1σf t1/2

(

e−λ1t + e−ω2/4
)

·
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Let observe that

|ϕq(ω) − e−ω2/2| ≤ |ϕq(ω) − e−λ0(ω)t|+ | exp(−λ0(ω)t) − e−ω2/2|

≤ Nq
3|ω|a

λ1σf t1/2

(

e−λ1t + e−ω2/4
)

+ e−ω2/2
(

eH(|ω|) − 1
)

,

but Nq ≥ 1 and for x ≥ 0, ex − 1 ≤ xex, therefore

|ϕq(ω) − e−ω2/2| ≤ Nq
3|ω|a

λ1σf t1/2

(

e−λ1t + e−ω2/4(1 + ω2/2)
)

·

Thus,

∣

∣

∣
P
(

St/(σf

√
t) ≤ x

)

− F (x)
∣

∣

∣
≤ Nq

3a

πλ1σf t1/2

∫ W

−W

(

e−λ1t + e−
ω2

4

(

1 +
ω2

2

))

dw +
24

π
√

2πW
,

with W = (λ1σf t
1/2)/6a. We obtain after some computations,

∣

∣

∣P
(

St/(σf

√
t) ≤ x

)

− F (x)
∣

∣

∣ ≤ Nq
26a

λ1σf

√
t

+
Nq

π
e−λ1t.

Remark 3.2. It is possible to obtain an universal Berry–Esséen bound which does not depend on the function f ;
however this bound is less accurate. For that, to avoid the term ‖f‖∞ in the estimate of eigenvalue λ0(ω)
(see (2.7)), we use the quantity ‖Z1/2‖2,∞. So we get that

|ϕq(ω) − e−ω2/2| ≤ Nq
3|ω|‖Z1/2‖2,∞√

2t

(

e−λ1t + e−ω2/4(1 + ω2/2)
)

,

thus

∣

∣

∣P
(

St/(σf

√
t) ≤ x

)

− F (x)
∣

∣

∣ ≤ Nq
26‖Z1/2‖2,∞√

2t
+
Nq

π
e−λ1t.

For example, take back the case of the Markov process on two-points state-space. We have ‖Z1/2‖2,∞ =

max
(√

λ/µ,
√

µ/λ
)

/
√
λ+ µ. For simplicity, let assume that λ ≥ µ, we get that ‖f‖∞ = |f(a)|, so in this case

the two bounds are the same;

Nq
26
√

λ/µ√
λ+ µ

√
2t

+
Nq

π
e−λ1t.

4. Chernoff and Berry–Esséen inequalities for general Markov processes

with spectral gap

Let (E, E , π) a probability space. On E is given a Markov semigroup, i.e. a family pt(x, dy) of probability
transitions kernels, defined for t ≥ 0. This family is identified with the family of operators Pt defined on the
space of Borel functions f on E which are bounded, where

Pt(f)(x) =

∫

f(y)pt(x, dy).



CHERNOFF AND BERRY–ESSÉEN INEQUALITIES FOR MARKOV PROCESSES 195

In the following, we will assume that π is an invariant measure of Pt, i.e. that for every f on E

∫

E

Pt(f)(x)π(dx) =

∫

E

f(x)π(dx).

The semigroup Pt can be extended into a contraction operator on the Hilbert space L2(π), and we define the
infinitesimal generator L of Pt in L2(π) on the dense domain D2(L) by

L(f) = lim
t=0

Pt(f) − f

t
,

the domain being the subspace of the functions f for wich such a limit exists.
As Pt(1) = 1, we see that λ = 0 is an eigenvalue of L. In the following, we always assume that λ is a simple

isolated eigenvalue of L, so that the Markov process is ergodic. As L is a closed operator densely defined, there
is a unique maximal operator L∗ adjoint of L (i.e. that any other adjoint of L is a restriction of L∗). Moreover,
as L2(π) is a reflexive space, L∗ is likewise closed and densely defined [17] (Th. 5.29 III, Sect. 5.5) and is the
infinitesimal generator of a Markov semigroup (since the negative real axis belongs to the resolvent set of L∗).
The operator L+L∗ is a selfadjoint closed operator densely defined on D2(L)∩D2(L

∗). Using [17] (Th. 2.11 IX,
Sect. 2.3), we claim that (L+L∗)/2 is likewise the infinitesimal generator of a Markov semigroup with a simple
isolated eigenvalue λ = 0. The spectral gap is given by the infimum of the set of λ1 for which ‖Pt(f)‖ ≤ e−λ1t

for all functions f ∈ D2(L) such that π(f) = 0. λ1 is also the isolation distance of the isolated eigenvalue λ = 0
of the operator (L+ L∗)/2.

By using results on the perturbation theory of closed operator with isolated eigenvalue, stated in Annex A,
we now are able to extend the Chernoff-type bound obtained previously for a finite-state Markov process to
the semigroup Pt. Firstly, if A is a bounded operator then L + A is likewise the infinitesimal generator of a
contraction semigroup and et(L−χA) is an entire function of the complex variable χ [17] (Th. 2.1 IX, Sect. 2.1).
Secondly, the Trotter product formula [25] states that for all t > 0

et(L−rA) = lim
n→∞

(

e
t
n

Le−
t
n

rA
)n

.

Thus, we get the Lemma 2.1 for the semigroup Pt and so the Theorem 1.1.

Remark 4.1. For simplicity, let assume furthermore that L is selfadjoint and let consider the case of a concen-
trated initial distribution on a point x ∈ E. Thus, we cannot apply the Theorem 1.1 directly. So, we suppose
that the semigroup Pt has a continuous kernel pt(x, y) and is ultracontractive, i.e. for each t > 0, Pt is a
contraction from Lp(π) to Lp(π) for each p ∈ [1,∞] and ‖Pt‖2,∞ = Ct <∞ [15]. Then, the semigroup Pt(r) is

also ultracontractif, since for g ∈ L2(π) and eh(t) := exp
∫ t

0 h(Xs)ds

Pt(r)g(x) ≤ Ex[e2rf(t)]1/2Ex[|g(Xt)|]1/2 ≤ sup
x
Ex[e2rf(t)]1/2[sup

x,y
|pt(x, y)|]1/2‖g‖2 ≤ er‖f‖∞tCt/2‖g‖2.

So, ‖Pt(r)‖2,∞ ≤ C ′
t and

sup
x
Px

{

t−1St ≥ γ
}

≤ e−rγ‖Pt(r)1‖∞ ≤ e−rγ‖Pt(r)‖2,∞ ≤ e−rγ‖Pt0(r)‖2,∞‖Pt−t0(r)‖2,2

≤ C ′
t0

exp











− 2(t− t0)γ
2

σ2
f

(

1 +
√

1 + 4aγ/(λ1σ
2
f

)2











,

where 0 < t0 < t.
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Now, let assume that the Markov semigroup is reversible. Then, the Berry–Esséen inequality obtained
in finite-dimensional case can be extended the same way by using the Chernoff’s inequality. Thus, we get
Theorem 1.5. Unfortunately, we say nothing about the way to extend these inequalities for unbounded functions.
Nevertheless in the following example, we obtain a Chernoff’s inequality despite the unboundedness of the
function f .

Example 4.2. Let the Ornstein–Uhlenbeck diffusion on R with drift θ ≥ 0, which is the solution of the
stochastic differential equation

dXt = −θXtdt+ dBt,

where Bt is the standard Brownian motion on R. It’s invariant measure is the Gauss measure N (0, 1/(2θ)) and
the generator is the operator L(g) = g′′/2 − θxg′.

Let consider the unbounded function f(x) = x2 and the operator L(r)(g) = L(g) + rfg. A straightforward
calculation gives the perturbated eigenvalue

λ(r) =
1

2

(

−θ +
√

θ2 − 2r
)

,

with |2r| ≤ θ2. Furthermore, the spectral gap of L is λ1 = θ, the mean of f for the invariant measure is 1/(2θ)
and the asymptotic variance is σ2

f = 1/(2θ3).
Using the Chernoff inequality, we get

Pq

{

t−1

∫ t

0

X2
s ds− 1

2θ
≥ γ

}

≤ e−rt(γ+ 1
2θ )Eq

(

exp

(

r

∫ t

0

X2
s ds

))

≤ Nqe
−rt(γ+ 1

2θ )−λ(r) := Nqe
−tQ(r),

where Q(r) = r
(

γ + 1
2θ

)

+ 1
2

(

−θ +
√
θ2 − 2r

)

is maximized when

r =
1

2

(

θ2 − 1

γ + 1/(2θ)

)

·

Simple computations give the inequality

Pq

{

t−1

∫ t

0

X2
s ds− 1

2θ
≥ γ

}

≤ Nq exp

(

−t θ2γ2

2(γ + 1/(2|θ|))

)

= Nq exp

(

−t γ2

2σ2
f (1 + 2λ1γ)

)

·

We also obtain the following inequality

Pq

{

t−1

∫ t

0

X2
s ds ≥ γ

}

≤ Nq exp

(

−t (1 − 2θγ)
2

8γ

)

,

which is in accordance with the large deviations principle proven in [4] with the good rate function

I(γ) =
(1 − 2θγ)2

8γ
, if γ > 0.

Bercu and Rouault obtained in [2] an asymptotic expansions of etI(γ)P0(St ≥ γt) for the Ornstein–Uhlenbeck
process starting from 0.
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Appendix A. Perturbation theory of linear operators

A.1. Finite-dimensional space

Let T be a linear operator on some finite-dimensional vector space X. The Laurent series of its resolvent
R(ζ) at a simple eigenvalue λ takes the form ([17], p. 38)

R(ζ) = −(ζ − λ)−1P +
∞
∑

n=0

(ζ − λ)nSn+1, (A.1)

where P is the eigenprojection operator for the eigenvalue λ, and S, called the reduced resolvent of T with
respect the eigenvalue λ, is the inverse of the restriction of T − λ in the subspace (I −P )X. We deduce that P
is the residue of −R(ζ) in λ, and

P = − 1

2πi

∫

Γ

R(ζ)dζ, (A.2)

where Γ is a positively-oriented small circle enclosing λ, but excluding other eigenvalues of T .
Consider a family of operator-valued functions with the form

T (χ) = T + χT (1) + χ2T (2) + · · · , χ ∈ C. (A.3)

Then the resolvent R(ζ, χ) = (T (χ) − ζ)−1 of T (χ) is analytic in the two variables ζ, χ in each domain in
which ζ is not equal to any of the eigenvalues of T (χ) ([17], p. 66). So it can be expanded into the following
power series in χ with coefficients depending on ζ:

R(ζ, χ) = R(ζ) +
∞
∑

n=1

χnR(n)(ζ) (A.4)

where each R(n) is an operator-valued function. This series is uniformly convergent if

∞
∑

n=1

|χ|n‖T (n)R(ζ)‖ < 1. (A.5)

Let r(ζ) be the value of |χ| such that the left member of (A.5) is equal to 1. Then (A.5) is satisfied for |χ| < r(ζ).
Let λ be one of the eigenvalues of T = T (0) with multiplicity m = 1, and Γ be a positively-oriented circle, in
the resolvent set of T , enclosing λ but no other eigenvalues of T . The series (A.4) is then uniformly convergent
for ζ ∈ Γ if

|χ| < r0 = min
ζ∈Γ

r(ζ). (A.6)

In the special case in which X is a Hilbert space and T is normal (i.e. T ∗T = TT ∗), we get

‖R(ζ)‖ = 1/dist(ζ,Σ(T )), r0 = min
ζ∈Γ

(

a

dist(ζ,Σ(T ))
+ c

)−1

for every ζ in the resolvent set of T, where a = ‖T (1)‖ and c is such that ‖T (n)‖ ≤ acn−1 for n ≥ 1. If we choose
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as Γ the circle |ζ − λ| = d/2 where

d = min
µ∈Σ(T )\{λ}

|λ− µ|,

we obtain r0 =
(

2ad−1 + c
)−1

.
The existence of the resolvent R(ζ, χ), for ζ ∈ Γ, implies that there are no eigenvalues of T (χ) on Γ. The

operator

P (χ) = − 1

2πi

∫

Γ

R(ζ, χ)dζ (A.7)

is the eigenprojection for all the eigenvalues of T (χ) lying inside Γ. In particular ([17], p. 68) for all |χ| sufficiently
small, we have

dimP (χ)X = dimPX = 1.

Therefore, only the eigenvalue λ(χ) of T (χ) lies inside Γ, and P (χ) is the eigenprojection for this eigenvalue.
As the only eigenvalues of T (χ)P (χ) are 0 and λ(χ), we will consider

λ(χ) − λ = tr((T (χ) − λ)P (χ)).

Combining (A.7) and substitution for R(ζ, χ) from (A.4) give the Taylor series expansion ([17], p. 79)

λ(χ) − λ = − 1

2πi
tr

∫

Γ

(ζ − λ)R(ζ, χ)dζ =
∞
∑

n=1

χnλ(n)

where

λ(n) =
n
∑

p=1

(−1)p

p

∑

ν1+···+νp=n
k1+···+kp=p−1

νi≥1, kj≥0

tr
[

T ν1S(k1) · · ·T νpS(kp)
]

(A.8)

with S(0) = −P, S(n) = Sn. Here S is the reduced resolvent of T with respect the eigenvalue λ.
An estimation on an eigenvector will be required to establish the Berry–Esséen bound. Since the eigenvectors

are not uniquely determined, there are no definite formulas for the eigenvectors of T (χ) as functions of χ. Let
again λ be one of the eigenvalue of T with multiplicity m = 1. Following ([17], Sect. II-3), a convenient form of
the eigenvector ϕ(χ) of T (χ) corresponding to the eigenvalue λ(χ) is given by

ϕ(χ) = (P (χ)ϕ, ψ)
−1
P (χ)ϕ, (A.9)

where ϕ is an unperturbed eigenvector of T for the eigenvalue λ and ψ is an eigenvector of T ∗ for the eigenvalue
λ̄ normalized by (ϕ, ψ) = 1. The choice of the factor in (A.9) is equivalent to each of the following normalization
conditions:

(ϕ(χ), ψ) = 1, (ϕ(χ) − ϕ, ψ) = 0, P (ϕ(χ) − ϕ) = 0. (A.10)

Let A(χ) := T (χ) − T . Noting further that Sϕ = 0, we obtain the following convenient formula ([17], p. 92):

ϕ(χ) − ϕ = − (I + S[A(χ) − λ(χ) + λ])
−1
SA(χ)ϕ

= −S [I + A(χ)S − (λ(χ) − λ)S]
−1
A(χ)ϕ. (A.11)
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A.2. Operators in Banach spaces

As we aim to study general state-space Markov processes, we will have to able estimate the lower bound of the
spectrum of a perturbated infinitesimal generator of a Markovian semigroup. We saw in the previous section,
the essential part of the spectral gap, i.e. the distance between the eigenvalue 0 and the other eigenvalues.
So following [17], we will introduce the notion of the isolated eigenvalue and of holomorphic dependance of
an operator on a parameter and we will show that the results obtained in the finite-dimensional case can be
extended, at least for isolated eigenvalues, without essential modification.

Let T be an operator from X to Y , D(T ) its domain of definition and R(T ) its range. T is said to be closed if
for each sequence un ∈ D(T ) such that un → u and Tun → v, u belongs to D(T ) and Tu = v. The set of closed
operators from X to Y will be denoted by C(X, Y ). T is said to be decomposed according to X = M ⊕N , if

PD(T ) ⊂ D(T ), TM ⊂M, TN ⊂ N,

where P is the projection on M along N . When T is decomposed as above, the parts TM , TN of T in M , N ,
respectively can be defined. TM is an operator in the Banach space M with D(TM ) = D(T ) ∩M such that
TMu = Tu ∈M . TN is defined similarly. Of course, if T is closed, the same is true fro TM and TN .

The resolvent set of T ∈ C(X,X) is the set of the complex number ζ such that T − ζ is invertible with
R(ζ) = (T − ζ)−1 a bounded operator. The operator-valued function R(ζ) thus defined on the resolvent set
is called the resolvent of T . Thus R(ζ) has domain X and range D(T ). The complementary set Σ(T ) (in the
complex plane) of the resolvent set is called the spectrum of T .

Sometimes the spectrum of a closed operator T can be splitted in a bounded part Σ′ separated from the
other part Σ′′, in such a way that a rectifiable simple closed curve Γ can be drawn so as to enclose an open set
containing Σ′ in its interior and Σ′′ in its exterior. Under such circumstance we have the following decomposition
result (see Th. 6.17 [17], p. 178). Let Σ(T ) be separated in two parts in the way described above. Then we have
a decomposition of T according to a decomposition X = M ′ ⊕M ′′ of the space in such a way that the spectra
of the parts TM ′ , TM ′′ coincide with Σ′, Σ′′ respectively and TM ′ is a bounded operator in M ′.

When Σ′ consists of the single point λ, that means Σ(T ) has an isolated point λ, the operator TM ′ has
spectrum consisting of the single point λ. Now, let assume that λ is a simple eigenvalue of T , then M ′ is
finite-dimensional and we obtain the same Laurent series of R(ζ) that in (A.1). The eigenprojection is given by
the expression (A.2), where Γ is any closed curve enclosing λ but no other point of Σ(T ). In that case, we can
defined the isolation distance d = dist(λ,Σ(T ) \ {λ}).

A.3. Analytic families of operators

We have previously studied the behavior of isolated eigenvalues of a finite-rank operator depending on a
parameter holomorphically. Nevertheless, it is not sufficient to consider bounded operators only, and it should
be noted that the series (A.3) is now meaningless. So a generalized definition of holomorphic families of
operators will be given, following [17] (VII, Sect. 1.2), and it will be shown that for an holomorphic family of
closed operators with a spectral gap, the results obtained in the finite-dimensional case are always available.

Firstly, let recall that a bounded operator T (χ) from X to Y is bounded-holomorphic if it is differentiable in
norm for all χ in a complex domain. Now, let T (χ) ∈ C(X, Y ) a family of operators defined in a neighborhood
of χ = 0. T (χ) is said to be holomorphic at χ = 0 (in a generalized sense) if there is a third Banach space
Z and two families of operators U(χ) from Z in X and V (χ) from Z in Y which are bounded-holomorphic at
χ = 0 such that U(χ) maps Z onto D(T (χ)) one to one and

T (χ)U(χ) = V (χ).

T (χ) is holomorphic in a domain D of the complex plane if it is holomorphic at every χ of D. The new notion
is a generalization of the old one, since a bounded families T (χ) is holomorphic in the new sense if and only if
it is bounded-holomorphic.
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Let T (χ) ∈ C(X,X) be holomorphic in χ near χ = 0. Then the resolvent R(ζ, χ) is bounded-holomorphic
in the two variables on the set of all ζ, χ such that ζ is in the resolvent set of T (0) and |χ| is sufficiently small
(depending on ζ) [17] (Th. 1.3, VII, Sect. 1.2). Moreover, let assume that the spectrum Σ(T (0)) of T (0) can be
separated in two parts Σ′(0), Σ′′(0) by a closed curve Γ in the manner previously described. Then for sufficiently
small |χ|, the curve Γ is in the resolvent set of the T (χ) and the spectra Σ(T (χ)) is likewise separated by Γ into
two parts Σ′(χ), Σ′′(χ) with the associated decomposition X = M ′(χ)⊕M ′′(χ) of the space [17] (Th. 1.7, VII,
Sect. 1.3). The projection on M ′(χ) along M ′′(χ) is given by

P (χ) = − 1

2πi

∫

Γ

R(ζ, χ)dζ.

Since R(ζ, χ) is bounded-holomorphic in ζ and χ jointly, it can be proved that P (χ) is bounded-holomorphic
near χ = 0. So, when Σ(T (χ)) is separated, the eigenvalue problem for T (χ) is reduced to the eigenvalue
problems for the parts of T (χ) in the two subspaces M ′(χ) and M ′′(χ).

If one is interested only in the case of an isolated eigenvalue of T (0), it is convenient to choose as Γ a circle
enclosing the single eigenvalue λ of T ; then P (χ) coincides with the eigenprojection operator for the eigenvalue
λ(χ) and is of finite rank. So the operator Tr(χ) = T (χ)P (χ), whose rank is finite, is bounded-holomorphic
and can be expanded in a power series in χ. Thus, the Taylor series expansion for the eigenvalue λ(χ) can be
obtained by the method of the previous subsection. For instance, the traces of various operators tr

(

T (χ)P (χ)
)

are also defined.
We now give a criterion for an important special case of holomorphic family T (χ) of operators, called holo-

morphic family of type (A) [17] (VII, Sect. 2.1). A family T (χ) ∈ C(X, Y ), defined for χ in a domain D0 of
the complex plane, is said to be holomorphic of type (A) if i) D(T (χ)) = D is independent of χ and ii) T (χ)u
is holomorphic for χ ∈ D0 for every u ∈ D. In this case T (χ)u has a Taylor expansion at each χ ∈ D0. A
holomorphic family T (χ) of type (A) is actually holomorphic in the generalized sense and we have the following
criterion [17] (Th. 2.6).

Let T be a closable operator from X to Y with D(T ) = D. Let T (n), n = 1, 2, · · · , be operators from X to
Y with domains containing D, and let there be constants a, b, c ≥ 0 such that

‖T (n)u‖ ≤ cn−1 (a‖u‖+ b‖Tu‖) , u ∈ D, n = 1, 2, · · ·

Then the series

T (χ)u = Tu+ χT (1)u+ χ2T (2)u+ · · · , u ∈ D

defines an operator T (χ) with domain D for |χ| < 1/c. If |χ| < (b + c)−1, T (χ) is closable and the closure

T̃ (χ) for such χ form a holomorphic family of type (A). Note also that we can choose c = 0 if T (n) = 0 for all
n ≥ 2, and

‖T (1)u‖ ≤ a‖u‖+ b‖Tu‖, u ∈ D.

For a holomorphic family T (χ) with a separated spectrum, we saw that the spectrum of T (χ) is likewise
separated for sufficiently small χ. Here, we can estimate how small |χ| should be, since the separation of the
spectrum occurs at least if

|χ| < r0 = min
ζ∈Γ

(a‖R(ζ, T )‖+ b‖TR(ζ, T )‖+ c)
−1
.

When X is a Hilbert space and T = T (0) is a normal operator, the foregoing result becomes

r0 = min
ζ∈Γ

[

a sup
λ′∈Σ(T )

|λ′ − ζ|−1 + b sup
λ′∈Σ(T )

|λ′||λ′ − ζ|−1 + c

]−1

.
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If we consider an isolated eigenvalue λ of T with isolation distance d, it is convenient to take Γ as the circle
|ζ − λ| = d/2. Hence, we have

r0 ≥ [(2(a+ b|λ|)d−1 + 2b+ c]−1.

Here, the existence of the formal power series for T (χ) makes it possible to take over directly the results of
the finite-dimensional case without replacing T (χ) by Tr(χ), in spite of the unboundedness of the T (n); in fact,
these operators appear in the formulas there only in such combinations as T (n)R(ζ), T (n)S, T (n)P which all
are bounded operators.

I would like to thank the Referees, the Associate Editor and Stéphane Puechmorel for suggesting a number of improve-

ments.
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