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GAs for partially separable functions

Nicolas Durand, Jean-Marc Alliot

CENA™

Abstract. In this paper, a crossover technique for GAs is introduced to
solve partially separable global optimization problems involving many
variables. Therefore, the fitness function must be the sum of positive
sub-functions involving only a subset of the variables. A “local fitness”
is associated to each variable and a parameter A controlling the oper-
ator’s determinism is introduced. Combined with sharing, this operator
improves GAs efficiency to optimize combinatorial problems involving
many variables. A polynomial function is first given as an example and
the operator is then applied to different classical test functions for which
the number of variables was increased. A practical application of this op-
erator is given for solving conflicts involving many aircraft for air traffic
control.

1 Introduction

In many optimization problems, the fitness function involves many variables.
Sometimes, it is the sum of many positive terms, each term only involving a
subset of the variables. GAs are good global optimization tools because they can
avoid local minima. However, considering large size problems, performance of
GAs can be penalized because they use random crossover and mutation opera-
tors. They are very efficient at the beginning to find good areas. Their efficiency
can decrease rapidly when converging because of the random operators. This phe-
nomenon particularly occurs for large size combinatorial problems.Genetic pro-
grammers sometimes use heuristics to favor “good” crossovers and “good” mu-
tations [RSS95] or try to reduce disruption of superior building blocks [CW96].
This paper introduces a genetic operator for large size optimization problems
in which the fitness function is the sum of positive functions involving only a
subset of the variables.

In the first part, an adapted crossover to partially separable problems is
defined. A simple example of its efficiency is given in the second part. In part
three, the operator is tested on classical test functions and compared to classical
methods. The last part gives a practical application of this operator. It is indeed
very useful to solve problem such as conflict resolution involving many aircraft
in Air Traffic Control.
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2 Adapted crossover to partially separable problems

In partially separable problems, the fitness function F' to minimize depends on n
variables x1, 29, .., 2, (n large) and is a sum of m positive functions Fj involving
only a subset of variables. Many multiplicative functions can be transformed into
additive function very simply. So partially separable functions as defined above
can be written :

m

F(Il, o, .., 'En) = ZFi(IjUij ) Ijnl)

i=1

In order to define the crossover operator, a “local fitness” Gy (z1, z2, .., ) will
be introduced for each variable z; as follow :

Grl(@1, 3, @n) = Y Filagy, 2,025,
1€EF

Ex = {i/xi isavariable of F;}

The local fitness associated to a variable isolates its contribution to the global
fitness. The goal of this paper is to use the local fitness to define an improved
crossover operator. Combined with sharing this operator is very efficient and
allows to use only low population sizes for problems involving a large number of
variables.

Classical crossover operators create two children from two parents chosen in
the population. Initial operators on bit strings simply cut the two parents strings
in two parts. The drawback of these operators is that short schemes have more
chance to survive than long ones. Consequently the problem coding becomes
very important. Multi-points crossovers and Gray coding are very often used
to solve this problem. However, none of these methods recognizes and favors
good schemes. When using real variable coding, programmers very often use
barycentric crossover (the children are linear combinations of the 2 parents).
These techniques do not distinguish good crossovers and bad crossovers.

The adapted crossover does not require any particular coding. The chromo-
some is directly coded with the variables of the problem (these variables may be
real, integer or both).The intuitive idea is the following : for a totally separable
problem, optimizing the global function can be done by optimizing each variable
separately. The idea is to adapt this strategy to partially separable functions.
When creating a child from two parents, the idea is to take for each variable the
one that locally fits better (more or less A, where A controls the determinism
of the operator). For example, if we minimize F, for the k'™ variable.

If G (parent;) < Gg(parents) — A, then child 1 will contain variable z; of
father 1. If, on the contrary Gi(parent:) > Gy (parents)+ A, child 1 will contain
variable z of father 2. If |G (parent1) — Gk (parents)| < A, variable z, of child
1 will be randomly chosen, or can be a random linear combination of variables
zy, of the two parents if we are dealing with real variables. If the same strategy
is applied to child 1 and to child 2, the two children may be identical, especially



if A is small. Different strategies can be imagined, for example, different values
of A can be chosen for the two children.

It can be noted that it is easy to design a mutation operator following the
same idea. This operator would mutate with a greater probability variables with
a bad local fitness. This assumes to be able to compare local fitness between
variables.

In this paper, classical GAs such as described in the literature [Gol89, Mic92,
Hol75] are used. A sharing process may be very useful when the population size is
not important enough regarding to the size of the problem. The main drawback
of sharing methods is that they slow down the GA. Yin and Germay [YG93] have
created a clustering method that is less expensive (proportional to nlog(n)) and
will be used.

3 Polynomial example

To show the crossover operator efficiency, we build a very simple polynomial
example as follow :

F(z1,29,..,2,) = Z(a}, — mj)Q

i#]

Local fitness is defined by : Gg(z1, 22, .., 2,) = Z#k(rz — zx)?. We are looking
for the minimum of the polynomial for integers z; € [0, 20].

In order to test the crossover operator efficiency, two test bench are done with
n = 50. The two test bench do not use any sharing process. The first one uses a
classical 1 point crossover operator. The second one uses the crossover operator
described in part three. Each test is repeated a hundred times with different
random number generators?. For practical reasons, instead of minimizing F', we
maximized H-LF

Results are given in table 1 (computation done on HP 720) (table 1 gives
the minimum, maximum, and average time to converge to an optimal solution,
the minimum, maximum and average number of generations corresponding and
the average fitness of the populations). They show that the adapted crossover
operator makes the algorithm 3 times faster.

Another comparative test was done to show how this adapted operator can
be used with sharing. In this test bench n = 20. The problem has 21 global
optima. The research space size is 2120 (i.e. more than 10%7). Two simulations
are done. The first one uses a classical crossover with sharing and the second
one uses the adapted crossover with sharing®.

Figure 1 gives the evolution of the best element in the two simulations. Using
the adapted crossover operator makes the algorithm converge much more rapidly
to an optimal solution despite the use of sharing which usually reduces the

2 Population size : 100, P. = 60%, P, = 15%
% 100 generations, 600 population elements, P. = 60%, Pm = 15%



Crossover classical |adapted

Min generations 94
Average generations 131.6
Max generations 180
Min time (in sec) 55
Average time (in sec)| 78.08
Max time (in sec) 110
Average fitness 0.3458

20
38.27
55

12
21.76
30
0.3427

Table 1. Numerical Results without sharing, n = 50.

converging speed. The optimum is obtained at generation 22 instead of 63 for

the classical crossover operator.

Fig. 1. Maximum fitness (left) and Optimal solution numbers (right), function of the

generation number, adapted crossover with sharing (up), classical crossover with shar-

ing (down).

The most interesting results are presented in figure 1 that gives the number
of optimal solutions in the two cases. The efficiency of combining the adapted
crossover with a sharing process is very clear: with the adapted crossover and
a sharing process the 21 global optima are found. With sharing and classical

operators, only 4 optima are found.

The previous simulations showed that the crossover operator using local fit-

ness can be very interesting when combined with a sharing process to find the

different global optima.



4 Classical test functions

Global optimization algorithm are generally tested on classical test functions [TR92].
We have chosen two of them the size of which could be extended. These two
functions have many local optima but the first one is completely separated and
the second one is not. GAs using classical operators and adapted operators are
compared on these two functions with VFSR?* (or ASAS)).

4.1 Corana’s function

This fonction is detailed in [CMMRS&7]. Results obtained by Ingber [TR92] with
VFSR are used to compare GAs to simulated annealing. The following function
is being minimized on the compact [—10000, 10000]".

N
0.15d;(0.05 5(z;) + 2; 2 if x; — 2z | < 0.0
p(ml,__.,m):z{dw? (0.055(z) +2)* if |os = 2

— otherwise
z = 0.2 []2;/0.2] + 0.49999] S(z;)
1 ifz >0
S(zi) =< 0 ifz; =0
—1ifz; <0

d; = {1.0,1000.0,10.0,100.0}

This function has 10°" local optima. According to L. Ingber, this function is one
of the best possible test for a global optimization algorithm. It seemed interesting
to compare our results to those obtained with VFSR on this example. This
function is completely separated.

Good results are obtained with VFSR and classical GAs on this function for
N =4 and N = 8. For N = 12, the problem becomes more difficult. Default
parameters of VFSR do not make the algorithm converge.

With the help of L. Ingber, it was possible to find parameters making VFSR,
converge for N = 12 (A technique named “Quenching” was used to accelerate
the reannealing scheme). 5 out of the 10 tests that were done gave the global
minimum, 5 other tests gave local minima. The GA always gave the global
minimum before generation 300 when using a population of 400 elements. When
it converges, VFSR is faster than the GA.

Then we decided to increase the value of N to compare the behaviour of
both algorithms. With VFSR and N = 20 the global minimum was never found
(for 50 test done). With classical GA we could easily go to N = 24 but then it
became difficult to find the global minimum.

In order to introduce the adapted operator in the GA, we defined the local
fitness as follow :

(i) = d; x? otherwise

* Very Fast Simulated Reannealing
® Adaptive Simulated Annealing



As the function is totally separated, we could expect that this operator would be
very efficient. Using a population of 400 hundred elements on 100 tests confirmed
that for N = 1000 the GA using the adapted crossover converges in less than
100 generations.

4.2 Griewank’s function

Griewank’s function is interesting because it can not be separated. For N = 10,
it is defined as follows :

1 xr;
F(xq,..,: :_E:,?_” =
(‘Ela J‘E]O) 4000 s T; / COS(\/Z)

A local fitness can be defined by : G(z1,..,210) = o055 &7 — H;gl cos(\“”/’z_,).
2 sets of tests have been done on this function using classical and adapted
crossover. In each case, the GA was executed 100 times with a population of 100
elements and 600 generations. Table 2 gives the minimal, maximal and mean
number of generations necessary to make the GA find the global minimum. This

table also gives the standard deviation of the number of generations required.

N=10 min|max| moy o [N=20 min|max| moy | o
classical cross| 76 | 294 [179.44|178.47 |classical cross|204|554 [440.10(220.2
adapted cross| 42 | 204 | 92.33 | 91.81 |adapted cross| 90 | 420 | 230.3 [151.2

Table 2. N = 10, population :100 - N = 20, population : 200

The results show that using the adapted crossover makes the algorithm con-
verge twice as fast as using a classical barycentric crossover. Tests that were
done using VFSR did not converge to the optimumS©.

When increasing the size of the problem, the GA still converges up to N = 20
(see table 2) and using the adapted crossover still makes it twice as fast as using
the classical crossover.

These two examples seem to show that the adapted operator is more efficient
when the problem is “more separated”.

5 Air traffic control problem

This example shows that we can find real problems on which the crossover op-
erator we defined is very efficient. Studies on the use of GAs for conflict reso-
lution and air space sectoring have given promissing results [AGS93, DASF94a,
DASF94b, DAAS94, DAN96, vKHHK95].

6 Ajusting parameters for V FSR is difficult which may explain why these tests failed



5.1 Problem description

The problem takes place in an horizontal plane. n aircraft are flying at constant
altitude and constant speed from an original point to a destination point. Two
aircraft are said in conflict if at some time ¢ the distance between these two
aircraft is less than d. They are separated if they are not in conflict. The problem
is to simultaneously minimize the aircraft trajectory length and separate aircraft.
This problem is very complex [DAAS94] and cannot be solved using classical
optimization methods because it 1s too combinatorial.

The model we chose to solve conflict is the following (figure 2) : an aircraft can
be ordered to modify its heading at time ¢y. This modification can take different
values and will be noted dir (dir = —30, —20, —10, 10, 20, or 30 degrees). At
time #1, the aircraft turns to its initial heading. At time %3, the aircraft heading
is modified in the opposite direction of dir degrees and at time t3 = to+ (t1 —10),
the aircraft turns to its initial heading. An example of chromosome is given in
figure 2. Each aircraft represents a 4D variable.

aircraft 1 To 1 T2 dir
i aircraft 2 To T T2 dir
aircraft 3 To T T2 dir
aircraft n To 1 T2 dir

Fig. 2. The Model (left) - Structure of the chromosome.

5.2 Local and global fitness

Instead of considering a global fitness value that takes into account the different
lengthening of the trajectories and the conflicts between the aircraft, we keep in
a n? sized matrix F' (where n is the number of aircraft) these values : if i # j, F; ;
measures the conflict between aircraft ¢ and j. Tt is set to 0 if no conflict occurs
and increases with the duration of the conflict. F;; measures the lengthening of
aircraft ¢ trajectory.

The global fitness is calculated as follow :

1
(i, j),i#j, Fiy #0 = F =

242 b

V(i g) i # g g =0 = =54 oo

This fitness function guarantees that if a chromosome value is larger than 2

2
no conflict occurs. If a conflict remains the fitness does not take into account the
delays induced by maneuvers.



We can define for each aircraft its local fitness by : G; = Z;:1(Fi,j)~

5.3 Numerical results

To show the efficiency of the adapted operator combined with a sharing process,
we will solve two conflicts, each one involving 20 aircraft. The first one (figure 3)
deals with 20 aircraft on a circle. Tt has very few solutions because all the aircraft
are conflicting with each other. Only solutions where all the aircraft turn in the
same direction are conflict free. Figure 3 gives the result of the optimization”.

,05 0: 7:22, previ 30 mn, freq 5 mn, uncert 3%, fitness: 0.685888
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Fig. 3. 20 aircraft conflict (up : aircraft on a circle, down : 10 different conflicts)

The second conflict deals with 10 independent conflicts between two aircraft.
In this example there are many available solutions which can easily be found by
a human being because of the symmetries of the problem, but for the GA, the
complexity remains. Figure 3 gives the result of the optimization with the same
parameters as previously.

720 generations, 100 population elements, P, = 60%, Pm = 15%, sharing used



In order to validate the use of the adapted operators combined with a sharing
process on this problem, 4 different tests have been done on this two examples
using classical and adapted crossover with and without sharing. For these 4 tests,
we have measured on each example the value of the best fitness (figure 4) on the
20 generations of our GA.

First, we can check that adapted operators are very efficient because with
classical operators, no conflict free solution is found before generation 20 (tests
have shown that the first conflict free solution is found after generation 200)
whereas with adapted operators a conflict free trajectory is always found before
generation 10 (A solution is conflict free if its fitness is more than 0.5).

Figure 4 shows that the sharing process make the best fitness grow slower.
However, the final best fitness is as good with a sharing process as it is without.
It is even better with a sharing process when the conflict is very difficult to
solve. The sharing process has the great advantage to help the GA to avoid local
minima and to give different conflict free solutions. These tests justify the use
of adapted operators in this partially separable problem.

“shai ed_cross’ —+- “shaing_adepted_cross' ~+-
“no_sharing_classic_cross' -6 “no_sharing_classc_cross' -6
"sharing_dasic_coss' x "sharing_dasic_coss' x
08 08
e
06 06
et S
s T T . G B

Fig.4. Left : best fitness (aircraft on a circle) - Right : best fitness (10 different con-

6 Conclusion

The crossover operator introduced in this paper can be adapted to various global
optimization problems. The last combinatorial problem has shown that using
local optimization operators was very helpful to find available solutions. The
crossover operator can be used when the fitness function is partially separable
and when a local fitness associated to variables can be defined. The operator
determinism can be controlled by the parameter A. Most of the time, this pa-
rameter should be decreased while the algorithm converges so that at the be-



ginning the space is explored randomly and at the end the algorithm becomes
more determinist.
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