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Flight Autonomy of Micro-Drone in Indoor Environments using LiDAR

Flash Camera

*Aarón Montoya Salado , **Bertrand Vandeportaele , ***Simon Lacroix ****Gautier Hattenberger

Abstract— Autonomy starts with awareness of the environ-
ment. Robots are given autonomy using sensors that endow
them with perceptual capabilities, such as cameras. Recently, a
new type of camera working under the Time-of-Flight principle
has been developed, capable of acquiring dense depth maps at
high frame rates. Its small size and weight make it suitable
for its use on-board a flying vehicle for indoor localization and
mapping. This document outlines the first approaches taken in
the use of a ToF camera for such tasks constrained by real-time
requirements. The camera has been mounted on a flying vehicle
that uses the open source Paparazzi autopilot system developed
by the ENAC (Ecole National de l’Aviation Civile) french team.
Since indoor environments are predominantly planar, planar
patches have been favoured to model the environment and detect
motion of the UAV. A Region Growing segmentation algorithm
identifies and extracts planes from the scene in real-time. Planes
are tracked and registered across a sequence of frames to
estimate the camera’s ego-motion. Initial results of plane-based
visual odometry are presented and confirm the device suitability.

I. INTRODUCTION

Mobile robots rely on sensors for tasks such as local-

ization, mapping, obstacle avoidance, path planning. . . In

general, the most popular sensor is the laser rangefinder,

which normally provides a 180◦ view on the plane of

measurement. However, non-simulataneous acquisition of

points, added to their high costs, limit their widespread

use. Alternatively a stereo-vision system can be considered,

which requires the matching of corresponding points from

two images to obtain depth information. However, stereo-

vision is computationally costly and is limited to textured

scenes [2]. Recently, a new type of camera has appeared, with

the ability to produce dense three-dimensional data in real-

time. It employs an array of Infrared LEDs that illuminate

the scene with modulated light. Light returns to the camera,

and distance is recovered by measuring the phase shift of

the reflection. This is known as the Time-of-Flight principle.

ToF cameras are advantageous over stereo-vision because of
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their ability to reconstruct in 3D an observed scene regardless

of the textures on it. ToF cameras have been succesfully

evaluated for its use in mobile ground robotics [3], [4], and

adapted to scenarios where a mobile robot uses acquired data

to perform different tasks [5], [6]. Its small size and weight

make it a promising alternative to other sensors for its use on-

board a flying vehicle. To our knowledge, this type of camera

has never been used before on micro Unmanned Aerial

Vehicles. This document synthesizes the main outcomes of

our initial investigations using a ToF camera. The remainder

of this paper is structured as follows: Section II summarizes

relevant related work. Section III shortly introduces the UAV

with which some initial experiments have been performed, as

well as the ToF camera SwissRanger SR-3000 that has been

used for our investigations. Section IV describes the process

for ego-motion estimation, based on the extraction, tracking

and registration of planes on the scene. Section V shows

initial results in the estimation of the camera orientation.

Finally Section VI concludes this document.

II. RELATED WORK

One of the first applications in robotics considering ToF

cameras as an alternative to laser scanning, stereo or monoc-

ular vision, was presented in 2004. Weingarten, Grüner

and Siegwart [3] evaluated a SwissRanger SR-2 device in

terms of basic obstacle avoidance and local path planning

capabilities. Navigation and path planning was performed

robustly based on the provided data.

In 2006, Ohno et al. used a SwissRanger SR-2 to estimate

a robot’s trajectory and reconstruct the surface of the en-

vironment [5]. The calculated trajectory was compared with

precise reference data in order to demonstrate the algorithm’s

precision.

Pose Estimation and Mapping has recently been addressed

by May et al. [7], [8]. They evaluate the pose estimation

accuracy of four different approaches that extract features

suitable for registration: scanline approximation, Karhunen-

Loève Transform (KLT), Scale-Invariant Feature Transform

(SIFT), and no data reduction. To map the scene, first

invalid data points are discarded by filtering. Next the map

is generated incrementally by registering consecutive 3D

captures. The accumulated error during motion is determined

and distributed by loop closing, and finally the map is refined.

Accurate maps are built using these strategies.

In order to overcome the low measurement accuracy of the

camera, error modelling and calibration of these devices has

been addressed by some researchers. Because ToF cameras

provide monochromatic reflectance images and are based
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on the pinhole camera model, photogrammetric calibration

is feasible, which is easily done using Bouguet’s Camera

Calibration Toolbox for MATLAB R© [9]. Additionally, a

calibration of the provided range data is performed to col-

lect accurate depth measurements. Lindner and Kolb [10],

Kahlmann et al. [11], and Fuchs et al. [12], [13] have already

addressed these issues improving the sensor’s accuracy.

Time-of-Flight cameras present a number of important

errors. While some of them cannot be corrected, the most

critical ones can. Light Scattering occurs in the camera’s

internal optical path due to secondary light reflections that are

not absorbed by the imager. The effect is the superposition

of measurements from the background, making them appear

closer. Wrap-Around is due to the phase-shifting principle of

measurement of these devices. Since phase-shift is assumed

in the range from 0◦ to 360◦, a phase-shift of 370◦ is

measured as 10◦. This obviously also corrupts the distance

measurements. This last problem has been addressed by

Dubois and Hügli [14], [15], who proposed an algorithm that

reduces scattering by solving an inverse deconvolution prob-

lem. Poppinga and Birk showed an approach that corrects

several errors of ToF cameras at once [16]. They correlate

the amplitude and depth images to identify and remove

erroneous pixels. Wrap-Around, light scattering and other

effects are effectively fixed using this approach. Another

important problem is the so-called Jump Edges. These occur

in the transition between two imaged objects. Objects physi-

cally disconnected will be seen by the ToF camera smoothly

bridged by sparsely distributed points. A detailed overview

of these and other ToF cameras noise and errors sources can

be found in [17].

The use of planar features for localization and mapping

is a relatively new approach that has only recently been

considered. Weingarten, Grüner and Siegwart proposed an

algorithm to recover planar surfaces of physical environ-

ments without considering topologically ordered points [18].

The same authors presented in [19] an improved method

for plane fitting that considers probabilistic information to

propagate uncertainty. Vaskevicius, Birk, Pathak and Pop-

pinga proposed in [20], [21] a fast and accurate method

to extract planes from clouds of 3D points. An optimized

Region Growing algorithm is implemented thanks to the

reformulation of the mathematical principles behind the

least-squares plane fitting.

Being ToF cameras relatively new technologies, only a

few approaches related to ego-motion estimation and visual

odometry using such devices have seen the light. Dröschel et

al. perform ego-motion estimation using a SwissRanger SR-

3000 ToF camera [22]. SIFT features are extracted from the

reflectance image and succesively matched across frames.

For each matched pixel, a 3D coordinate is known. A set

of known correspondences makes it possible to register the

clouds of 3D points. Results are refined with the information

provided by an Inertial Measurement Unit (IMU). A Kalman

Filter predicts the system velocity estimate using the IMU

data, and the motion estimates are fused. Pose estimation

based on registration of planar features has been addressed

first by Weingarten et al. [23]. His contributions include a

probabilistic model of planes that contains their associated

uncertainty, evaluation of different approaches to plane seg-

mentation, and finally a novel SLAM algorithm based on

the Extended Kalman Filter (EKF) adapted for using planar

segments. More recently, Pathak et al. also considered planar

segments as useful features for a robot to use in localization

and mapping tasks [24], [25]. They describe a strategy for

performing plane matching and decoupling the rotations and

translations from the corresponding normals between two

frames. They develop a complex mathematical formulation

that allows to decouple the full pose of the robot, while

considering the plane’s associated uncertainties. Results are

presented using different sensors, including ToF cameras and

laser rangefinders.

III. DEVICES DESCRIPTION

A. The Flying Micro-UAV

The flying vehicle with which experiments have been

started is a micro-UAV property of ENAC. It is a quadrotor

powered by four brushless Roxxy motors, each mounted

in the corners of a cross-shaped MK-40 frame made of

aluminium shaped profiles by Mikrokopter. The central part

of the UAV is custom made. The total length and width of

the UAV is 70 cm. including propellers. Distance between

motors is 45 cm. The datalink is a 2.40 GHz X-Bee Pro

modem. The vehicle is controlled by a Paparazzi-Booz

autopilot developed at ENAC [1]. This autopilot consists of

3 boards: the main board that comprises power supply, a

LPC2148 32-bit ARM7 microcontroller and a barometer; the

IMU board, comprising 3-axis gyroscopes, accelerometers,

magnetometers and a 16-bit ADC; finally, the GPS board,

using a LEA-5H GPS and Galileo module for positioning. It

has a weight of 700 g. with batteries, which goes up to 1 kg.

when the ToF camera and an XSens MTi IMU are mounted.

The maximum payload is of around 500 g. The vehicle is

shown in Fig. 1 with the ToF camera and the IMU mounted.

Fig. 1: The ENAC micro-UAV with the SwissRanger SR-

3000 and the IMU XSens MTi

B. The SwissRanger SR-3000

The ToF camera that has been investigated is the

SwissRanger SR-3000, developed by the Centre Suisse



d’Electronique et de Microtechnique (CSEM). It is a state-of-

the-art, solid-state imaging device working under the Time-

of-Flight principle, designed for operation under controlled

lightning conditions. It’s capable of delivering depth as well

as gray-level intensity images at high frame rates [26].

Fig. 2: The CSEM SwissRanger SR-3000 Camera

The SR-3000 camera is based on a 2-dimensional ded-

icated image sensor with a spatial resolution of 176×144

pixels, manufactured in 0.6 µm CMOS/CCD technology.

The size of each pixel is 40×40 µm2. It has a set of 55

Near-Infrared (NIR) LEDs used to illuminate the scene. The

emitted light is typically modulated at an internal frequency

of 20 MHz, yielding a non-ambiguity range of 7.5 m. The

lense has a Field of View (FOV) of 47.5×39.6 degrees and

an aperture diameter of 5.7 mm. It consumes an average

power of 12 W, which can go up to 18 W, depending on

the integration time. The device contains no moving parts.

Its size (50×67×42.3 mm3) and relatively low weight (160

gr.), make it practical and easy to handle.

The principle of operation of the device is as follows:

first the observed scene is illuminated with modulated near-

infrared light (NIR) that is reflected by the objects, travelling

back to the camera. The light is absorbed by a CCD/CMOS

sensor. Every pixel on the sensor samples the amount of

modulated light reflected by objects in the scene. This is

done four times every period at equal intervals. These mea-

surements, allow to recover the sinusoidal incoming signal,

and thus, the distance to the objects on the scene (Fig. 3).

Fig. 3: Time-of-Flight operating principle. Distances are

estimated by measuring phase-shift. Figure taken from [8]

IV. METHODOLOGY

This section briefly outlines the algorithms, techniques

and strategies followed in our first investigations. Starting

from the calibration of the SwissRanger SR-3000, and the

evaluation of filtering techniques, we continue describing

the algorithms that allow to extract planes from the scene

observed by the SwissRanger SR-3000 in real-time, followed

by a description of the tracking and registration strategy we

have adopted. Finally, ego-motion is described, which allows

to estimate the pose of the camera between consecutive

frames.

A. Camera Calibration

Photogrammetric calibration of the SwissRanger SR-3000

is feasible, given the intensity images it provides. Calibration

is done in the same way a regular camera is calibrated. Sev-

eral shots of a checkerboard are taken at different positions

and orientations. These are then processed using Bouguet’s

Camera Calibration Toolbox for MATLAB R©. The result

is the camera’s main characteristics: the principal point and

the focal lengths. Since the images provided by the ToF

camera are low in contrast, images are pre-processed by

simple histogram equalization that enhances image quality.

Knowledge of the camera’s Intrinsic Parameters allows to

convert the depth readings provided by the camera to Carte-

sian Coordinates.

B. Filtering

Some of the most critical errors of ToF cameras have been

already described above. This section proposes approaches to

effectively remove them from the made measurements. The

effect of Wrap-Around can be observed in Fig. 4. Distance

measurements are color coded in Fig. 4b; while blue color

means closer, red color means distant. Notice that after a

certain distance, a sudden change in depth measurement is

observed, which means that the non-ambiguity range of 7.5

m. has been exceeded.

(a) Intensity image (b) Depth image

Fig. 4: Typical Indoor Scene with evident Wrap-Around

Although this problem can be dealed with by simple

amplitude thesholding, this tends to discard not only wrong

pixels, but also a significant number of valid pixels that

correspond to low reflectivity surfaces on the scene. A better

solution has been proposed by Poppinga et al. [16], that

relates both depth and intensity images to identify invalid

pixels. The basic principle is that correct depth measurements

correspond to brightness values that decrease as the distance



to the imaged object increases, due to the fact that distant

points in the scene reflect only a little amount of the emitted

light. In contrast, wrapped-around pixels present low distance

values and significantly low brightness since the object is

farther away than what measurements suggest. Fig. 5 shows

the result of using this filtering scheme in the same indoor

scene.

Fig. 5: Filtering with the approach proposed in [16]

Not only the wrap-around effect has been corrected,

but black objects, whose depth measurements tend to be

noisy, have also been nicely removed. Also, bright light,

which introduces large amounts of random noise is removed.

Another important error this approach corrects is the light

scattering phenomenon. Fig. 6 shows the filtering of a scene

that has been corrupted by the introduction of a foreground

object. Wrong pixels are correctly removed using the adopted

filtering scheme. The removal of this effect is beneficial for

tasks such as obstacle avoidance, where it is important to

correctly observe objects the robot could collide with. By

filtering, the shape of the obstacle is precisely known, and a

proper strategy to avoid it can be implemented.

(a) Depth image of in-
door scene

(b) Introduced fore-
ground distorts most of
the pixels around

(c) Adaptative filtering
discards distorted pix-
els

Fig. 6: Effect of the light scattering phenomenon and the

proposed algorithm results

Jump Edges are filtered as proposed by Khongsab in [27].

Each point is compared with its eight neighbours. If the

distance between a point and one of its neighbours exceeds a

threshold, a counter is incremented. If the counter increases

a certain number of times, the point is classified as a Jump

Edge and filtered. Fig. 7a shows a cloud of 3D points where

the effect of Jump Edges is evident. The result of filtering

them is shown in Fig. 7b.

C. Feature Extraction

As it has been said before, the use of planar features

has been motivated by the fact that the camera will be

mainly used on indoor scenarios. Here the approach proposed

in [20], [21] is adopted. It aims at the fast extraction of planes

(a) Before Jump Edges removal (b) After Jump Edges removal

Fig. 7: The Jump Edges problem and proposed algorithm

results. Erroneous points at the interface of the human and

the wall have been removed

from the depth images provided by a ToF camera. In general,

planes are described by the following expression:

Ax + By + Cz + D = 0 (1)

where A, B and C form a normal vector of unit magnitude,

which describes the vector normal to the plane, and D is the

perpendicular distance from the plane to the origin. x, y and

z) on the other hand are the coordinates of a 3D point. Given

N number of points pi = [ xi yi zi ]T, the mass center m

= [ x̄ ȳ z̄ ]T of this set of points is:

m =
1

N

N
∑

i=1

pi (2)

which is used to calculate the following Covariance Matrix:

C =

N
∑

i=1





cn(xi, xi) cn(xi, yi) cn(xi, zi)
cn(yi, xi) cn(yi, yi) cn(yi, zi)
cn(zi, xi) cn(zi, yi) cn(zi, zi)



 (3)

where each element is given as:

cn(a, b) =

n
∑

i=1

(ai − ā)(bi − b̄) (4)

From 3, three eigenvalues and three associated eigenvec-

tors can be calculated. The smallest eigenvalue points to the

eigenvector that defines a vector normal to the plane fitted

to the N points. The vectors components are the parameters

A, B and C. Element D is given as D = −Ax̄ − Bȳ − Cz̄.

The Mean Square Error can be used as a quality measure of

the fitted plane:

MSE =
1

N

N
∑

i=1

(Axi + Byi + Czi + D)2 (5)

Given these mathematical formulations, a Region Growing

segmentation algorithm is implemented, which aims at ex-

tracting planar regions from the scene. The algorithm starts

selecting a point p1 and its nearest neighbor p2, and labels

them as a new region. Then the region is extended evaluating

neighbouring candidate points, according to their distance



to the formed plane, and the new MSE value that would

result from adding the point to the plane. The region is

grown until no more points can be added, and a new point

is selected to grow a new plane. The algorithm stops when

no more planes can be growed. An efficient implementation

is achieved by reformulating expressions 3 and 5. This

mathematical reformulation can be found in [20], [21]. Fig. 8

shows illustrative results of the segmentation algorithm.

(a) Intensity image (b) Depth image (c) Segmented image

Fig. 8: Results of the adopted segmentation algorithm

D. Feature Tracking

Once planes have been extracted, we propose to track them

across a sequence of frames. This is achieved following a

simple approach based on morphological operations. The

first frame in the sequence is fully segmented. Then, a

“prediction” is created by eroding the borders of the extracted

planes. Thanks to the high frame rates the camera achieves,

the eroded image can be superimposed on the following

frame correctly. This prediction guides the new segmentation

and planes are extracted again. Not only does this approach

avoids extracting planes from scratch at each new frame, but

also automatically solves the correspondence problem. The

method is illustrated in Fig. 9.

(a) Frame “ t ” (b) Prediction (c) Frame “ t+1 ”

Fig. 9: Planes Tracking and Matching across a sequence of

frames. By eroding frame “ t ”, planes are predicted in frame

“ t+1 ”

E. Polygonization

Once planes are extracted, a polygonization step follows,

which aims at converting surfaces into polygons for proper

3D visualization. Two algorithms have been implemented:

the first one, known as Graham Scan [28], creates a Convex

Hull, which is the envelope that contains the minimal set

of points required to represent the polygon; the second

algorithm creates a Concave Hull, which has a higher level of

representation detail. Fig. 10 shows respectively the results

of both algorithms on the planes shown in Fig. 8c.

The use of polygons will be further investigated as another

alternative to the proposed plane-prediction algorithm.

(a) Convex Hull (b) Concave Hull

Fig. 10: Polygonization results

F. Ego-Motion & Visual Odometry

Ego-motion consists in the movement the camera exper-

iments between two succesive frames. The composition of

estimated ego-motions gives us the visual odometry: the

accumulated motion the camera experiments in time.

Let us define two observations of the same normal vector

in consecutive frames Fi and Fj as ni = [ Ai Bi Ci ]T

and nj = [ Aj Bj Cj ]T respectively. The Homogeneous

transformation that relates corresponding normal vectors is

given as:

νi = H−Tνj (6)

where νi = [ ni
T Di ]T and νj = [ nj

T Dj ]T. Rotational

and Translational terms in 6 are contained within as:

νi =

[

RT 03×1

−TTR 1

]

νj (7)

Rotations and Translations are decoupled from 6 such that:

ni = RTnj (8)

− TTRnj = Di − Dj (9)

While 8 requires to be solved via non-linear optimization,

using methods such as Levenberg-Marquardt, 9 is a linear

expression that can be solved using Linear Least Squares or

Singular Value Decomposition (SVD). The solution of both

expressions gives the amount of movement the camera has

experienced between two frames. In our actual application,

we are interested only in estimating rotations. Given a total

of K frames, the camera’s pose is compounded as follows:

HK

1
= H2

1
H3

2
. . .HK−1

K−2
HK

K−1
(10)

V. RESULTS

Work has been done in its entirety using C++ as the

programming language of choice. To achieve the best results,

the GNU Scientific Library has been used to optimize the

computation of crucial elements that have to be recom-

puted several times during the plane extraction process,

such as eigenvalues, eigenvectors, as well as the Levenberg-

Marquardt non-Linear Optimization.

Table I shows some results illustrating the computational

costs of each of the stages involved in the complete plane

extraction process. Times are the average of the time taken



per frame. The dataset used to benchmark the results was

obtained from the experimental scenario shown in Fig. 11a,

consisting of a sequence of 670 frames (more details ahead).

In the sequence, between five to six main planes are normally

seen. Some snapshots of the performed movement (as seg-

mented images), are shown in Fig. 12. Notice in the table

listed individually the two segmentation modalities: the one

consisting of a full plane segmentation, and of an incremental

segmentation.

TABLE I: Average Computational Times for the Plane Ex-

traction Process considering the sequence of the Fig. 12

COMPUTATIONAL SPEEDS

Segmentation Stages Average Time [ms.]

Cloud of 3D Points 8.6
Seeds Distribution 1.2

Full Segmentation 61.3

Incremental Segmentation 47.6

Pose Estimation 0.3

Before embedding the camera into the flying vehicle, the

experimental scenario shown in Fig. 11a has been consid-

ered. The camera was rotated back-and-forth approximately

90◦ while tilted 45◦ around a square-shaped object posi-

tioned in front of two meeting walls. The ground-truth was

provided by a highly accurate Inertial Measurement Unit

Xsens MTi attached to the back of the camera and measuring

its 3D orientation in parallel (Fig. 11b).

(a) The camera rotates
through positions C0–C1–C0

(b) XSens MTi

Fig. 11: Experimental Scenario and Ground-truth

Fig. 13 shows the results of this experiment. In Fig. 13a the

Euler Angles provided by the MTi are directly compared with

those calculated by plane-based Visual Odometry. The error

in the three angles remains always below 10◦. A better way

to compare rotations is by measuring a single angle between

ground-truth and calculated orientations at each frame. This

is done converting rotations to quaternions (Fig. 13b). In

this representation is noted that the maximum reached angle

between both orientations is of 12.2◦.

A. Experiments with the UAV

Two datasets were acquired with the SwissRanger SR-

3000 used on-board a micro-UAV recently developed at

(a)

Fig. 12: A few snapshots illustrating the movement of

the ToF camera during image acquisition. The IMU was

attached in the back of the camera simultaneoously acquiring

data. Images shown are the output of the segmentation and

tracking algorithm.

(a) Direct Euler Angles comparison

(b) Angle between Rotations
in Quaternion Representation

Fig. 13: Results of the ToF camera orientation estimates

ENAC (as shown in Fig. 1). These datasets however did not

turn out to be very usable, as the flight conditions were not

the most appropriate during tests. First, the dynamics of the

UAV have to be adapted in order to reduce the blurring in

the images, and hence increase their quality. Second, as we

use only the geometry in the TOF camera data to localize

the UAV at the moment, the observed scene has to contain at

least three non-parallel planes to estimate the odometry from

the ToF camera only. This requirement was easy to fulfill

with the previous sequence shown in Fig. 12, but it is not

always satisfied in the sequence acquired with the UAV. For

this reason, the odometry fails from time to time, when not

enough planes are visible. Due to time constraints, no more

datasets could be obtained to perform more experiments.

Nevertheless, the results obtained so far are encouraging,

and have demonstrated the feasibility of the camera for

localization purposes. In Fig. 14 a few snapshots of a dataset

captured with the camera mounted in the UAV are shown for

reference.



(a)

Fig. 14: Some frames belonging to a dataset created using

the ToF camera on-board the flying micro-UAV.

These first experiences have given us valuable knowledge

we lacked before beginning the experiments, that will allow

us to better perform experiments in future, by considering

aspects such as correct camera positioning, orientation, vi-

brations induced by the UAV, among others.

VI. FUTURE WORK

While future work obvioulsy includes deriving the full

odometry (meaning the computation of Translation esti-

mates) it will also try to complement the investigations made

so far in order to improve our results, and avoid already

identified problems. Three approaches will be investigated

in future. First, textures in the environment that can be seen

in the intensity images grabbed by the ToF camera will

be used to aid the visual odometry; secondly, such results

will be fused with information obtained from the Inertial

Measurement System; finally, localization will be made using

a previously known 3D model of the environment in which

the UAV has to move. These investigations will allow us to

achieve the autonomous navigation and localization of the

flying vehicle in a better and more reliable way.

VII. CONCLUSIONS

This document has outlined our first experiments towards

the development of a fully autonomous indoor flying vehicle.

We believe that such system has interesting applications,

such as in the fields of rescue and service robotics, reaching

areas where sensors such as Global Positioning Systems

would fail. In principle we have focused our investigations in

the use of planar patches, given the characteristics of indoor

environments. A real-time algorithm has been implemented,

that segments a depth image into the planes found within it.

Tracking and registration have been made possible thanks to

the matricial nature of the ToF images, using an approach

based on the morphological operation erosion. Using the

normal vectors of corresponding planes in two consecutive

frames, ego-motion is estimated. Rotation estimates have

proven to be accurately estimated. These investigations have

proven the ToF camera suitable for its use on-board a

flying vehicle, and to autonomously perform tasks such as

localization and mapping.

REFERENCES

[1] P. Brisset, A. Drouin, M. Gorraz, P.S. Huard and J. Tyler, “The
Paparazzi Solution”, http://paparazzi.enac.fr

[2] J. Poppinga, A. Birk and K. Pathak. “A Characterization of 3D Sensors
for Mobile Robots”. In RoboCup 2009: Robot Soccer World Cup XIII,
volume 5949/2010 of Lecture Notes in Computer Science, pages 264–
275. Springer Berlin / Heidelberg, February 2010.
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