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ABSTRACT 

 

In this communication is considered the problem of long term forecasting of the traffic growth 

in a large transportation network. This problem is crucial when planning the necessary 

investments in terminals, fleets and traffic control equipments.  

The proposed approach makes use of two different optimization models:  One model is 

devoted to freight demand forecasting, the other one defines the  transport supply on a 

multimodal basis. A general framework is proposed and a solution scheme composed of an 

iterative process between the current solutions of the demand and the supply optimization 

problems, is introduced. Convergence conditions are discussed for this iterative process 

between these two problems which can be seen as inverse of each other. 
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1. INTRODUCTION 

In this communication is considered the problem of long term forecasting of freight traffic   

growth in a large transportation network. This problem is crucial when planning the necessary 

investments in terminals, transportation links and fleets. One of the main difficulty of this task 

is related with the estimation of future demand over the network which has direct influence on 

the operational conditions  and costs. The proposed approach makes use of two different 

optimization models:  One model is devoted to demand forecasting, the other one defines the 

global transport supply according with a profit maximization behavior for the whole transport 

sector operating in this area. The freight demand forecasting process is based a new entropy 

maximization approach to determine the distribution of origin-destination matrices. The 

supply optimization model considers simultaneously two classes of flows: vehicle flows 

providing transportation capacity and freight flows generating revenues to the transportation 

operators. Hence, no classical flows in networks optimization technique is available to solve 

this problem while two level solution techniques considering vehicle flows at the first level 

and passengers/freight flows at the second level can be considered. A global optimization 

problem is associated to a full scenario with respect to demand and operations costs. Each of 

the optimization problems, taken separately is convex, however, the whole problem, through 

the global definition of the revenue and of a cost constraint is non convex. A proposed 

solution schemes is composed of an iterative process between the current solutions of the 

demand and the supply optimization problems: the entropy maximizing/minimum freight 



distribution cost problems provides the freight origin-destination matrices given a fare 

structure, while the supply optimization problem provides the fare structure given 

passengers/freight origin-destination matrices. To enforce convergence while maintaining 

convexity of the two problems, the effective-potential demand level constraints of the supply 

optimization problem are modified.  

 

2.DISTRIBUTION OF FREIGHT DEMAND 

To perform the prevision of freight demand, it is supposed that a priori trip distribution is 

available:                   
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We consider that the demand for a given origin destination i-j and for a given modality m is 

such that there exists a positive constant 
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ijλ  with : 
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where 
m
ijπ is the mean freight fare between i and j with modality m. Considering that the 

potential origin and destination levels are { }NiO
i

...,,1, ∈  and  { }NjD j ...,,1, ∈ , we have the 

following constraints: 
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The demand distribution estimation problem is taken here as a constrained entropy 

maximization problem. Then to a choice of an instance I={[ m
ijT̂ ], { }NiO

i
...,,1, ∈ , { }NjD j ...,,1, ∈ } 

is associated the following maximization problem, Problem D: 
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under  constraints  (3-1), (3-2) and  
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The adopted optimization criteria,  a conditional entropy function, is representative of the 

global distortion between the a priori and the predicted demand distributions. The above 

optimization problem being convex  it is useful to introduce the Lagrangian associated to this 

problem :  
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The first order optimality conditions are such as :  
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Then the solution is such as : 
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The dual variables are such as: 
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The numerical solution of an instance of Problem D can be obtained using an extension of the 

Furness algorithm. Linear convex algorithms such as the Simplex-Convex or the Frank-Wolfe 

algorithms (Assad, 1978) appears to be very cumbersome in computational terms. Another 

interesting direction for numerical resolution is through the solution of the geometric primal 

associated to this problem (Mora-Camino, 1978). 

 

3. ASSIGNMENT OF FREIGHT FLOWS 

The different vehicle flows along each network provide the physical support for the freight 

flows. Then considering that  [ m
ijφ ] are the freight flows over the network corresponding to 

transportation mode m, they obey to the following capacity constraints :  
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where [ m
ijf ] is the flow of vehicles of the m

th
 modality over Gm, φσ is a scaling factor. For each 

origin-destination pair a set of concurrent paths composed of a succession of links is retained 

according to directness criteria for freight:  
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Here it is considered that demand for a given O-D pair, is assigned to these possible paths 

according with the available capacities. This approach is acceptable when available capacity 

is close to demand levels.  



Let [β(i,j,n,k,l,m) ] be the incidence matrix between path Ch
n

ij    and arc (k,l) of Gm :  

β(i,j,n,k,,l,m) = 1 if  (k,l)∈ Ch
n

ij β(i,j,n,k,l,m) = 0 else. Then the flow of freight between 

vertices i and j is given by :  
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where 
ijn

θ is the flow of freight between origin i and destination  j using the n
th

 path between 

them. 

The mean freight fare for the  i-j origin-destination pair is then given by : 
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4. TRANSPORTATION SUPPLY MODEL 

The proposed model takes into account m+1 types of flows: m vehicle flows according to the 

different transport modalities and freight flows using the resulting transport capacity.  The 

fleets of vehicles and their operation generate fixed and variable costs, while freight flows are 

the main source of revenue for the freight transportation sector. To each transportation 

modality is associated a network linking the N transportation centers such as: 

 

Rm =[Gm,[ m
ijf ]]                                                         (17) 

 

where Gm is the graph associated to the m
th

 modality, [ m
ijf ] is the flow of vehicles of the m

th
 

modality over Gm. The different networks some common vertices and links. The flow of 

vehicles associated to each transportation mode satisfies to conservation and positivity 

constraints:                                                                                       
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where Nm is the number of vertices of graph Gm. Here flows integrity constraints are not taken 

into account since no scheduling or routing problem will be formulated according to these 

flows which should only provide a global view of the future development of the multimodal 

transportation system. However for sake of realism, a fleet capacity constraint can be 

introduced: 
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where m
ijd  is the block time for travel, including departure and arrival activities, between 

vertices i and j , Dm is the average time availability of a vehicle for modality m. 

 It can be also of interest to introduce node capacity constraints related with intermodal 

stations and terminals:  
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where 
t
mQ  is the traffic capacity of terminal t,  Smn(i, j, t) are incidence matrices between 

vehicle flows of different transportation modes.  

5. SUPPLY OPTIMIZATION MODEL 

Given the distribution of potential demands ][
*
ijT  associated to an instance of [

ijT̂ ] , 

{ }NiO
i

...,,1, ∈ and { }NjD j ...,,1, ∈ , as well as to mean transportation fares ][
m
ijπ , the 

optimization of transportation supply (capacities and fares) can be considered: This problem 

(Problem S) is concerned with the optimization of the global economic performance over a 

period of time of the multimodal freight transportation network. Here the decision variables 

are the  vehicle flows ( m
ijf ) between the different centers and the fares ( mn

ijπ ) applied to each 

selected path between the centers. To solve this problem it is also necessary to introduce the 

effective flows of goods ( ijnθ ) associated to each selected path between the connected 

centers.  The optimization criterion of Problem S is given by: 
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where τ is a return rate and the m

uvc are coefficients related with fixed and variable fleets and 

flows costs. Problem S must satisfy the following constraints: 
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     with the positivity conditions: 
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6. GLOBAL SOLUTION SCHEME 

 

It appears that Problems D on one side and Problem S on the other side, are strongly 

interdependent: while Problem D provides to Problem S potential levels of demand ][
*

ijT  

(constraints (27) ), Problem S provides mean  fare values ][
ij

π  to Problems D.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Interaction between problems 

 

Each of the optimization problems, taken separately is a convex programming problem, 

however, the whole problem when integrating Problem D through constraint (27) is non 

convex. Then it seems interesting to solve numerically these problems separately and design 

an interactive process towards equilibrium. In this case, some questions are of interest: 

- the easiness to solve numerically each of the optimization problems, 

- the guarantee of convergence of the iterative process towards global solution, 

- the speed of convergence, 

- the quality of the limit solution.  

These three linked problems constitute a non standard bi-level programming problem 

(Dempe, 2000) where Problem S is the leader’s problem  while Problem D are the followers’ 

problems. This results from the adoption of a deregulated point of view in which transport 
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firms operate as a whole the transport network according to their direct economic interest 

without considering any social surplus. 

Constraint (27) plays a central role in the articulation of the two optimization levels and the 

convergence of their solutions towards a common global solution. Since these constraints 

transmit to the revenue optimization problem the reaction of demand with respect to changes 

in mean fares between the different origins and destinations, it is useful to makes apparent this 

effect so that limited fare values will be provided by the solutions of Problem S. However, the 

relation between origin-destinations flows ])[( *
ijT  and fare levels ])[ ijπ  is quite complex and at 

least non linear. So, to maintain the convexity of Problem S, these constraints can be replaced 

by their first order approximation where the reference values are the solutions of the two 

problems at the previous iteration:    
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Since the following inequalities are likely: 
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 it appears that starting from low fares, an increase of  fares on trips linking origin i and 

destination j at solution of Problem S at iteration k-1 will imply a decrease of potential 

demand on the same origin-destination pair at the same iteration of the corresponding 

Problem D and then a negative effect on the revenue of transport firms. Fares will then be 

increased by this process until no more improvement of revenue is obtained. Starting from 

high level fares, the inverse process will be obtained. his iterative process can be sketched 

with a very simple example: 
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where θ0 and λ are positive constants. Its exact solution is given by: π* =(1+c λ)/λ  and 
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It is clear that the limit when k →+ ∞  of (πk, θk) is ((1+c λ)/λ, θ0 e
-(1+c 

λ). Here, the 

convergence rate is such as: 
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Other bi-level schemes have been considered in (Alou et al, 2006) and (Brotcome et al, 2000) 

for different transportation problems while numerical convergence conditions have been 

discussed in (Scheel et al, 2000). 

 
     

7. CONCLUSION 

This communication has considered the problem of long term forecasting of freight 

transportation in a large network. The proposed approach has introduced two different 

optimization models:  A model devoted to demand forecasting and another one describing a 

profit maximization supply behavior by transportation firms. The distribution demand 

forecasting model introduces in a new way elasticity of demand with respect to fares. The 

supply optimization model considers simultaneously two flows: vehicle flows providing 

transportation capacity and freight flows generating revenues to the transport operators. Then 

a global optimization problem is associated to each scenario with respect to demand and 

operations costs. A solution scheme composed of an iterative process between the current 

solutions of the demand and the supply optimization problems is proposed: the entropy 

maximizing problem provides the freight origin-destination matrices given the fare structure, 

while the supply optimization problem provides the fare structure given freight origin-

destination matrices. Convergence conditions are discussed for this iterative process between 

the two levels, which can be seen as inverse of each other. 
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